

Properties of Derivations on KU-ALGEBRAS

Samy M.Mostafa ¹, R. A. K. Omar ², Ahmed Abd-eldayem ³

- 1 Department of Mathematics, Faculty of Education-Ain Shams University- Roxy, Cairo, Egypt samymostafa@yahoo.com
- 2 Department of Mathematics, Faculty of Education-Ain Shams University- Roxy, Cairo, Egypt ben-omar1955@yahoo.com
- 3 Department of Mathematics, Faculty of Education-Ain Shams University- Roxy, Cairo, Egypt ahmedabdeldayem88@yahoo.com

Abstract:

In this paper the notion of (ℓ,r) (or (r,ℓ)) -derivations and t-derivation of a KU-algebra are introduced, and some related properties are investigated. Also, we consider regular derivations and the *D*-invariant on ideals of *KU*-algebras .We also characterized KerD by derivations.

Keywords. *KU*-algebras , (ℓ, r) (or (r, ℓ)) - derivations of *KU*-algebras ; t-derivation of a KU- algebras ; *D*-invariant on ideals of *KU*-algebras.

Subject Classification

Mathematics Subject Classification: 03G25, 06F35

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No 1

www.cirjam.com, editorjam@gmail.com

1. Introduction.

As it is well known, BCK and BCI-algebras are two classes of algebras of logic. They were introduced by Imai and Iseki [9,10,11] and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper sub class of the BCI-algebras. The class of all BCK-algebras is a quasivariety. Is eki posed an interesting problem (solved by Wro'nski [19]) whether the class of BCK-algebras is a variety. In connection with this problem, Komori [14] introduced a notion of BCC-algebras, and Dudek [6] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Komori. Dudek and Zhang [7] introduced a new notion of ideals in BCC-algebras and described connections between such ideals and congruences. C.Prabpayak and U.Leerawat ([17], [18]) introduced a new algebraic structure which is called KU - algebra . They gave the concept of homomorphisms of KU- algebras and investigated some related properties. Several authors [2,3,4,5,8,13] have studied derivations in rings and near rings. Jun and Xin [12] applied the notion of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI -algebras. They investigated some of its properties, defined a d -derivation ideal and gave conditions for an ideal to be d-derivation. Later, Hamza and Al-Shehri [1], defined a left derivation in BCIalgebras and investigated a regular left derivation. Zhan and Liu [20] studied f-derivations in BCI-algebras and proved some results. G. Muhiuddin and Al-roqi [15 , 16] introduced the notion of (α, β) -derivation in a BCI-algebra and investigated related properties. They provided a condition for a (α, β) - derivation to be regular. They also introduced the concepts of a $d_{(\alpha,\beta)}$ - invariant (α,β) -derivation and α -ideal, and then they investigated their relations. Furthermore, they obtained some results on regular (α, β) - derivations. Moreover, they studied the notion of *t*derivations on BCI-algebras and obtained some of its related properties. Further, they characterized the notion of psemisimple BCI-algebra X by using the notion of t-derivation. In this paper we introduce the notions of (ℓ, r) or (r, ℓ)) derivation and t-derivation of a KU-algebra and some related properties are explored.

2. Preliminaries.

In this section, we recall some basic definitions and results that are needed for our work.

Definition 2.1. [17]. Let X be a set with a binary operation * and a constant 0.

(X, *, 0) is called KU-algebra if the following axioms hold : $\forall x, y, z \in X$:

$$KU_1$$
) $(x * y) * [(y * z) * (x * z)] = 0$

$$KU_{2}$$
) $x*0=0$

$$KU_2$$
) $0*x=x$

$$KU_4$$
) if $x * y = 0 = y * x$ implies $x = y$

Define a binary relation \leq by : $x \leq y \Leftrightarrow y * x = 0$, we can prove that (X, \leq) is a partially ordered set.

By the binary relation ≤, we can write the previous axioms in another form as follows:

$$(KU_1)(y*z)*(x*z) \le x*y$$

 $(KU_2)0 \le x$
 $(KU_3)x \le y \Leftrightarrow y*x = 0$
 (KU_4) if $x \le y$ and $y \le x \Rightarrow x = y$

Example 2.2. Let $X = \{0,1,2,3,4\}$ be a set in which the operation * is defined as follows.:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	1	0	3	3
3	0	0	2	0	2
4	0	0	0	0	0

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra

Corollary 2.3 [18]. In KU-algebra the following identities are true for all $x, y, z \in X$:

(i)
$$z * z = 0$$

(ii)
$$z * (x * z) = 0$$

(iii) If $x \le y$ implies that $y * z \le x * z$

(v)
$$z * (y * x) = y * (z * x)$$

(vi)
$$y * [(y * x) * x] = 0$$

Definition 2.4 [17]. A subset S of KU-algebra X is called sub algebra of X if $x * y \in S$, whenever $x, y \in S$

Definition 2.5 [17,18]. Anon empty subset A of KU-algebra X is called ideal of X if it is satisfied the following conditions:

(i)
$$0 \in A$$

(ii)
$$y * z \in A$$
, $y \in A$ implies $z \in A$ $\forall y, z \in X$

Definition 2.6. For elements x and y of KU-algebra (X, *, 0), we denote $x \wedge y = (x * y) * y$.

Proposition .2.7. Let (X, *, 0) be a KU-algebra then the following identities are true for all $x, y, z \in X$:

(i)
$$(x * y) * (x * z) \le y * z$$

(ii) If
$$x \le y$$
 then $z * x \le z * y$

(iii)
$$z * (x * y) \le (z * x) * (z * y)$$

(v)
$$x \wedge y \leq x, y$$

From corollary 2.3(v) and definition
$$2.1(KU_1)$$

Proof. Since
$$(y*z)*[(x*y)*(x*z)]=(x*y)*[(y*z)*(x*z)]=0$$
.

Then
$$(x * y) * (x * z) \le y * z$$
.

from proposition 2.7(i)
$$(z*y)*(z*x) \le y*x \text{ , then we have } (z*y)*(z*x) \le 0$$

But
$$0 \le (z*y)*(z*x)$$
 , hence $(z*y)*(z*x)=0$, and therefore $z*x \le z*y$.

(iii) Since [(z * x) * (z * y)] * [z * (x * y)] =

from corollary 2.3(v) from definition 2.
$$(KU^{l_1})$$
 and corollary 2.3(ii))
$$= [(z*x)*(z*y)]*[x*(z*y)] \le x*(z*x) = 0.$$

from definition $2.1(KU^{l}_{2})$

Then $[(z*x)*(z*y)]*[z*(x*y)] \le 0$. We have $0 \le \overline{[(z*x)*(z*y)]*[z*(x*y)]}$, hence [(z*x)*(z*y)]*[z*(x*y)] = 0. Therefore $z*(x*y) \le (z*x)*(z*y)$.

(v) Since
$$x * [(x * y) * y] = (x * y) * (x * y)$$
 (from corollary 2.3 (v))

=0 . Then
$$(x * y) * y \le x$$
 i.e $x \land y \le x$

Since
$$y * [(x * y) * y] = (x * y) * (y * y)$$
 (from corollary 2.3 (v))

$$= (x * y) * 0 = 0$$
. Then $x \wedge y \leq y$.

Proposition 2.8 . Let A be an ideal of KU-algebra X . Then A is sub algebra of X

Proof. Let $x, y \in A$ and $y*(x*y) \in A$. Since A is ideal of X and $y \in A$, then $x*y \in A$. Therefore A is KU-sub algebra of X.

3. The derivations on KU-algebra.

Throughout this article, X will denote a KU-algebra unless otherwise mentioned.

Definition 3.1. Let X be a KU-algebra. A map $d: X \to X$ is a left –right derivation (briefly, (ℓ, r) -derivation) of X if it satisfies the identity

$$d(x * y) = (d(x) * y) \land (x * d(y)) \forall x, y \in X$$

If d satisfies the identity

$$d(x * y) = (x * d(y)) \wedge (d(x) * y) \forall x, y \in X$$

then d is a right-left derivation (briefly, (r,ℓ) -derivation) of X . Moreover, if d is both (ℓ,r) and (r,ℓ) -derivation then d is called a derivation of X.

Definition 3.2. A derivation of KU-algebra is said to be regular if d(0) = 0.

Lemma 3.3. A derivation d of KU-algebra X is regular.

Proof. If
$$d$$
 is (ℓ, r) - derivation of X , $d(0) = d(x * 0) = (d(x) * 0) \land (x * d(0))$

=
$$0 \wedge (x*d(0))$$
 (from definition 2.1 (KU_2))

$$=[0*(x*d(0))]*(x*d(0))$$

from definition 2.1(KU₃), from corollary 2.3(i).
$$= (x*d(0))*(x*d(0)) = 0$$

If
$$d$$
 is (r,ℓ) -derivation of X , $d(0) = (x*d(0)) \wedge (d(x)*0)$

$$=(x*d(0)) \wedge 0$$
 (Definition 2.1 (KU_2))

$$=[(x*d(0))*0]*0=0*0=0.$$

Example 3.4. Let $X = \{0,1,2,3,4\}$ be a set in which the operation * is defined as follows:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	2	4
2	0	0	0	1	4
3	0	0	0	0	4
4	0	1	1	1	0

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0,1,2,3 \\ 4 & \text{if } x = 4 \end{cases}$$

Then it is easy to show that d is both a (ℓ,r) and (r,ℓ) -derivation of X .

Proposition 3.5. Let d be a self map of KU-algebra X, then

- (I) if d is (ℓ, r) -derivation of X, then $d(x) = x \wedge d(x) \ \forall x \in X$.
- (II) If d is (r, ℓ) -derivation of X, then $d(x) = d(x) \land x \ \forall x \in X$.

Proof.

(I) Let d is (ℓ, r) - derivation of X then,

$$d(x) = d(0 * x) = (d(0) * x) \land (0 * d(x)) = (0 * x) \land d(x) = x \land d(x)$$

(II)If d is (r, ℓ) -derivation of X then,

$$d(x) = d(0 * x) = (0 * d(x)) \land (d(0) * x) = d(x) \land (0 * x) = d(x) \land x.$$

Proposition 3.6. Let X be a KU-algebra with partial order \leq , and let d be a derivation of X . Then the following hold $\forall x, y \in X$:

- (i) $d(x) \le x$.
- (ii) $d(x * y) \le d(x) * y$.
- (iii) $d(x * y) \le x * d(y)$.
- (v) d(x * d(x)) = 0.
- (vi) $d^{-1}(0) = \{x \in X \mid d(x) = 0\}$ is a sub algebra of X.

Proof. (i)Since x * d(x) = x * ((d(x) * x) * x) = 0, we have $d(x) \le x$.

(ii) Since
$$d(x) * y * d(x * y) = d(x) * y * [(d(x) * y) \land (x * d(y))] = 0$$
. Similarly, if $dis(r, \ell)$ derivation on X , then $d(x * y) \le d(x) * y$

(iii) If $dis(r,\ell)(or(\ell,r))$ derivation on X we can prove (x*d(y))*d(x*y)=0 and hence $d(x*y) \le x*d(y)$.

(v) If
$$d$$
 is (ℓ,r) -derivation of X , then $d(x*d(x)) = (d(x)*d(x)) \wedge (x*d(d(x)))$

=
$$0 \wedge (x * d(d(x))) = 0$$
 (Corollary 2.3 (i))

If
$$d$$
 is (r,ℓ) -derivation of X ,then $d(x*d(x)) = (x*d(d(x)) \wedge (d(x)*d(x))$

$$=(x*d(d(x)))\wedge 0=0$$
.

Therefore d(x * d(x)) = 0

(vi) Since d is regular, we have $d^{-1}(0) \neq \Phi$. Let $x, y \in d^{-1}(0)$, then d(x) = d(y) = 0,

$$d(x*y) = (x*d(y)) \land (d(x)*y) = (x*0) \land (0*y) = 0 \land y = (0*y)*y = 0. \quad \text{We get} \\ x*y \in d^{-1}(0).$$

Hence $d^{-1}(0)$ is KU-sub algebra of X .

Definition 3.7 .Let d a derivation of KU-algebra X . An ideal A of X is said to be d-invariant if $d(A) \subseteq A$, where $d(A) = \{d(x), x \in A\}$.

Proposition 3.8. Let X be a KU-algebra. Then

(i) If
$$x \le y$$
, then $d(x) \le y$

(ii) If
$$y \le x$$
, then $d((y*z)*(x*z)) = 0$

(iii) If I is an ideal of X , then every ideal I of X is d-invariant .

i.e
$$d(I) \subseteq I$$
 where $d(I) = \{ d(x), x \in I \}$.

Proof. (i) Let $x \le y$, then (from corollary 2.3(iii)) we have $y * d(x) \le x * d(x)$.

Since
$$0 \le y*d(x)$$
, $y*d(x) \le 0$, we have $y*d(x) = 0$. Hence $d(x) \le y$.

(ii) Since
$$(y*z)*(x*z) \le x*y$$
, we have $d((y*z)*(x*z)) \le x*y$, hence

$$\overbrace{d((y*z)*(x*z)) \leq 0}^{y \leq x} \text{, but } \overbrace{0 \leq d((y*z)*(x*z))}^{\text{from definition } 2.1 \text{ (KU}_2^{\setminus})}$$
 We have
$$d((y*z)*(x*z)) = 0$$

(iii) Let $y \in d(I)$ such that y = d(x) for some $x \in I$. Since I is an ideal of X, $d(x) \le x$, $x * d(x) = 0 \in I$ and $x \in I$. Then $y \in I$, which implies that $d(I) \subset I$. Therefore the ideal I is d-invariant.

Remark3.9. Let X be a KU-algebra ,then in general $x*(y*z) \neq (x*y)*(x*z) \ \forall x,y,z \in X$.

Proof: Since in example 3.4 if x = 4, y = 1, z = 3. Then, $x * (y * z) \neq (x * y) * (x * z)$.

Lemma3.10. let X be a KU-algebra and let if d is (r,ℓ) -derivation of X .

Then $d(x * y) \le d(x) * d(y)$.

Proof. Since $(d(x)*d(y))*d(x*y)=(d(x)*d(y))*[(x*d(y)) \land (d(x)*y)]$

$$= (d(x)*d(y))*[((x*d(y)*(d(x)*y))*(d(x)*y)]$$

=
$$[(x*d(y))*(d(x)*y)]*[(d(x)*d(y))*(d(x)*y)]$$
 Corollary 2.3 (v)

$$\leq (d(x)*d(y))*(x*d(y)) \leq x*d(x) = 0$$
 (($KU^{l}1$), Proposition 3.6 (i)).

But $0 \le (d(x)*d(y))*d(x*y)$, then (d(x)*d(y))*d(x*y)=0 , which implies that $d(x*y) \le d(x)*d(y)$.

Theorem 3.11. Let X be a KU-algebra and d be a derivation of X . If $y \in \ker(d)$ and $x \in X$, then $x \wedge y \in \ker(d)$

Proof .Since $d(x \wedge y) = d((x * y) * y) = (d(x * y) * y) \wedge ((x * y) * d(y))$

=
$$(d(x * y) * y) \land ((x * y) * 0) = 0$$
, then $x \land y \in \ker(d)$.

Definition 3.12 . Let X be a KU-algebra and d be a derivation of X .

Denote $Fix_d(X) = \{x \in X : d(x) = x\}.$

Proposition 3.13. Let X be a KU-algebra and d be a derivation of X. Then $Fix_d(X)$ is a sub algebra of X.

Proof. Let $x, y \in Fix_d(X)$, we get d(x) = x, d(y) = y, and so

$$d(x * y) = (d(x) * y) \land (x * d(y)) = (x * y) \land (x * y) = (x * y)$$
. Hence $x * y \in Fix_d(X)$.

Proposition 3.14. Let X be a KU-algebra and d be a derivation of X.

If $x, y \in Fix_d(X)$, then $x \wedge y \in Fix_d(X)$.

Proof. Let $x, y \in Fix_d(X)$, we get d(x) = x, d(y) = y. From Proposition 3.14 we have d(x * y) = x * y and hence $d(x \wedge y) = d((x * y) * y) = (d(x * y) * y) \wedge ((x * y) * d(y))$

$$=((x*y)*y)\wedge((x*y)*y)$$

=
$$(x * y) * y = x \land y$$
. Therefore $x \land y \in Fix_d(X)$.

Proposition 3.15. Let X be a KU-algebra. Then $d_n(d_{n-1}(...(d_2(d_1(x)))....)) \le x \ \forall n \in \mathbb{N}$, where d_1, d_2,d_n are derivations of X.

Proof. For n = 1. $d_1(x) = d_1(0 * x) = (d(0) * x) \land (0 * d(x)) = x \land d(x) \le x$.

Let $n \in \mathbb{N}$ and assume that $d_n(d_{n-1}(...(d_2(d_1(x)))....)) \leq x$. For simplicity,

Let
$$D_{\scriptscriptstyle n} = d_{\scriptscriptstyle n}(d_{\scriptscriptstyle n-1}(...(d_{\scriptscriptstyle 2}(d_{\scriptscriptstyle 1}(x)))....))..$$
 Then $d_{\scriptscriptstyle n+1}(D_{\scriptscriptstyle n}) = d_{\scriptscriptstyle n+1}(0*D_{\scriptscriptstyle n})$

$$= (d_{n+1}(0) * D_n) \wedge (0 * d_{n+1}(D_n))$$

$$= D_n \wedge d_{n+1}(D_n) \leq D_n \leq x.$$

4. t-Derivations ON KU-ALGEBRAS.

The following definitions introduces the notion of $\,t\,$ -derivation of KU-algebra $\,X\,$.

Definition 4.1. Let X be a KU-algebra. Then for any $t \in X$, we define a self map $d_t: X \to X$ by $d_t(x) = t * x \quad \forall x \in X$.

Definition 4.2. Let X be a KU-algebra. Then for any $t \in X$, a self map $d_t: X \to X$ is called a t - (r, l) (ℓ, r) -derivation of X if it satisfies the condition $d_t(x * y) = (d_t(x) * y) \land (x * d_t(y)) \quad \forall x, y \in X$

Definition 4.3.Let X be a KU-algebra. Then for any $t \in X$, a self map $d_t: X \to X$ is called a t- (r,ℓ) -derivation of X if it satisfies the condition

$$d_t(x * y) = (x * d_t(y)) \wedge (d_t(x) * y) \quad \forall x, y \in X.$$

Definition 4.4. Let X be a KU-algebra. Then for any $t \in X$, a self map $d_t: X \to X$ is called a t-derivation on X if d_t is both a $t - (\ell, r)$ or t - (r, l) derivation on X.

Example 4.5. Consider the KU-algebra (X, *, 0) in example (3.4). Define the mapping d_t as follows: When $t = 0, d_t(x) = x \quad \forall x \in X$.

When
$$t = 1, d_t(0) = d_t(1) = 0, d_t(2) = d_t(3) = 2, d_t(4) = 4$$
.

When
$$t = 2$$
, $d_t(0) = d_t(1) = d_t(2) = 0$, $d_t(3) = 1$, $d_t(4) = 4$.

When
$$t = 3$$
, $d_{\star}(0) = d_{\star}(1) = d_{\star}(2) = d_{\star}(3) = 0$, $d_{\star}(4) = 4$.

When
$$t = 4$$
, $d_{\star}(0) = d_{\star}(4) = 0$, $d_{\star}(1) = d_{\star}(2) = d_{\star}(3) = 1$.

 $\forall t \in X, d_t \text{ is a } t \text{ -derivation of } X$.

Remark 4.6. In a KU-algebra, $x \wedge y = (x * y) * y \quad \forall x, y \in X$. By using Corollary 2.7(vi), if d_t is a $t - (\ell, r)$ derivation of X, then $d_t(x * y) \leq d_t(x) * y$.

Remark 4.7. We observe that by using Corollary 2.7(vi) , if d_t is a $t-(r,\ell)$ derivation of X , then $d_t(x*y) \le x*d_t(y)$.

Definition 4.8. A self map d_t on KU-algebra X is said to be t - regular if $d_t(0) = 0$.

Corollary 4.9. t – Derivation on KU-algebras is t – regular .

Proof. If d_t is a $t - (\ell, r)$ derivation on X . Then

$$d_t(0) = d_t(x * 0) = (d_t(x) * 0) \land (x * d_t(0)) = 0 \land (x * d_t(0)) = 0.$$

Similarly, if d_t is a $t-(r,\ell)$ derivation on X , then $d_t(0)=0$.

Proposition 4.10.

(I) If
$$d_t$$
 is $t - (r, \ell)$ derivation of X . Then $d_t(x) = d_t(x) \wedge x \quad \forall x \in X$.

(II) If
$$d_t$$
 is $t - (\ell, r)$ derivation of X . Then $d_t(x) = x \wedge d_t(x) \ \forall x \in X$.

Proof.

(I) Let d_t is $t-(r,\ell)$ derivation on X . Then

$$\begin{aligned} d_t(x) &= d_t(0*x) = (0*d_t(x)) \wedge (d_t(0)*x) \\ &= d_t(x) \wedge (0*x) \quad \text{as } d_t \text{ is t-regular} \\ &= d_t(x) \wedge x \end{aligned}.$$

(II) Let d_t is $t - (\ell, r)$ derivation on X . Then it is easily to prove that $d_t(x) = x \wedge d_t(x) \quad \forall x \in X$.

Proposition 4.11. Let d_t is t – derivation of KU-algebra X . Then the following holds:

If $x \le y$ implies $d_t(x) \le d_t(x)$ $\forall x, y \in X$. Then we call d_t an *isotone* derivation

Proof. Since $x \le y$,(from corollary 2.7(ii)), we have $t * x \le t * y$, therefore $d_x(x) \le d_x(y)$.

Definition 4.12. Let X be a KU-algebra and $a \in X$. Define a function on X by

 $d_a(x) = a \wedge x \quad \forall x \in X$. Then we can see that d_a is a derivation on X. We refer to such derivations as principle.

Proposition 4.13. Every principle derivation of X is an isotone derivation of X.

Proof. Let d_a be a principle derivation of X . For any $x,y\in X$ and $x\leq y$ we have $a\wedge x\leq a\wedge y$, hence $d_a(x)\leq d_a(y)$.

Theorem 4.14. Let X be KU-algebra and d_t be a t-derivation on X . If $x \le y$, $d_t(x * y) = d_t(x) * d_t(y)$. Then $d_t(x) = d_t(y) \wedge d_t(x) \quad \forall x, y \in X$.

Proof.

$$d_{t}(x) = d_{t}(0 * x) = \overbrace{d_{t}((y * x) * x)}^{x \le y \Leftrightarrow y * x = 0} = d_{t}(y * x) * d_{t}(x) = (d_{t}(y) * d_{t}(x)) * d_{t}(x) = d_{t}(y) \wedge d_{t}(x).$$

Lemma 4.15. Let X be a KU-algebra , if d_t is $t-(r,\ell)$ derivation of X ,

then
$$d_t(x * y) \le d_t(x) * d_t(y)$$
.

Proof. Since
$$(d_t(x) * d_t(y)) * d_t(x * y) = (d_t(x) * d_t(y)) * [(x * d_t(y)) \wedge (d_t(x) * y)]$$

$$= (d_t(x) * d_t(y)) * [((x * d_t(y)) * (d_t(x) * y)) * (d_t(x) * y)]$$

$$= \overbrace{[(x*d_t(y))*(d_t(x)*y)]*[(d_t(x)*d_t(y))*(d_t(x)*y)]}^{\text{from definition } 2.1(KU^t)} = \underbrace{[(x*d_t(y))*(d_t(x)*y)]*(d_t(x)*d_t(y))*(x*d_t(y))}^{\text{From definition } 2.1(KU^t)} \leq x*d_t(x) = 0.$$

So we have $(d_t(x)*d_t(y))*d_t(x*y)=0$. Therefore $d_t(x*y) \le d_t(x)*d_t(y)$.

Theorem 4.16.Let X be KU-algebra and d_t be a t-derivation on X . Then the following hold :

- (I) $d_t(x) \leq x$.
- (II) $d_t(x * y) \le x * d_t(y)$.
- (III) $d_{t}(x * y) \le d_{t}(x) * y$.

(IV) $\ker(d_t) = \{x \in X : d_t(x) = 0\}$ is a sub algebra of X.

Proof.

(I) Since $x * d_t(x) = x * [x \wedge d_t(x)]$ from proposition 4.10 (II)

$$= x * [(x * d_t(x)) * d_t(x)] = (x * d_t(x)) * (x * d_t(x)) = 0.$$

Therefore $d_{t}(x) \leq x$.

(II) If d_t is a $t-(\ell,r)$ derivation on X . Then

$$(x * d_t(y)) * d_t(x * y) = (x * d_t(y)) * [(d_t(x) * y) \land (x * d_t(y))]$$

 $= (x * d_t(y)) * \underbrace{[((d_t(x) * y) * (x * d_t(y))) * (x * d_t(y))]}_{\text{from corollary 2.3(ii).}} = 0.$

Therefore $d_t(x * y) \le x * d_t(y)$.

If d_t is a $t-(r,\ell)$ derivation on X .Then it is easily to prove that

$$(x * d_t(y)) * d_t(x * y) = 0$$
. Then $d_t(x * y) \le x * d_t(y)$.

(III) If d_t is a $t-(r,\ell)$ derivation on X ,we have

$$(d_t(x) * y) * d(x * y) = (d_t(x) * y) * [(x * d_t(y)) \land (d_t(x) * y)]$$

from corollary 2.3(ii)
$$= (d_t(x) * y) * [((x * d_t(y)) * (d_t(x) * y)) * (d_t(x) * y)] = 0,$$

then $d_t(x * y) \le d_t(x) * y$.

If d_t is a $t - (\ell, r)$ derivation on X . Then it is easily to prove that $(d_t(x) * y) * d(x * y) = 0$ and hence $d_t(x * y) \le d_t(x) * y$.

Since d_t is t - regular, $d_t(0) = 0$ and $0 \in Ker(d_t)$, which implies that $Ker(d_t)$ is a non-empty set. Let $x, y \in Ker(d_t)$, we have $d_t(x) = d_t(y) = 0$. Now $d_t(x * y) = (d_t(x) * y) \land (x * d_t(y)) = (0 * y) \land (x * 0) = 0.$

Then $d_t(x * y) = 0$ and therefore $(x * y) \in Ker(d_t)$, which implies that $Ker(d_t)$ is a sub-algebra of X.

Definition 4.17. Let X be a KU-algebra and let d_t , $d_{t \setminus}$ be two self maps of X. Then we define $d_t \circ d_{t \setminus}$: $X \to X$ by $(d_t \circ d_{t \setminus})(x) = d_t(d_{t \setminus}(x)) \quad \forall x \in X$.

Proposition 4.18.Let X be a KU-algebra and let d_t , d_t be a $t-(\ell,r)$ derivations

of
$$X$$
 . Then $\,(\,d_{_t}\circ d_{_{t\backslash}})$ is a $\,t-(\ell,r)$ derivation of X .

Proof. Let X be a KU-algebra and let d_t , $d_{t\setminus}$ be a $t-(\ell,r)$ derivations of X. Then $\forall x,y\in X$. We have $(d_t\circ d_{t\setminus})(x*y)=d_t(d_{t\setminus}(x*y))$

ISSN 2347-1921

$$\leq d_t(d_{t\backslash}(\mathbf{x}) * y) \qquad (d_{t\backslash} \text{ is a } t - (\ell, r) \text{ derivation of } X)$$

$$\leq (d_t(d_{t\backslash}(x))) * y \ (d_{t\backslash} \text{ is a } t - (\ell, r) \text{ derivation of } X)$$

$$= (d_t \circ d_{t\backslash})(x) * y$$

Then $d_t \circ d_t (x * y) \le (d_t \circ d_t)(x) * y$, therefore $(d_t \circ d_t)$ is a $t - (\ell, r)$ derivation of X.

Proposition 4.19. Let X be a KU-algebra and let d_t , $d_{t \setminus}$ be a $t-(r,\ell)$ derivation of X. Then ($d_t \circ d_{t \setminus}$) is also a $t-(r,\ell)$ derivation of X.

Proof. Let X be a KU-algebra and let d_t , $d_{t\setminus}$ be a $t-(r,\ell)$ derivation of X. Then $\forall x,y\in X$ We have $(d_t\circ d_{t\setminus})(x*y)=d_t(d_{t\setminus}(x*y))$

$$\leq d_{t}(x*(\ d_{t\backslash}(\ y)) \quad \text{(since $d_{t\backslash}$ is a $t-(r,\ell)$ derivation of X)}$$

$$\leq (x*(\ d_{t}(\ d_{t\backslash}(\ y)) \quad \text{(since $d_{t\backslash}$ is a $t-(r,\ell)$ derivation of X)}$$

$$= x*(\ d_{t}\circ d_{t\backslash})(\ y)$$

Then $d_t \circ d_{t\backslash}(x*y) \leq x*(d_t \circ d_{t\backslash})(y)$. Therefor $(d_t \circ d_{t\backslash})$ is a $t-(r,\ell)$ derivation of X .

Theorem 4.20. Let X be a KU-algebra and let d_t , $d_{t\setminus}$ be t – derivation of X. Then ($d_t \circ d_{t\setminus}$) is also t – derivation of X.

Proof. Clear

Lemma 4.21. Let X be a KU-algebra and let d_t be t – derivation of X . Then

$$d(x) * d_{t}(x) = d_{t}(d(x) * x).$$

Proof. Since $d(x) * d_{t}(x) = d(x) * ((t * x))$

$$= \underbrace{t * (d(x) * x)}_{\text{from corollary 2.3(v)}} = d_t(d(x) * x).$$

Lemma 4.22. Let X be a KU-algebra . Then $t * d(x) \le d_t(x)$

Proof . from proposition 3.6(i) , $d(x) \le x$ and by using proposition 2.7(ii), we get

$$t * d(x) \le t * x$$

that is

$$t * d(x) \le d_t(x).$$

Conclusion.

Derivation is a very interesting and important area of research in the theory of algebraic structures in mathematics. In the present paper, The notion of (ℓ,r) (or (r,ℓ)) -derivations and t-derivation of a KU-algebra are introduced and investigated the useful properties of these types derivations in KU-algebras.

In our opinion, these definitions and main results can be similarly extended to some other algebraic systems such as BCH-algebra -Hilbert algebra -BF-algebra -J-algebra -WS-algebra -CI-algebra -BU-algebra -BCL-algebra -BP-algebra -Coxeter algebra -BO-algebra and so forth.

The main purpose of our future work is to investigate the fuzzy derivations ideals in KU-algebras, which may have a lot of applications in different branches of theoretical physics and computer science.

Appendix A.

Algorithm for KU-algebras

```
Input (X:set, *:binary operation)
Output (" X is a KU-algebra or not")
Begin
If X = \phi then go to (1.);
EndIf
If 0 \notin X then go to (1.);
EndIf
Stop: =false;
i := 1:
While i \leq |X| and not (Stop) do
If x_i * x_i \neq 0 then
Stop: = true;
EndIf
j := 1
While j \leq |X| and not (Stop) do
If ((y_j * x_i) * x_i) \neq 0 then
Stop: = true;
EndIf
EndIf
k := 1
While k \leq |X| and not (Stop) do
If (x_i * y_j) * ((y_j * z_k) * (x_i * z_k)) \neq 0 then
Stop: = true;
   EndIf
  Endlf While
Endlf While
Endlf While
If Stop then
    (1.) Output (" X is not a KU-algebra")
    Else
      Output (" X is a KU-algebra")
   EndIf
    End
```


References

- [1]-H. A. S. Abujabal and N. O. Al-Shehri, "On left derivations of BCI-algebras," Soochow Journal of Mathematics, vol. 33, no. 3, pp. 435–444, 2007.
- [2]-_ H. E. Bell and L.-C. Kappe, "Rings in which derivations satisfy certain algebraic conditions," Acta Mathematica Hungarica, vol. 53, no. 3-4, pp. 339–346, 1989.
- [3]- H. E. Bell and G. Mason, "On derivations in near-rings, near-rings and Near-fields," North-Holland Mathematics Studies, vol. 137, pp. 31–35, 1987.
- [4]- M. Bre sar and J. Vukman, "On left derivations and related mappings," Proceedings of the American Mathematical Society, vol. 110, no. 1, pp. 7–16, 1990.
- [5]- M. Bre sar, "On the distance of the composition of two derivations to the generalized derivations," Glasgow Mathematical Journal, vol. 33, no. 1, pp. 89–93, 1991.
- [6] W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull.
- Inst. Math. Acad. Sinica, 20 (1992), 129-136.
- [7] W. A. Dudek and X. H. Zhang, On ideals and congruences in BCCalgebras
- , Czechoslovak Math. J., 48(123) (1998), 21-29.
- [8]- B. Hvala, "Generalized derivations in rings," Communications in Algebra, vol. 26, no. 4, pp. 1147–1166, 1998
- [9] y.Imai and Iseki K: On axiom systems of Propositional calculi, XIV, Proc. Japan Acad. Ser A, Math Sci., 42(1966),19-22.
- [10] k.Iseki: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42 (1966), 26-29.
- [11] K Iseki and Tanaka S: An introduction to theory of BCK-algebras, Math. Japo., 23 (1978) 1-26.
- [12]- Y. B. Jun and X. L. Xin, "On derivations of BCI-algebras," Information Sciences, vol. 159, no. 3-4, pp. 167–176, 2004.
- [13]-A. A. M. Kamal, "σ-derivations on prime near-rings," Tamkang Journal of Mathematics, vol. 32, no. 2, pp. 89–93, 2001
- [14]-Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica,
- 29 (1984), 391-394.
- [15]- G. Muhiuddin and Abdullah M. Al-Roqi On (α, β) -Derivations in BCI-Algebras .Discrete Dynamics in Nature and Society Volume 2012.
- [16] G. Muhiuddin and Abdullah M. Al-roqi ,On t-Derivations of BCI-Algebras
- Abstract and Applied Analysis Volume 2012, Article ID 872784, 12 pages
- [17]-C.Prabpayak and U.Leerawat, On ideals and congruence in KU-algebras, scientia Magna in-ternational book series, Vol. 5(2009), No.1, 54-57.
- [18]- C.Prabpayak and U.Leerawat, On isomorphisms of KU-algebras, scientia Magna international book series, 5(2009), no .3, 25-31.
- [19]-A. Wronski, BCK-algebras do not form a variety, Math. Japonica, 28
- (1983), 211-213.
- [20]- J. Zhan and Y. L. Liu, "On f-derivations of BCI-algebras," International Journal of Mathematics and Mathematical Sciences, no. 11, pp. 1675–1684, 2005.