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Abstract 

This paper concerned with study of vartional iteration method(VIM) and fractional variational iteration method (FVIM) to 
solve time fractional  differential equations (FDE's) . So FVIM is more effective than VIM in solving the FDEˈs.            
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1. Introduction 

The class of fraction calculus is one of the most convenient classes of (FDEs) which viewed as generalized differential 
equation [1,2] . In the sense that, much of the theory and , hence , applications of differential equation can be extended 
smoothly to (FDEs) with the same flavor and spirit of the realm of differential equation. (FDEs) have been proved to be a 
valuable tool in modeling many phenomena in the fields of physics, chemistry, engineering, aerodynamics, 
electrodynamics of complex medium, polymer rheology, and so forth [17-20,7,8,22,26,28] . The (VIM), which was first 
proposed by He et al. [9-14] and has been shown to be very efficient for handling a wide class of physical problems. As 
early as 1998, the variational iteration method was shown to be an effective tool for factional calculus [15]; hereafter, the 
method has been routinely used to solve various (FDEs). [23,16,3-5,21,29] for many years ,the  (VIM and FVIM) is 
relatively new and effective approaches to find the approximate solution of PDEs, because they provide immediate and  

 visible  symbolic terms of analytic solutions, as well as numerical approximate solutions to both linear and nonlinear 
(PDEs) without linearization or discretization. 

2. Preliminaries and Notations 

In this section,we describe some necessary definitions and mathematical preliminaries of the fractional calculus theory. 

Definition 1, [25]: A real function 𝑕(𝑡), 𝑡 > 0, is said to be in the space 𝐶𝜇 , 𝜇 ∈ 𝑅 , if there exists a real number 𝑝 > 𝜇 , 

such that 𝑕(𝑡) = 𝑡𝑝𝑕1(𝑡) , where 𝑕1(𝑡) ∈ 𝐶(0,∞) , and it is said to be in the space
n

c 
if and only if  𝑕(𝑛)

 ∈ 𝐶𝜇, 𝑛 ∈𝑁. 

Definition 2 ,[24]. Riemann-Liouville fractional integral operator (𝐽𝛼) of order 𝛼 ≥ 0 , of a function 𝑓 ∈ 𝐶𝜇 , 𝜇 ≥ −1 is 

defined as 

𝐽𝛼𝑓 (𝑡) =  
1

0
( ) ( )

t

t f d    , t >0 

   
                                                               .……(1)

                                                                                              
 

𝐽0 𝑓 (𝑡) 
= 𝑓 (𝑡)              

Γ(𝛼) is the well-known gamma function. Some properties of the operator 𝐽𝛼 
can be found in [6] .We give in the following  for  

𝑓  C   ,   ,  and : 

1.  𝐽𝛼 𝐽𝛽𝑓 (𝑡) = 𝐽𝛼+𝛽 𝑓 (𝑡), 

 

2.  𝐽𝛼 𝐽𝛽𝑓 (𝑡) = 𝐽𝛽  𝐽𝛼 𝑓 (𝑡), 

                                                                 ...…..(2) 

3.  𝐽𝛼  𝑡𝛾 = 
( 1)

( 1)
x  

 

 

  
. 

The Riemann-Liouville derivative has certain disadvantages when trying to model real-world phenomena with FDEs . 

Therefore , we will introduce a modified fractional differential operator xD 
  proposed by Caputo [27]. 

Definition 3, [25]. The fractional derivative of 𝑓(𝑥) in the Caputosense is defined as 

( xD 
𝑓) (x) = 

10

1 ( )
, ( 0, 1 )

( ) ( )

( )
,

m
x

m

m

m

f
d m m

m x

f x
m

x




  

 



 


   

  




 


                    …....(3) 

where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denotes a continuous (but not necessarily differentiable) function. Some useful formulas and 
results of modified Riemann- Liouville derivative , which we need here , are listed as follows: 

       xD 
𝑐 = 0 , 𝛼 > 0 , 𝑐 = constant, 

       xD 
[𝑐𝑓(𝑥)]=𝑐 xD 

𝑓(𝑥),𝛼>0,𝑐=constant,                                                                                                                .........(4)                                   
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                       xD 
𝑥𝛽 =  

(1 )
, 0

(1 )
x 

 
 

 
 

  
                                                              

       xD 
 [𝑓 (𝑥) 𝑔 (𝑥)] = [

xD 
𝑓 (𝑥)] 𝑔 (𝑥) + 𝑓 (𝑥) [

xD 
𝑔 (𝑥)] , 

            xD 
 [𝑓 (𝑥(t))] = 

( )( ) ( )xf x x t . 

3. Variational Iteration Method ,[25].  

In this section, the (VIM) is introduced. Here a description of the method of fractional differential initial value problem: 

    ( , ) [ ( , )] [ ( , )] ( , ), 0
t

D u x t N u x t L u x t g x t t                                        ………. (5)                                                                                                          

Where L is the linear operater , N is nonlinear operator in x , t ,and D
α
 is modified Riemann-Liouville derivative of order α, 

subject to the initial conditions. 

( ) ( ,0) ( ), 0,1,2,..., 1, 1 .k

ku x c x k m m m                                                                                                                         
………..(6)                                                                                                                         

 

According to He’s variational iteration method [9-14] from(2) , we can construct a correction functional as follows: 

 1 1
0

( ) ( ) ( ) ( ( )) ( ( )) ( ) , 0
t

n n n nu t u t L u N u g n                                   ….…….(7) 

where 𝜆 is a general Lagrange multiplier which can be optimally identified via variational theory and nu is a restricted 

variation which means nu  = 0 , then several approximations 𝑢n(𝑡), 𝑛 ≥ 0 follow immediately. Consequently, the exact 

solution may be obtained as: 

𝑢 (𝑡) = lim ( ).n nu t                                                                           ……….(8) 

4. Fractional Variational Iteration Method,[25]: 

We can construct a correction functional for (5) as follows: 

 1 1 0
( , ) ( , ) ( , ) ( , ) [ ( , )] [ ( , )] ( , ) ,

t

k k t k k k
u x t u x t t D u x N u x L u x g x d      

 
                                                                                                                                                                              

…..……..(9) 

Where ( , )u x t  is a restricted variation .Taking Laplace transform to both sides of (9) as 

 
 1 0

( , ) ( , ) ( , ) ( , ) [ ( , )] [ ( , )] ( , ) ,
t

k k t k k k
u x t u x t L t D u x N u x L u x g x d      


     
     

                                                                                             ………..(10)   

Where  ( , )
k

u x t is Laplace transform of  ( , )
k

u x t with respect to 𝑡 and 𝐿 is operator of Laplace transform . By 

assuming that the Lagrange multiplier has the form as 

𝜆(𝑡, 𝜏) = 𝜆(𝑡 − 𝜏) , so that [ ( ( , ) [ ( , )] [ ( , )] ( , ))].
k k k

L J D u x N u x L u x g x 

 
            

Is the convolution of the function ( )t and ( , ) [ ( , )] [ ( , )] ( , ).
t k k k

D u x t N u x t L u x t g x t      

Because ( , )u x t  is a restricted variation, we have  

[ ( [ ( , )] [ ( , )] ( , ))] 0
t k k

L J N u x t L u x t g x t                                                                                  ………(11) 

Taking the variation derivative  on the both sides of (10) ,we can derive 

1
( , ) ( , ) [ ( [ ( , )] [ ( , )] ( , ))] 0

k k t k k
u x t u x t L J N u x t L u x t g x t   


                                                                                                                                                                                                          

                                                                          (1 ( ) ) ( , )
k

s s u x s   .                                                  .............(12)                              
 

If setting the coefficient of ( , )
k

u x s to zero, we can get 



                                                                                                 ISSN 2347-1921 

852 | P a g e                                                   J a n u a r y  2 7 ,  2 0 1 4   

                                                                                                                                                                                                                                                                                                                                                                                                                        
.                                                                                                    ...........(13)             

 

 

And the Lagrange multiplier can be identified by using the invers Laplace transform 

1 1( ) ( 1)( )
( , )

( ) ( )

t t
t

  
 

 

   
  

 
                                                                           ...............(14)                                                      

Substituting (14) into (10) and using the definition of Riemann-Liouville fractional integral operator , we get the iteration 
formula as follows: 

 1
( , ) ( , ) ( ( , ) [ ( , )] [ ( , )] ( , ))

k k t t k k k
u x t u x t J D u x t N u x t L u x t g x t 


    

                                  
.…. (15) 

4. Applications and Results 

In this section, we will solve one example for performing comparative studies. The exact solution of the example is known 

for special case 1  and has been solved by using VIM, FVIM.  

Example (1) :  

consider the initial value problem of the fractional  differential equation : 

  
2 2 21

( , ) ( ) ( , ) ( , ) 2 , 0, ,0 1.
2

t x xxD u x t u x t u x t x xt t t x R           

                                                                                                                                                                           ................(16) 

With initial condition 

 ( ,0) 0u x 
                                                                                                                                                        

……......(17) 
                                              

 

By using the ( VIM ) is given by: 

2
2 2 2

1 20

1
( , ) ( , ) ( ( , ) ( ( , )) ( ( , ) ( 2 )

2

t

k k k k ku x t u x t u x u x u x x x d
x x




     




  
      

     

                                                                                                                                                                          .. .…....…..(18) 

0( , ) 0u x t   

3 3

1( , ) ( ) 2
3 3

t t
u x t x t    

3 5 7 2 4 3 5 7

2 ( , ) (2 2 2 4 2 2 )
3 15 63 (3 ) (5 ) 3 15 63

t t t t t t t t
u x t x t

 

 

 

        
   

 

2

2

3 5 7 11 15 2 (3 )

3 2

(5 ) 4 6 8 3 2

2

5 2 3 5 7

( , ) (3 2 2 18 8 19 3 )
3 15 63 2475 3969 (3 ) ( (4 ))

20 16 238 5038
( (6 )) 3 (5 ) 15 (7 ) 63 (9 ) (4 2 )

2 6 2 2
(6 2 ) 3 15 63

t t t t t t t
u x t x t

t t t t t

t t t t

 

    



 

    



 

    



       
   

    
         

   
 

 

1
( )s

s 
  
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           Table (1) . Numerical values by using VIM when α = 0.9     

 

 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Absolute error Exact solution 
ui,n 

 
X T 

0 0 0 0 

 

 

0.01 

13E-7 0.001 0.0009993 0.1 

6E-7 0.002 0.0019994 0.2 

5E-7 0.003 0.0029996 0.3 

53E-7 0.004 0.0039997 0.4 

5E-7 0.005 0.0049995 0.5 

46E-7 0.006 0.0059995 0.6 

43E-7 0.007 0.0069996 0.7 

4E-7 0.008 0.0079996 0.8 

33E-7 0.009 0.0089996 0.9 

3E-7 0.01 0.0099996 1 

0 0 0 0 

0.02 

 

 

50E-7 0.002 0.0019949 0.1 

48E-7 0.004 0.0039951 0.2 

45E-7 0.006 0.0059954 0.3 

42E-7 0.008 0.0079957 0.4 

4E-6 0.01 0.009996 0.5 

37E-7 0.012 0.0119962 0.6 

34E-7 0.014 0.0139965 0.7 

32E-7 0.016 0.0159968 0.8 

29E-7 0.018 0.0179971 0.9 

26E-7 0.02 0.0199973 1 

3 5 7 11 15 2 4

4

6 8 12 16 3 2

3 2 3 2

2

( , ) 4 10 2 22 12 9739 6 4
3 15 63 2475 3969 (3 ) (5 )

16 1440 129024 2 3
(7 ) (9 ) (13 ) (17 ) (4 2 )

( ) ( )
18

( (4 )) ( (4 ))

t t t t t t t
u x t xt x x x x x x x

t t t t t
x x x x x

t t
x x

 

    

 

 

    

 

 

    

 

       
   

    
         

 
   

4 2 4 2 2 23

2 4 2

31 4 6 8 5 2

2

3 2 5 2 7 2 9 2

( ) ( )
2 128

( (5 )) ( (5 2 )) 140889375

( )
722 64 2 5042 20

488341791 3 (5 ) 15 (7 ) 63 (9 ) ( (6 ))

22 238 5038
(4 2 ) 3 (6 2 ) 15 (8 2 ) 63 (1

t t t
x x x

t t t t t
x

t t t t

 

   

   

 

   

  

 

   

   

  
   

    
       

   
      

6 2 2

2

4 3 6 3 3 5 7

( )
20

0 2 ) ( (7 2 ))

2 8 2 2
(5 3 ) (7 3 ) 3 15 63

t

t t t t t





 

 



 


  

    
   
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Table (1) shows the approximate solution for (16) obtained for value α using VIM . the values of α = 1 is the only case for                    

which know the exact solution  u(x , t) = x t .         
                                                                                              

 
Figure(1): Exact solution of example (1) 

 

 
Figure(2): Approximate solution of example (1) by VIM 

 
Now, to solve problem (16) by (FVIM) ,we can obtain the following approximation:    

 
                                        …….(19) 
 
 

we get: 
 

0
( , ) 0u x t   

2 2

1

2 4
( , ) ( )

(1 ) (3 ) (3 )

t t t
u x t x

  

  

 

  
     

 

2 2 2

1

1
( , ) ( ,0) ( 2 ) ( ( ) ( ) )

2
k k k x k xx

u x t u x J x xt t J u u 


     
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2 3 4 3

3 2 2

2

2 4
( , ) (

(1 ) (3 ) ( (1 )) ( (3 1)) ( (3 )) ( (3 5))

4

(3 )

t t t t
u x t x

t

   



     



  



   
           


 

  

2 3 4 3

3 2 2

7 8 7

4 2 4 2

2

2 2 8
( , ) (

(1 ) (3 ) ( (1 )) ( (3 1)) ( (3 )) ( (3 5)

16
)

( (1 )) ( (3 1)) ( (7 1) ( (3 )) ( (3 5)) ( (9 7 )

4

(3 )

t t t t
u x t x

t t

t

   

 



     

     



 





   
           

 
           


 

 

2 3

4 2

4 3 7

2 4 2

8 7 14

4 2 8

16 14

2 3
( , ) (

(1 ) (3 ) ( (1 )) ( (3 1))

12 3

( (3 )) ( (3 5) ( (1 )) ( (3 1)) ( (7 1)

32

( (3 )) ( (3 5)) ( (7 9) ( (1 )) ( (3 1)( (7 1)( (14 1)

256

( (3

t t t
u x t x

t t

t t

t

  

 

 



   

    

      









  
       

 
         

 
             


 

2

8 4 2

4

)) ( (3 5) ( (7 9) ( (14 17) (3 )

t 

    




       

 

           
 Table –(2)  Numerical Solution by using FVIM when α = 0.9    
 

Absolute error Exact solution 
ui,n 

 
X T 

0 0 0 0 

 

 

0.01 

5838E-7 0.001 0.0015839 0.1 

11688E-7 0.002 0.0021688 0.2 

7537E-7 0.003 0.0037537 0.3 

3397E-7 0.004  0.0043397 0.4 

9236E-7 0.005 0.0059236 0.5 

5086E-7 0.006 0.0065086 0.6 

40938E-7 0.007 0.0110938 0.7 

46785E-7 0.008 0.0126785 0.8 

52634E-7 0.009 0.0142634 0.9 

58484E-7 0.01 0.0158484 1 

0 0 0 0 
0.02 

 

 

9524E-7 0.002 0.0029524 0.1 

19102E-7 0.004 0.0059102 0.2 
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Table (2) shows the approximate solution for (16) obtained for value α using methods FVIM. The values of α  = 1 is the 
only case for which know the exact solution u(x , t) = x t.   

 

 

 
Figure (3):  Exact solution of example (1)  

 

 

 

2868E-7 0.006 0.0088680 0.3 

38257E-7 0.008 0.0118257 0.4 

47835E-7 0.01 0.0147835 0.5 

57413E-7 0.012 0.0177413 0.6 

66991E-7 0.014 0.0206991 0.7 

76569E-7 0.016 0.0236569 0.8 

86147E-7 0.018 0.0266147 0.9 

95724E-7 0.02 0.0295724 1 
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Figure(4):  Approximate solution of example (1) by FVIM 
 

5. Conclusion: 

   The VIM has been successfully employed to obtain the approximate solution of FDE's, FVIM is powerful and effective 
tools for solution of FDEˈs and give approximation of higher accuracy, reduces the computational workload by avoiding the 
evaluation of VIM . So FVIM is more effective than VIM in solving the FDEˈs.  The compared results of (VIM and FVIM) to 
solve FDE with the  exact solutions also give a good comparative between two  method, using Programming MATLAB to 
get the results   of this method . 
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