Oscillation of third order impulsive differential equations with delay

K. Manju, E. Thandapani

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600 005, India. ethandapani@yahoo.co. in, manjubagyam@gmail.com

Abstract

This paper deals with the oscillation of third order impulsive differential equations with delay. The results of this paper improve and extend some results for the differential equations without impulses. Some examples are given to illustrate the main results.

Keywords: Oscillation; Third-order; Impulse; Differential equations.
Mathematics Subject Classification 2010: 34A37, 34C10

Council for Innovative Research

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics
Vol 6, No. 1
editor@cirworld.com
www.cirworld.com, member.cirworld.com

1 INTRODUCTION

This paper concerned with the oscillatory and asymptotic behavior of third order impulsive differential equation of the form

$$
\left\{\begin{array}{l}
{\left[a(t)\left(b(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}\right]+q(t) x(t-\sigma)=0, t \geq t_{0}>0, t \neq t_{k}} \tag{1.1}\\
x\left(t_{k}^{+}\right)=a_{k} x\left(t_{k}\right), \quad x^{\prime}\left(t_{k}^{+}\right)=b_{k} x^{\prime}\left(t_{k}\right) \\
x^{\prime \prime}\left(t_{k}^{+}\right)=c_{k} x^{\prime \prime}\left(t_{k}\right), k=1,2, \ldots
\end{array}\right.
$$

where τ and σ are nonnegative constants with $\sigma>\tau,\left\{t_{k}\right\}$ is a sequence of impulsive moments which satisfies $0 \leq t_{0}<t_{1}<\ldots<t_{k}<\ldots$ with $\lim _{k \rightarrow \infty} t_{k}=\infty$ and $t_{k+1}-t_{k}>\tau$. Throughout this paper, we will assume that the following assumptions are satisfied:
(H1) a, b and p are positive continuously differentiable functions with $0 \leq p(\mathrm{t}) \leq p<1$;
(H2) $q \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right.$) and $q(t)$ is not identically zero on any ray of the form $\left[t^{*}, \infty\right)$ for all $t^{*} \geq t_{0}$;
(H3) a_{k}, b_{k}, c_{k} are positive constants.
Let $J \subset \mathbb{R}$ be an interval. We define $P C^{1}(J, \mathbb{R})=\left\{x: J \rightarrow \mathbb{R}: x(t)\right.$ is differentiable for $t \geq 0$ and $t \neq t_{k}$, $x^{\prime}\left(t_{k}^{-}\right)$and $x^{\prime}\left(t_{k}^{+}\right)$exist and $\left.x^{\prime}\left(t_{k}^{-}\right)=x^{\prime}\left(t_{k}\right)\right\}$.

By a solution of equation (1.1), we mean a real function $x(t)$ such that $x, x^{\prime}, x^{\prime \prime} \in P C^{1}(J, \mathbb{R})$ which satisfies equation (1.1). Our attention is restricted to those solutions $x(t)$ of equation (1.1) which exist on half line $\left[t_{0}, \infty\right.$) and satisfy $\sup \left\{|x(t)|: t \geq T_{x}\right\}>0$ for all $T_{x} \geq t_{0}$. It will be assumed that equation (1.1) has solutions which are nontrivial for large t. Such a solution of equation (1.1) is said to be non-oscillatory if it is eventually positive or eventually negative, otherwise it is oscillatory.

It is well known that there is a drastic difference in the behavior of solutions between differential equations with impulses and those without impulses. Some differential equations are non-oscillatory, but they may become oscillatory if some proper impulse controls are added to them, see [2].
In recent years, the oscillation theory and asymptotic behavior of impulsive differential equations and their applications have been and still receiving intensive attention. But to the best of our knowledge, it seems that little has been done for oscillation of third order impulsive differential equations[10].
Our aim in this paper is to establish some new sufficient conditions which ensure that solutions of equation (1.1) are oscillatory or converge to zero as t tends to ∞. In particular, we extend the results in $[9,7]$ to the impulsive differential equation (1.1).
In this paper, we shall study the behavior of solutions of equation (1) under the following three cases:

$$
\begin{align*}
& \int_{t_{0}}^{\infty} \frac{d s}{a(s)}=\infty, \quad \int_{t_{0}}^{\infty} \frac{d s}{b(s)}=\infty \tag{1.2}\\
& \int_{t_{0}}^{\infty} \frac{d s}{a(s)}<\infty, \quad \int_{t_{0}}^{\infty} \frac{d s}{b(s)}=\infty ; \tag{1.3}
\end{align*}
$$

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{d s}{a(s)}<\infty, \quad \int_{t_{0}}^{\infty} \frac{d s}{b(s)}<\infty \tag{1.4}
\end{equation*}
$$

In the following, all functional inequalities considered are assumed to hold eventually, that is, they are satisfied for all sufficiently large t.

2 Main results

In this section, we present the main results. We write $z(t)=x(t)+p(t) x(t-\tau)$. Furthermore, assume that $a_{k} \leq 1, b_{k} \geq 1$ and $c_{k} \leq 1$. First we begin with a useful lemma, which is borrowed from [6].

Lemma 2.1 Suppose

(i) the sequence $\left\{t_{k}\right\}_{k \in \mathrm{~N}}$ satisfies $0 \leq t_{0}<t_{1}<\ldots<t_{k}<\ldots$ with $\lim _{k \rightarrow \infty} t_{k}=\infty$;
(ii) $m, m^{\prime}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are right continuous on $\mathbb{R}_{+} \backslash\left\{t_{k}: k \in \mathbb{N}\right\}$, there exist the lateral limits $m\left(t_{k}^{-}\right), m^{\prime}\left(t_{k}^{-}\right), m\left(t_{k}^{+}\right)$and $m^{\prime}\left(t_{k}^{+}\right)$with $m\left(t_{k}^{-}\right)=m\left(t_{k}\right), k=1,2,3 \ldots ;$
(iii) for $k=1,2,3, \ldots$ and $t \geq t_{0}$, we have

$$
\begin{align*}
& m^{\prime}(t) \leq p(t) m(t)+q(t), t \neq t_{k} \tag{2.1}\\
& m\left(t_{k}^{+}\right) \leq \alpha_{k} m\left(t_{k}\right)+\beta_{k} \tag{2.2}
\end{align*}
$$

where $p, q \in C\left(\mathbb{R}_{+}, \mathbb{R}\right), \alpha_{k}$ and β_{k} are real constants with $\alpha_{k} \geq 0$. Then the following inequality holds

$$
\begin{align*}
m(t) \leq m\left(t_{0}\right) & \prod_{t_{0}<t_{k}<t} \alpha_{k} \exp \left(\int_{t_{0}}^{t} p(s) d s\right)+\int_{t_{0} s<t_{k}<t}^{t} \prod_{k} \exp \left(\int_{s}^{t} p(u) d u\right) q(s) d s \\
& +\sum_{t_{0}<t_{k}<t}\left[\prod_{t_{k}<t_{j}<t} \alpha_{j} \exp \left(\int_{t_{k}}^{t} p(s) d s\right)\right] \beta_{k}, t \geq t_{0} \tag{2.3}
\end{align*}
$$

Theorem 2.1 Assume that (1.2) holds. If there exists a function $\rho \in C^{1}\left(\left[t_{0}, \infty\right),(0, \infty)\right)$ for all sufficiently large $t \geq t_{3} \geq t_{2} \geq t_{1} \geq t_{0}$, one has

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \int_{t_{t_{t_{3}}<t_{k}<s}}^{t} \prod_{b_{k}} \frac{1}{b_{2}}\left(\rho(s) q(s)(1-p(s-\sigma)) \frac{\int_{t_{2}}^{s-\sigma} \frac{\int_{t_{1}}^{v} \frac{1}{a(u)} d u}{b(v)} d v}{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}-\frac{a(s)\left(\rho^{\prime}(s)\right)^{2}}{4 \rho(s)}\right) d s=\infty, \\
\left.\lim _{t \rightarrow \infty} \int_{t_{3}}^{t}\left[\frac{1}{b(v)} \int_{t_{2}}^{v} \prod_{t_{1}<t_{k}<v} b_{k} \frac{1}{a(u)}\left(\int_{t_{1}}^{u} \prod_{t_{1}<t_{k}<s} \frac{1}{b_{k}} L_{1} q(s) d s-L_{2}\right) d u\right] d v\right]=\infty, \tag{2.5}
\end{array}
$$

where L_{1} and L_{2} are positive constants, then every solution $x(t)$ of equation (1.1) is either oscillatory or satisfying $\lim _{t \rightarrow \infty} x(t)=0$.

Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that $x(t)>0, x(t-\tau)>0$, and $x(t-\sigma)>0$ for all $t \geq t_{1} \geq t_{0}$. For $t \neq t_{k}$ from (1.2), there exists $t \geq t_{1} \geq t_{0}$ such that the following two cases arise:
(1) $z(t)>0, z^{\prime}(t)>0,\left(b(t) z^{\prime}(t)\right)^{\prime}>0,\left[a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right]^{\prime} \leq 0 ;$
(2) $z(t)>0, z^{\prime}(t)<0,\left(b(t) z^{\prime}(t)\right)^{\prime}>0,\left[a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right]^{\prime} \leq 0$
for all $t \geq t_{2} \geq t_{1}$. Assume that case(1) holds. For $t \neq t_{k}$ define a function ω by

$$
\begin{equation*}
\omega(t)=-\rho(t) \frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}}{b(t) z^{\prime}(t)}, t \geq t_{2} \tag{2.6}
\end{equation*}
$$

Then $\omega\left(t_{k}^{+}\right)<0, k=1,2, \ldots$ and $\omega(t)<0$, for $t \geq t_{2}$. Differentiating (2.6), we have

$$
\begin{equation*}
\omega^{\prime}(t)=-\rho^{\prime}(t) \frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}}{b(t) z^{\prime}(t)}-\rho(t) \frac{\left(a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right)^{\prime}}{b(t) z^{\prime}(t)}+\rho(t) \frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\left(b(t) z^{\prime}(t)\right)^{\prime}}{\left(b(t) z^{\prime}(t)\right)^{2}} \tag{2.7}
\end{equation*}
$$

Since $z^{\prime}(t)>0$, we have

$$
\begin{equation*}
x(t) \geq(1-p(t)) z(t), t \neq t_{k}, \text { and } t \geq t_{2} \tag{2.8}
\end{equation*}
$$

It follows from equation (1.1), (2.7) and (2.8) that

$$
\omega^{\prime}(t) \geq-\frac{\rho^{\prime}(t)}{\rho(t)} \omega(t)+\rho(t) q(t)(1-p(t-\sigma)) \frac{z(t-\sigma)}{b(t) z^{\prime}(t)}+\frac{\omega^{2}(t)}{\rho(t) a(t)}
$$

or

$$
\begin{array}{ll}
\omega^{\prime}(t) \geq-\frac{\rho^{\prime}(t)}{\rho(t)} \omega(t)+\rho(t) q(t)(1-p(t-\sigma)) & \frac{z(t-\sigma)}{b(t-\sigma) z^{\prime}(t-\sigma)} \\
\frac{b(t-\sigma) z^{\prime}(t-\sigma)}{b(t) z^{\prime}(t)} & +\frac{\omega^{2}(t)}{\rho(t) a(t)}, t \neq t_{k}, t \geq t_{2} \tag{2.9}
\end{array}
$$

Now,

$$
\begin{equation*}
b(t) z^{\prime}(t) \geq \int_{t_{1}}^{t} \frac{a(s)\left(b(s) z^{\prime}(s)\right)^{\prime}}{a(s)} d s \geq a(t)\left(b(t) z^{\prime}(t)\right)^{\prime} \int_{t_{1}}^{t} \frac{1}{a(s)} d s \tag{2.10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(\frac{b(t) z^{\prime}(t)}{\int_{t_{1}}^{t} \frac{1}{a(s)} d s}\right)^{\prime} \leq 0 \tag{2.11}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
z(t) & =z\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{b(s) z^{\prime}(s)}{\int_{t_{1}}^{s} \frac{1}{a(u)} d u} \frac{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}{b(s)} d s \\
& \geq \frac{b(t) z^{\prime}(t)}{\int_{t_{1}}^{t} \frac{1}{a(u)} d u} \int_{t_{2}}^{t} \frac{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}{b(s)} d s, t \geq t_{2}>t_{1} \tag{2.12}
\end{align*}
$$

Using (2.11) and (2.12) in (2.9), we obtain

$$
\begin{gathered}
\omega^{\prime}(t) \geq-\frac{\rho^{\prime}(t)}{\rho(t)} \omega(t)+\rho(t) q(t)(1-p(t-\sigma)) \frac{\int_{t_{2}}^{t-\sigma} \frac{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}{b(s)} d s}{\int_{t_{1}}^{t-\sigma} \frac{1}{a(u)} d u} \frac{\int_{t_{1}}^{t-\sigma} \frac{1}{a(u)} d u}{\int_{t_{1}}^{t} \frac{1}{a(u)} d u}+\frac{\omega^{2}(t)}{\rho(t) a(t)} \\
\\
=-\frac{\rho^{\prime}(t)}{\rho(t)} \omega(t)+\rho(t) q(t)(1-p(t-\sigma)) \frac{\int_{t_{2}}^{t-\sigma} \frac{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}{b(s)} d s}{\int_{t_{1}}^{t} \frac{1}{a(u)} d u}+\frac{\omega^{2}(t)}{\rho(t) a(t)}
\end{gathered}
$$

or

$$
\begin{equation*}
\omega^{\prime}(t) \geq \rho(t) q(t)(1-p(t-\sigma)) \frac{\int_{t_{2}}^{t-\sigma} \frac{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}{b(s)} d s}{\int_{t_{1}}^{t} \frac{1}{a(u)} d u}-\frac{a(t)\left(\rho^{\prime}(t)\right)^{2}}{4 \rho(t)}, t \neq t_{k} \text { and } t_{2} \geq t_{1} \tag{2.13}
\end{equation*}
$$

Since $t_{k+1}-t_{k}>\tau$ for each $k \in \mathrm{~N}$, we have

$$
\begin{equation*}
t_{k}<t_{k+1}-\tau<t_{k+1} \tag{2.14}
\end{equation*}
$$

Since $x, x^{\prime}, x^{\prime \prime}$ are continuous on $\left(t_{k}, t_{k+1}\right]$, we have from the inequality (2.14) that

$$
\begin{align*}
& z\left(t_{k}^{+}\right)=x\left(t_{k}^{+}\right)+p\left(t_{k}^{+}\right) x\left(t_{k}^{+}-\tau\right) \\
& =a_{k} x\left(t_{k}\right)+p\left(t_{k}\right) x\left(t_{k}-\tau\right) \\
& \leq z\left(t_{k}\right), k=1,2, \ldots \tag{2.15}
\end{align*}
$$

Now

$$
\begin{align*}
& z^{\prime}\left(t_{k}^{+}\right)=x^{\prime}\left(t_{k}^{+}\right)+p^{\prime}\left(t_{k}^{+}\right) x\left(t_{k}^{+}-\tau\right)+p\left(t_{k}^{+}\right) x^{\prime}\left(t_{k}^{+}-\tau\right) \\
& =b_{k} x\left(t_{k}\right)+p^{\prime}\left(t_{k}\right) x^{\prime}\left(t_{k}-\tau\right)+p\left(t_{k}\right) x^{\prime}\left(t_{k}-\tau\right) \\
& \leq b_{k} z^{\prime}\left(t_{k}\right), k=1,2, \ldots \tag{2.16}
\end{align*}
$$

Similarly

$$
\begin{align*}
& z^{\prime \prime}\left(t_{k}^{+}\right)=x^{\prime \prime}\left(t_{k}^{+}\right)+p^{\prime \prime}\left(t_{k}^{+}\right) x\left(t_{k}^{+}-\tau\right)+2 p^{\prime}\left(t_{k}^{+}\right) x^{\prime}\left(t_{k}^{+}-\tau\right)+p\left(t_{k}^{+}\right) x^{\prime \prime}\left(t_{k}^{+}-\tau\right) \\
& =c_{k} x^{\prime \prime}\left(t_{k}\right)+p^{\prime \prime}\left(t_{k}\right) x\left(t_{k}-\tau\right)+2 p^{\prime}\left(t_{k}\right) x^{\prime}\left(t_{k}-\tau\right)+p\left(t_{k}\right) x^{\prime \prime}\left(t_{k}-\tau\right) \\
& \leq z^{\prime \prime}\left(t_{k}\right), k=1,2, \ldots \tag{2.17}
\end{align*}
$$

Now from (2.16) and (2.17), we have

$$
\omega\left(t_{k}^{+}\right)=-\rho\left(t_{k}^{+}\right) a\left(t_{k}^{+}\right)\left(\frac{b\left(t_{k}^{+}\right) z^{\prime \prime}\left(t_{k}^{+}\right)+b^{\prime}\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)}{b\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)}\right)
$$

$$
\begin{align*}
& =-\rho\left(t_{k}^{+}\right) a\left(t_{k}^{+}\right)\left(\frac{z^{\prime \prime}\left(t_{k}^{+}\right)}{z^{\prime}\left(t_{k}^{+}\right)}+\frac{b^{\prime}\left(t_{k}^{+}\right)}{b\left(t_{k}^{+}\right)}\right) \\
& \geq-\rho\left(t_{k}\right) a\left(t_{k}\right)\left(\frac{z^{\prime \prime}\left(t_{k}\right)}{b_{k} z^{\prime}\left(t_{k}\right)}+\frac{b^{\prime}\left(t_{k}\right)}{b\left(t_{k}\right)}\right) \\
& \geq \frac{1}{b_{k}} \omega\left(t_{k}\right), k=1,2, \ldots \tag{2.18}
\end{align*}
$$

Using Lemma 2.1 in (2.13) and (2.18), we obtain

$$
\begin{aligned}
\omega(t) \geq \omega\left(t_{3}\right) \prod_{t_{3}<t_{k}<t} \frac{1}{b_{k}}+\int_{t_{3_{s<t_{k}}<t}^{t}} \frac{1}{b_{k}} & (\rho(s) q(s)(1-p(s-\sigma)) \\
& \left.\frac{\int_{t_{2}}^{s-\sigma} \frac{\int_{t_{1}}^{v} \frac{1}{a(u)} d u}{b(v)} d v}{\int_{t_{1}}^{s} \frac{1}{a(u)} d u}-\frac{a(s)\left(\rho^{\prime}(s)\right)^{2}}{4 \rho(s)}\right) d s
\end{aligned}
$$

Taking limit as $t \rightarrow \infty$ and using (2.4) we get a contradiction with $\omega(t)<0$.
Next assume that case (2) holds. Since $z(t)$ is nonincreasing, we have $z(t) \rightarrow L \geq 0$. If $L>0$, then for any $\varepsilon>0$, there exists $t_{4} \geq t_{3}$ suchthat $L+\varepsilon>z(t)>L$, eventually for $t \geq t_{4}$. Choose $\varepsilon=\frac{L(1-p)}{2 p}$. Then for $t \neq t_{k}, t \geq t_{4}$ we have

$$
\begin{aligned}
x(t) & =z(t)-p(t) x(t-\tau)>L-p z(t-\tau) \\
& >L-p(L+\varepsilon) \\
& =\frac{L(1-p)}{2}=L_{1}, \text { say }
\end{aligned}
$$

From equation (1.1), we have

$$
\begin{equation*}
\left(a(t)\left(b(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}\right)^{\prime}=-q(t) x(t-\sigma) \leq-L_{1} q(t), t \neq t_{k}, t \geq t_{4} \tag{2.19}
\end{equation*}
$$

For $k=1,2, \ldots$

$$
\begin{align*}
z^{\prime}\left(t_{k}^{+}\right) & =x^{\prime}\left(t_{k}^{+}\right)+p^{\prime}\left(t_{k}^{+}\right) x\left(t_{k}^{+}-\tau\right)+p\left(t_{k}^{+}\right) x^{\prime}\left(t_{k}^{+}-\tau\right) \\
& =b_{k} x^{\prime}\left(t_{k}\right)+p^{\prime}\left(t_{k}\right) x^{\prime}\left(t_{k}-\tau\right)+p\left(t_{k}\right) x^{\prime}\left(t_{k}-\tau\right) \\
& \leq b_{k} z^{\prime}\left(t_{k}\right) \tag{2.20}
\end{align*}
$$

Also

$$
\begin{align*}
a\left(t_{k}^{+}\right)\left(b\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)\right)^{\prime} & =a\left(t_{k}^{+}\right)\left(b^{\prime}\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)+b\left(t_{k}^{+}\right) z^{\prime \prime}\left(t_{k}^{+}\right)\right) \\
& =a\left(t_{k}\right)\left(b^{\prime}\left(t_{k}\right) b_{k} z^{\prime}\left(t_{k}\right)+b\left(t_{k}\right) z^{\prime \prime}\left(t_{k}\right)\right. \\
& \leq b_{k} a\left(t_{k}\right)\left(b\left(t_{k}\right) z^{\prime}\left(t_{k}\right)\right)^{\prime} \tag{2.21}
\end{align*}
$$

Using Lemma 2.1 in (2.19) and (2.21), we obtain

$$
\begin{gathered}
\left(a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right) \leq\left(a\left(t_{1}\right)\left(b\left(t_{1}\right) z^{\prime}\left(t_{1}\right)\right)^{\prime}\right) \prod_{t_{1}<_{k}<t} b_{k}-L_{1} \int_{t_{1}}^{t} \prod_{s<t_{k}<t} b_{k} q(s) d s \\
\left(b(t) z^{\prime}(t)\right)^{\prime} \leq \frac{L_{2}}{a(t)} \prod_{t_{1}<t_{k}<t} b_{k}-\frac{L_{1}}{a(t)} \int_{1_{1}}^{t} \prod_{s t_{k}<t} b_{k} q(s) d s
\end{gathered}
$$

where $L_{2}=a\left(t_{1}\right)\left(b\left(t_{1}\right) z^{\prime}\left(t_{1}\right)\right)^{\prime}>0$.
Again using Lemma 2.1 in the last inequality, we have

$$
\begin{aligned}
b(t) z^{\prime}(t) \leq b\left(t_{2}\right) z^{\prime}\left(t_{2}\right) \prod_{t_{2}<t_{k}<t} b_{k}+ & \int_{t_{t_{u}} \prod_{t_{k}}<t}^{t} b_{k}\left[\prod_{t_{1}<t_{k}<u} b_{k} \frac{L_{2}}{a(u)}\right. \\
& \left.-\frac{L_{1}}{a(u)} \int_{t_{1}}^{u} \prod_{s^{\prime} t_{k}<u} b_{k} q(s) d s\right] d u
\end{aligned}
$$

or

$$
\begin{equation*}
z^{\prime}(t) \leq \frac{1}{b(t)} \int_{t_{2_{1}} \leq t_{k}<t}^{t} \prod_{k} b_{k}\left[\frac{L_{2}}{a(u)}-\frac{L_{1}}{a(u)} \int_{t_{1_{1}} t_{1}<_{k}<s}^{u} \prod_{k} \frac{1}{b_{k}} q(s) d s\right] d u . \tag{2.22}
\end{equation*}
$$

Using Lemma 2.1 in (2.15) and (2.22), we obtain

$$
z(t) \leq z\left(t_{3}\right)-\int_{t_{3}}^{t}\left[\frac{1}{b(v)} \int_{t_{t_{2}}<t_{k}<v}^{v} \prod_{k} \frac{1}{a(u)}\left(L_{1} \int_{t_{1}}^{u} \prod_{t_{1}<t_{k}<s} \frac{1}{b_{k}} q(s) d s-L_{2}\right) d u\right] d v
$$

Taking limit as $t \rightarrow \infty$ in the last inequality we get a contradiction with (2.5). Therefore $\lim _{t \rightarrow \infty} z(t)=0$. Since $x(t) \leq z(t)$, we have $\lim _{t \rightarrow \infty} x(t)=0$. This completes the proof.

Theorem 2.2 Assume that (1.3) holds and there exists a function $\rho \in C^{1}\left(\left(\left[t_{0}, \infty\right),(0, \infty)\right)\right.$ such that for all sufficiently large $t \geq t_{3} \geq t_{2} \geq t_{1} \geq t_{0}$, we have (2.4) and (2.5). If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{t_{2}}<t_{k}<s}^{t} \prod_{k} b_{k}\left(\delta(s) q(s)(1-p(s-\sigma)) \int_{t_{1}}^{s-\sigma} \frac{d u}{b(u)}-\frac{1}{4 \delta(s) a(s)}\right) d s=\infty, \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(t):=\int_{t}^{\infty} \frac{1}{a(s)} d s \tag{2.24}
\end{equation*}
$$

then every solution $x(t)$ of equation (1.1) is either oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that $x(t)>0, x(t-\tau)>0$, and $x(t-\sigma)>0$ for $t \geq t_{1} \geq t_{0}$. For $t \neq t_{k}, t \geq t_{1}$ from (1.3), there exist three possible cases (1), (2)(as in Theorem 2.1) and

$$
\text { (3) } z(t)>0, z^{\prime}(t)>0,\left(b(t) z^{\prime}(t)\right)^{\prime}<0,\left[a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right]^{\prime} \leq 0 .
$$

For the cases (1) and (2), we obtain the conclusion from Theorem 2.1. Now assume that case (3) holds. Since $a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}$ is nonincreasing, we have

$$
a(s)\left(b(s) z^{\prime}(s)\right)^{\prime} \leq a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}, s \geq t \geq t_{5} \geq t_{4}
$$

Dividing the above inequality by $a(s)$ and integrating from t to l, we obtain

$$
b(l) z^{\prime}(l) \leq b(t) z^{\prime}(t)+a(t)\left(b(t) z^{\prime}(t)\right)^{\prime} \int_{t}^{l} \frac{d s}{a(s)}
$$

Letting $l \rightarrow \infty$, we have

$$
0 \leq b(t) z^{\prime}(t)+a(t)\left(b(t) z^{\prime}(t)\right)^{\prime} \int_{t}^{\infty} \frac{d s}{a(s)}
$$

That is,

$$
\begin{equation*}
-\frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}}{b(t) z^{\prime}(t)} \int_{t}^{\infty} \frac{d s}{a(s)} \leq 1 \tag{2.25}
\end{equation*}
$$

Define a function ϕ by

$$
\begin{equation*}
\phi(t)=-\frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}}{b(t) z^{\prime}(t)}, t \neq t_{k}, t \geq t_{5} \tag{2.26}
\end{equation*}
$$

Then $\phi\left(t_{k}^{+}\right)>0, k=1,2, \ldots$ and $\phi(t)>0$, for $t \geq t_{5}$. Hence from (2.25) and (2.26), we obtain

$$
\begin{equation*}
\delta(t) \phi(t) \leq 1 . \tag{2.27}
\end{equation*}
$$

Differentiating (2.26) gives

$$
\phi^{\prime}(t)=-\frac{\left(a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right)^{\prime}}{b(t) z^{\prime}(t)}+\frac{a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\left(b(t) z^{\prime}(t)\right)^{\prime}}{\left(b(t) z^{\prime}(t)\right)^{2}}, t \neq t_{k}, t \geq t_{5}
$$

From equation (1.1), (2.8) and (2.26), we obtain

$$
\begin{equation*}
\phi^{\prime}(t)=q(t)(1-p(t-\sigma)) \frac{z(t-\sigma)}{b(t) z^{\prime}(t)}+\frac{\phi^{2}(t)}{a(t)}, t \neq t_{k}, t \geq t_{5} \tag{2.28}
\end{equation*}
$$

From the third inequality in case (3), we see that

$$
\begin{equation*}
z(t) \geq b(t) \int_{t_{5}}^{t} \frac{d s}{b(s)} z^{\prime}(t) \tag{2.29}
\end{equation*}
$$

Hence,

$$
\left(\frac{z(t)}{\int_{t_{5}}^{t} \frac{d s}{b(s)}}\right)^{\prime} \leq 0, t \neq t_{k}, t \geq t_{5}
$$

which implies that

$$
\begin{equation*}
\frac{z(t-\sigma)}{z(t)} \geq \frac{\int_{t_{5}}^{t-\sigma} \frac{d s}{b(s)}}{\int_{t_{5}}^{t} \frac{d s}{b(s)}} \tag{2.30}
\end{equation*}
$$

Using (2.28) and (2.29) in (2.30), we have

$$
\phi^{\prime}(t) \geq(t)(1-p(t-\sigma)) \int_{t_{5}}^{t-\sigma} \frac{d s}{b(s)}+\frac{\phi^{2}(t)}{a(t)}, t \neq t_{k}
$$

Multiplying the last inequality by $\delta(t)$, we have

$$
\begin{equation*}
\delta(t) \phi^{\prime}(t) \geq \delta(t) q(t)(1-p(t-\sigma)) \int_{t_{5}}^{t-\sigma} \frac{d s}{b(s)}+\frac{\phi^{2}(t)}{a(t)} \delta(t), t \neq t_{k} . \tag{2.31}
\end{equation*}
$$

Now

$$
\begin{align*}
(\delta(t) \phi(t))^{\prime} & =\delta(t) \phi^{\prime}(t)+\delta^{\prime}(t) \phi(t) \\
& =\delta(t) \phi^{\prime}(t)-\frac{1}{a(t)} \phi(t) \\
& \geq \delta(t) q(t)(1-p(t-\sigma)) \int_{t_{5}}^{t-\sigma} \frac{d s}{b(s)}+\frac{\phi^{2}(t) \delta(t)}{a(t)}-\frac{\phi(t)}{a(t)} . \tag{2.32}
\end{align*}
$$

For $k=1,2, \ldots$ from the definition of $\phi(t)$, we have

$$
\begin{align*}
\phi\left(t_{k}^{+}\right) & =-a\left(t_{k}^{+}\right)\left(\frac{b\left(t_{k}^{+}\right) z^{\prime \prime}\left(t_{k}^{+}\right)+b^{\prime}\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)}{b\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)}\right) \\
& =-a\left(t_{k}^{+}\right)\left(\frac{z^{\prime \prime}\left(t_{k}^{+}\right)}{z^{\prime}\left(t_{k}^{+}\right)}+\frac{b^{\prime}\left(t_{k}^{+}\right)}{b\left(t_{k}^{+}\right)}\right) \\
& \geq-\rho\left(t_{k}\right) a\left(t_{k}\right)\left(\frac{z^{\prime \prime}\left(t_{k}\right)}{b_{k} z^{\prime}\left(t_{k}\right)}+\frac{b^{\prime}\left(t_{k}\right)}{b\left(t_{k}\right)}\right) \\
& \geq \frac{1}{b_{k}} \phi\left(t_{k}\right), k=1,2, \ldots . \tag{2.33}
\end{align*}
$$

Using Lemma 2.1 in (2.32) and (2.33) for all $t_{6} \geq t_{5}$, we obtain

$$
\delta(t) \phi(t) \geq \delta\left(t_{6}\right) \phi\left(t_{6}\right) \prod_{t_{6}<_{t_{k}}{ }^{<}} \frac{1}{b_{k}}+\int_{t_{\sigma_{s} \leq t_{k} \leq t}}^{t} \prod_{k} \frac{1}{b_{k}}(\delta(s) q(s)(1-p(s-\sigma))
$$

$$
\left.\int_{t_{5}}^{s-\sigma} \frac{d^{\kappa}}{b(u)}+\frac{\phi^{2}(s) \delta(s)}{a(s)}-\frac{\phi(s)}{a(s)}\right) d s
$$

or

$$
\begin{aligned}
\delta(t) \phi(t) \geq \prod_{t_{6} \iota_{k}<t} \frac{1}{b_{k}}\left[\delta\left(t_{6}\right) \phi\left(t_{6}\right)+\int_{t_{6}}^{t}\right. & \prod_{t_{6}<t_{k}<s} b_{k}(\delta(s) q(s)(1-p(s-\sigma)) \\
& \left.\left.\int_{t_{5}}^{s-\sigma} \frac{d u}{b(u)}-\frac{1}{4 \delta(s) a(s)}\right) d s\right] .
\end{aligned}
$$

Taking limit as $t \rightarrow \infty$ in the last inequality, we obtain a contradiction with (2.23) due to (2.27). Now the proof is complete.
Theorem 2.3 Assume that (1.4) holds and and there exists a function $\rho \in C^{1}\left(\left(\left[t_{0}, \infty\right),(0, \infty)\right)\right.$ such that for all sufficiently large $t \geq t_{3} \geq t_{2} \geq t_{1} \geq t_{0}$, we have (2.4),(2.5) and (2.23). If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{1}}^{t} \frac{1}{b(v)} \int_{t_{1_{1}}}^{v} \prod_{t_{1}<t_{k}<v} b_{k} \frac{1}{a(u)} \int_{t_{1_{s}<t_{k}<u}^{u}}^{\prod_{k}} b_{k} \eta(s) q(s) \xi(t-\sigma) d s d u d v=\infty \tag{2.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(t)=(1-p(t-\sigma)) \frac{\xi(t-\tau-\sigma)}{\xi(t-\sigma)}>0, \quad \xi(t)=\int_{t}^{\infty} \frac{1}{b(s)} d s \tag{2.35}
\end{equation*}
$$

then every solution $x(t)$ of equation (1.1) is either oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that $x(t)>0, x(t-\tau)>0$, and $x(t-\sigma)>0$ for $t \geq t_{1} \geq t_{0}$. For $t \neq t_{k}, t \geq t_{1}$ from (1.4), there exist four possible cases (1), (2), (3)(as in Theorem 2.2) and
(4) $z(t)>0, z^{\prime}(t)<0,\left(b(t) z^{\prime}(t)\right)^{\prime}<0,\left[a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right]^{\prime} \leq 0$,

For the cases (1),(2) and (3), we obtain the conclusion from Theorem 2.2. Now assume that case (4) holds. Since $b(t) z^{\prime}(t)$ is non increasing, we have

$$
\begin{equation*}
b(s) z^{\prime}(s) \leq b(t) z^{\prime}(t), s \geq t \geq t_{6} \geq t_{5} \tag{2.36}
\end{equation*}
$$

Dividing (2.36) by $b(s)$ and then integrating from t to ℓ, and letting $\ell \rightarrow \infty$, we have

$$
\begin{equation*}
z(t) \geq-b(t) z^{\prime}(t) \int_{t}^{\infty} \frac{1}{b(s)} d s=-b(t) z^{\prime}(t) \xi(t):=M \xi(t), t \neq t_{k} \tag{2.37}
\end{equation*}
$$

where $M=-b(t) z^{\prime}(t)>0$. Hence

$$
\begin{equation*}
\left(\frac{z(t)}{\xi(t)}\right) \geq 0 \tag{2.38}
\end{equation*}
$$

From (2.38), we see that

$$
\begin{align*}
x(t) & =z(t)-p(t) x(t-\tau) \geq z(t)-p(t) z(t-\tau) \\
& \geq\left(1-p(t) \frac{\xi(t-\tau)}{\xi(t)}\right) z(t), t \neq t_{k} \tag{2.39}
\end{align*}
$$

From equation (1.1), (2.37) and (2.39), we have

$$
\begin{equation*}
\left(a(t)\left(b(t) z^{\prime}(t)\right)^{\prime}\right)^{\prime} \leq-M q(t) \eta(t) \xi(t-\sigma) \tag{2.40}
\end{equation*}
$$

From equation (2.16), we have

$$
\begin{equation*}
b\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right) \leq b_{k} b\left(t_{k}\right) z^{\prime}\left(t_{k}\right) \tag{2.41}
\end{equation*}
$$

Using (2.41), we have

$$
\begin{align*}
\left(b\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)\right)^{\prime} & =b^{\prime}\left(t_{k}^{+}\right) z^{\prime}\left(t_{k}^{+}\right)+b\left(t_{k}^{+}\right) z^{\prime \prime}\left(t_{k}^{+}\right) \\
& \leq b^{\prime}\left(t_{k}\right) b_{k} z^{\prime}\left(t_{k}\right)+b\left(t_{k}\right) z^{\prime \prime}\left(t_{k}\right) \\
& \leq b_{k}\left(b\left(t_{k}\right) z^{\prime}\left(t_{k}\right)\right)^{\prime} \tag{2.42}
\end{align*}
$$

Using Lemma 2.1 in (2.40) and (2.42) for $t_{6}>t_{5}$, we obtain

$$
\begin{aligned}
a(t)\left(b(t) z^{\prime}(t)\right)^{\prime} \leq a\left(t_{6}\right)\left(b\left(t_{6}\right) z^{\prime}\left(t_{6}\right)\right)^{\prime} \prod_{t_{6}<t_{k}<t} b_{k}-M \int_{t_{6}}^{t} & \prod_{s<t_{k}<t} b_{k} q(s) \\
& \eta(s) \xi(s-\sigma) d s
\end{aligned}
$$

or

$$
\begin{equation*}
\left(b(t) z^{\prime}(t)\right)^{\prime} \leq-\frac{M}{a(t)} \int_{t_{6_{s<t}}<t}^{t} \prod_{k} b_{k} q(s) \eta(s) \xi(s-\sigma) d s \tag{2.43}
\end{equation*}
$$

Again using Lemma 2.1 in (2.41) and (2.43), we obtain

$$
\begin{aligned}
b(t) z^{\prime}(t) \leq b\left(t_{6}\right) z^{\prime}\left(t_{6}\right) \prod_{t_{6}<t_{k}<t} b_{k}-M \int_{t_{6}}^{t} & \prod_{u<t_{k}<t} b_{k} \frac{1}{a(u)} \int_{t_{6}}^{u} \prod_{s<t_{k}<u} b_{k} \\
& q(s) \eta(s) \xi(s-\sigma) d s d u .
\end{aligned}
$$

Dividing the last inequality by $b(t)$ and using (2.15) in Lemma 2.1, we have

$$
z(t) \leq z\left(t_{6}\right)-M \int_{t_{6}}^{t} \frac{1}{b(v)} \int_{t_{6_{t_{6}}<t_{k}<v}^{v}}^{\prod_{k}} b_{k}\left(\frac{1}{a(u)} \int_{t_{6_{s}<t_{k}}<u}^{u} \prod_{k} b_{k} q(s) \eta(s) \xi(s-\sigma) d s\right) d u d v
$$

Taking limit as $t \rightarrow \infty$ in the last inequality we get a contradiction with (2.34). This completes the proof.

3 EXAMPLES

In this section we provide two examples to illustrate the main results.

Example 3.1 Consider the following third order impulsive differential equation

$$
\left\{\begin{array}{l}
{\left[e^{\frac{t}{2}}\left(x(t)+\frac{1}{2 e} x(t-1)\right)^{\prime \prime}\right]^{\prime}+\frac{3}{4} e^{\frac{t}{2}-2} x(t-2)=0, t \geq 3, t \neq t_{k}} \tag{3.1}\\
x\left(t_{k}^{+}\right)=\left(\frac{1}{k}\right) x\left(t_{k}\right), \quad x^{\prime}\left(t_{k}^{+}\right)=\left(\frac{k+1}{k}\right) x^{\prime}\left(t_{k}\right) \\
x^{\prime \prime}\left(t_{k}^{+}\right)=\left(\frac{1}{k}\right) x^{\prime \prime}\left(t_{k}\right), k=1,2, \ldots
\end{array}\right.
$$

Here $a(t)=e^{\frac{t}{2}}, b(t)=1, p(t)=\frac{1}{2 e}, q(t)=\frac{3}{4} e^{\frac{t}{2}-2}, \tau=1, \sigma=2, a_{k}=c_{k}=\frac{1}{k}, b_{k}=\frac{k+1}{k}$. It is easy to see that all the conditions of Theorem 2.2 are satisfied with $\rho(t)=1$. Hence any solution of equation (2.34) is either oscillatory or converging to zero.
Example 3.2 Consider the following third order impulsive differential equation

$$
\left\{\begin{array}{l}
{\left[e^{t}\left(e^{t}\left(x(t)+\frac{1}{e} x(t-1)\right)^{\prime}\right)^{\prime}\right]^{\prime}+\frac{4}{e^{2}} x(t-2)=0, t \geq 3, t \neq t_{k}} \tag{3.2}\\
x\left(t_{k}^{+}\right)=\left(\frac{1}{k}\right) x\left(t_{k}\right), \quad x^{\prime}\left(t_{k}^{+}\right)=\left(1+\frac{1}{k}\right) x^{\prime}\left(t_{k}\right) \\
x^{\prime \prime}\left(t_{k}^{+}\right)=x^{\prime \prime}\left(t_{k}\right), k=1,2, \ldots
\end{array}\right.
$$

Here $a(t)=b(t)=e^{t}, p(t)=\frac{1}{e}, q(t)=\frac{4}{e^{2}}, \tau=1, \sigma=2, a_{k}=\frac{1}{k}, b_{k}=1+\frac{1}{k}, c_{k}=1$. It is easy to see that all the conditions of Theorem 2.3 are satisfied with $\rho(t)=1$. Hence any solution of equation (3.1) is either oscillatory or converging to zero.

ACKNOWLEDGEMENT

First author gratefully acknowledges the Research Fellowship granted by the University Grants Commission for Meritorious students in Sciences.

References

[1] Baculikova, B., and Džurina, J. Oscillation of third order neutral differential equations, Math. Comp. Modelling, 52(2010),215-226.
[2] Chen, Y. S., and Feng, W. Z. Oscillations of second order nonlinear ODE with impulses J. Math. Anal. Appl., 210(1997),150-169.
[3] Gopalsamy, K., and Zhang, B. G. 1991. On Delay Differentil Equations with Applications, Oxford University Press, New York.
[4] Grace, S. R., Agarwal, R. P., Pavani. R., and Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput., 202(2008), 102-112.
[5] Graef, J. R., Savithri. R., and Thandapani, E. Oscillatory properties of third order neutral delay differential equations, Proc. Fourth International Conference on Dynamic Systems and Diff. Eqs., 2002, 342-350.
[6] Lakshmikantham, V., Bainov, D., and Simenov, P. S. 1989. Theory of Impulsive Differential Equations, World Scientific Pub. Co., Singapore.
[7] Li, T., Thandapani, E., and Graef, J. R. Oscillation of third order neutral differential equations, Inter. J. Pure. Appl. Math., 75 (2012), 511-520.
[8] Li,T., Zhang, C., and Xing, G. Oscillation of third order neutral delay differential equations, Abstr. Appl. Anal., Vol 2012 (2012), Article ID 569201, 11 pages.
[9] Liu, X. Oscillation criteria of third order nonlinear impulsive differential equations with delay, Abstr. Appl. Anal., Vol 2013 (2013), Article ID 405397, 8 pages.
[10] Mao, W. H., and Wan, A. H. Oscillatory and asymptotic behavior of solutions of nonlinear impulsive delay differential equations, Acta. Math. Appl. Sinica, 22, (2006), 387-396.
[11] Peng, M., Ge, W. Oscillation criteria for second order nonlinear differential equation with impulses, Comput. Math. Appl., 39 (2000), 217-255.
[12] Saker, S. H. Oscillation criteria for certain class of third order nonlinear delay differential equations, Math. Slovaca., 56, (2006) 433-450.

