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ABSTRACT

This paper deals with the oscillation of third order impulsive differential equations with delay. The results of this paper
improve and extend some results for the differential equations without impulses. Some examples are given to illustrate the
main results.
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1 INTRODUCTION

This paper concerned with the oscillatory and asymptotic behavior of third order impulsive differential equation of the form

[a)(bE(X() + PE)X(E - )Y ]+ ABX(t - ) =0t =1, > Ot t,;

x(t) =ax(t), x()=bx(t) (1.1)

X (tH)=cx"(t)k=12,....

where 7 and o are nonnegative constants with o > T,{tk} is a sequence of impulsive moments which satisfies

0<t, <t <...<t <... with |imt, =o0 and t, —t >7. Throughout this paper, we will assume that the

K—o0
following assumptions are satisfied:

(H1) a,b and P are positive continuously differentiable functions with 0< p(t) < p <1;
(H2) g e C([ty,),[0,00)) and q(t) is not identically zero on any ray of the form [t",o0) forall t >1;
(H3) ak,bk,ck are positive constants.

Let J <R be an interval. We define PC'(J,R) = {x:J > R:x(t) is differentiable for t>0 and t #t,,
X'(t,) and X'(t;) existand X'(t.)=X'(t.)}.

By a solution of equation (1.1), we mean areal function X(t) suchthat X,X’,x"" € PC'(J,R) which satisfies equation
(1.1). Our attention is restricted to those solutions X(t) of equation (1.1) which exist on half line [to,oo) and satisfy

sup{| x(t) |t =T, }>0 forall T, >t,. Itwill be assumed that equation (1.1) has solutions which are nontrivial for large

1. Such a solution of equation (1.1) is said to be non-oscillatory if it is eventually positive or eventually negative, otherwise
it is oscillatory.

It is well known that there is a drastic difference in the behavior of solutions between differential equations with impulses
and those without impulses. Some differential equations are non-oscillatory, but they may become oscillatory if some proper
impulse controls are added to them , see [2].

In recent years, the oscillation theory and asymptotic behavior of impulsive differential equations and their applications
have been and still receiving intensive attention. But to the best of our knowledge, it seems that little has been done for
oscillation of third order impulsive differential equations[10].

Our aim in this paper is to establish some new sufficient conditions which ensure that solutions of equation (1.1) are
oscillatory or converge to zero as t tends to oo. In particular, we extend the results in [9, 7] to the impulsive differential
equation (1.1).

In this paper, we shall study the behavior of solutions of equation (1) under the following three cases:

T ds Tds

—— = 0, —— =00 (1.2
ca(s) " Ib(s)
T i < o0, Td_ = o0; (1.3)
i a(s) s b(s
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—— < Td— 0. (1.4)
a(s) s b(s

In the following, all functional inequalities considered are assumed to hold eventually, that is, they are satisfied for all
sufficiently large t.

2 Main results

In this section, we present the main results. We write Z(t) = X(t) + p(t)X(t—7). Furthermore, assume that
a,<1b >1 and c, <1. First we begin with a useful lemma, which is borrowed from [6].

Lemma 2.1 Suppose

() the sequence {t, },y satisfies 0<t, <t <...<t <... with |[imt, =;

k—>o0

(i mm:R, >R areright continuous on R, \{t, :k €N}, there exist the lateral limits
m(t, ), m'(t,),m(t,) and m'(t;) with m(t,)=m(t),k=1,23...;

(i) for k=1,2,3,... and t>1t;, we have
m'(t) < p(t)m(t) +q(t),t = t,, (2.1)

m(t) < am(t ) + B, (2.2
where p,qeC(R,,R),, and [, are real constants with ¢, = 0. Then the following inequality holds

m(t) <m(t,) [ ] o xp jp(s)ds +I B2 eprp(u)dqu(s)ds

tg<t, <t o5t <t

+ 2 [T o e0( j p(s)ds)I Bt > . (23)

IO <’[k <t ’[k <tJ <t

Theorem 2.1 Assume that (1.2) holds. If there exists a function O ECl([to,oo), (O,oo)) for all sufficiently large
t=2t,>t, >t =1, onehas

1
s-o Jy a(u)
jim L;}t_k[sb_t(”(s)q(s)(l‘ p(s- ) sbl(v)du a(si%)s» Js=on, (.4
v a(u)

im [ Foes | ka(u)(j I1+ Liq(s)ds L)duldv]=e0,  (25)

2t1<t <v t1<t <s
where L1 and L2 are positive constants, then every solution X(t) of equation (1.1) is either oscillatory or satisfying

lim x(t) =0.

t—o0
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Proof. Let X(t) be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that

X(t)>0,x(t—7) >0, and X(t—0c)>0 for all t>t >t,. For t=t, from (1.2), there exists t >t >t such
that the following two cases arise:

1 z(t) >0,z'(t) > 0,(b(t)2'(t))" > 0,[a(t)(b(t)Z'(t))'T < O;
@ z(t) >0,2(t) < 0,(b()Z' (1))’ > 0,[a(t)(b(t)Z'())T <0

forall t>t, >1,. Assume that case(1) holds. For t #1, define a function @ by

abOZO) |,

a(t) =-p(t) 7)) (2.6)
Then o(t,) <0,k =1,2,...and @(t) <O, for t >t,. Differentiating (2.6), we have
&(t) = - ()a(t)(b(t)’z'(t))' ()(a(t)(b(t)lz'(t))’)’ ()a(t)(b(t)z (t)? bOZO) .,
b(t)z'(t) b(t)z'(t) (b()z'(1))*
since Z'(t) >0, we have
X(t) > (1- p(t)z(t),t =t ,and t>t,. (2.8)
It follows from equation (1.1), (2.7) and (2.8) that
: p'(t) B =28 Gl
o'(t) = - ()w(t)+p(t)Q(t)(1 p(t—o0)) b®Z() +p(t)a(t)'
’ _& - > Z(t—O')
022 S0+ 000 p-0) L T y
b(t—o)Z'(t-0) . @’ (t) e B '
b(t)z'(t) pMa®” o
Now,
b()z() = [ a(s)(b((s))z Q) s>a(t)(b(t)z’(t))’£$ds. (2.10)
Thus
( l::(t)lz O ) <0. (2.11)
ﬁ_a(s)
Therefore,
b(s)z(s) J-tl a(u)
t t ds,
2(t) = 2(t,) + Ij T by
4 a(u)
_[ 1
b(t)z © j tla(u) ds,t>t, >t. (2.12)

b(s)
J.ﬁ a(u)

825|Page January 27, 2014



Using (2.11) and (2.12) in (2.9), we obtain

s 1
——du
t-o 4 a(u) ds t-c ]

——du 5
s PO s e ot bs) M a) |, o*()
O A G e [ L P00
v a(u) v a(u)
1
t-o 9y a(u) s
P D s 0a(O— ot b(s) (V)
()w()+p( )AL p(t- o))~ 1 tmat
v a(u)
-
t-o Jy a(u)
&)= PR L~ p(t-0)) =2 —a(ti;p(t()t» tet and L2t (213)
&mdu
Since t,,, —t, > 7 foreach k €N, we have
o Sa<t .. (2.14)

since X,X',X" are continuous on (t,,t,,;], we have from the inequality (2.14) that
2(tc) = x(t) + p(t)x(t —7)
=3, X(t) + p(t)x(t, —7)

<z(t)k=12,... (2.15)
Now

Z'(t ) = X'(t ) + p'(t)x(t —7) + p(t )Xt —7)

=bx(t) + p'(t)X'(t —7) + p(t)X'(t = 7)

<bZz'(t)k=12,... (2.16)
Similarly

2"(t) = x"(t) + p ()Xt —7) +2p'(t)X'(t, —7) + p(t)X"(t —7)
=c X"(t)+ p"(t)x(t, —7) +2p'(t )X (t, —7) + p(t )X"(t, —7)
<z"(t).k=12,... (2.17)

Now from (2.16) and (2.17), we have

o= L )
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=—p(t)a(t; )[ Z'(t) * b(t,) J
Z”(tk) _+_b'(tk)
() bt

> —p(t,)a(t, )(

Zbia)(tk)’k =1,2,.... (2.18)

k

Using Lemma 2.1 in (2.13) and (2.18), we obtain

o0z o0t) [T =+ TT = (o)A~ p(s-o))

ta<ty <t bk 3$<tk <t bk

v 1
£ tlmdu
D) OGO
Sidu 4p(5) ,
y a(u)

Taking limit as t —> 00 and using (2.4) we get a contradiction with a)(t) <0.

Next assume that case (2) holds. Since Z(t) is nonincreasing, we have Z(t) —L>0. 1 L> 0, then for any

£ >0, there exists t, >t, suchthat L+& >2z(t) > L, eventually for t>1t,. Choose &= L(]é—_pp) Then for
t=t ,t=>1, wehave
X(t) =z(t) — p(t)x(t—7) > L - pz(t—7)
>L-p(L+¢)
= M = |_1, say.
2
From equation (1.1), we have
(@b (x®) + pt)x(t-17)))) = -at)x(t—o) <-Lq(t).t =t ,t > t,. (2.19)
For k=1,2,...
z'(t) = X'(t) + p'(t )Xt —7) + pt)X'(t —7)
=bx'(t) + p'(t)X'(t —7) + p(t)X'(t, —7)
<bz'(t,). (2.20)
Also

a(t ) (b(t)Z'(t)) = at)(d'(t)Z' () +b(t) 2" (%))
= a(t)(0'(t )b z'(L) +b(t)z" (k)

<ba(t)(b(t,)z'(t))" (2.21)
Using Lemma 2.1 in (2.19) and (2.21), we obtain
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(@ b®z'(1)) < (at)(bt)z'w)) [ Tb - '—J [ Tba(s)ds

t1<tk <t S<tk <t

’ ! LZ
bOZO)< th b, L Sgtbkq@)ds

where L, =a(t,)(b(t)'(t,))’ >O.

Again using Lemma 2.1 in the last inequality, we have

b(t)z(t) <b(t,)z'(t,) [ by + j Hb[Hb

ty<t <t 2u<tk<t 4 <t <u a(u)
“ah j kuq(s)ds]du
,(t)_% J tlL—[qbk[m—m Ltllt_k[q—q(s)ds]du (2.22)

Using Lemma 2.1 in (2.15) and (2.22), we obtain

2(t) < 2(ts) - j[b() j [1b. T )(LJ H—q(s)ds—Lz)du]dv

t1<t <V t1<t <S
Taking limit as { —> o0 in the last inequality we get a contradiction with (2.5).Therefore |im Z('[)ZO. Since

t—>o

X(t) < z(t), we have lim X(t) = 0. This completes the proof.
t—oo

Theorem 2.2 Assume that (1.3) holds and there exists a function O € Cl(([to,oo), (0, oo)) such that for all sufficiently
large t=21t, =1, =2 >1,, we have (2.4) and (2.5). If

1

b (6(s)q(s)(1— p(s— S = o0, 2.23
lim jH [(B()a(s)(1-ps =) b(u) o @.23)
where
o(t):= —ds (2.24)
a(s)
then every solution X(t) of equation (1.1) is either oscillatory or |im X(t) =0.
t—ow

Proof. Let X(t) be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that

X(t)>0,x(t—7) >0, and X(t—0)>0 for t>t, >t,. For t=t, ,t>t from (1.3), there exist three possible
cases (1), (2)(as in Theorem 2.1) and

(3) z(t) >0,2'(t) > 0,(b(t)Z'(1))" < 0.[a(t)(b()Z'(t)) T <O.
For the cases (1) and (2), we obtain the conclusion from Theorem 2.1. Now assume that case (3) holds. Since
a(t)(b(t)z'(t))" is nonincreasing, we have

a(s)(b(s)'(s)) <a(t)(b(t)z'(1)),s=t>1t >,

Dividing the above inequality by a(s) and integrating from t to |, we obtain
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L

b(1)z'(1) <b()2'(t) + a®)(b®)Z (M) | %
Letting | — o0, we have

0<b(t)z(t) +a(t)(b()Z®) [ w%

That is,
20000y - &y 025
b(t)Z'(t) a(s)
Define a function ¢ by
a(t)(b®z'®)’
o) =— Wt =t >t (2.26)
Then @(t;) >0,k =1,2,...and ¢(t) >0, for t>t,. Hence from (2.25) and (2.26), we obtain
o(t)g(t) <1. (2.27)
Differentiating (2.26) gives
H(t) = — @t)(b®)z(1))" . a®b®z'®)’ (b(t)Z’(t))'t At tot,
b(t)z'(t) (b(t)z'(1))*
From equation (1.1), (2.8) and (2.26), we obtain
. _ ot on Xt=0) (),
¢'(t) = at)(1-p(t-o)) b(t)z (t) a(t) | #4121, (2.28)
From the third inequality in case (3), we see that
2(t) > b(t)_[ mz'(t) (2.29)
Hence,
(— Z(t) LY <0t#tt2 1
5 b(S)
which implies that
I‘*"ﬁ
2(t—o) _ 5 b(s)
2 2 tﬁ . (2.30)
t5 b(S)
Using (2.28) and (2.29) in (2.30), we have
: Cnft_ A0
#(t) = (O)(L- p(t a))j b() R

Multiplying the last inequality by 5(t), we have
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SO () = st)a)(L- p(t—o)) j b( o+ +? ((tt)) S(t)t~t,. (2.31)

Now

(6(D)g(D))" = 5O (1) + 5" (O)A(1)

=6(t)y (t)—ﬁﬂ)

> 50O pt-0)] b@)‘”ggm Zg. )

For k=1,2,... from the definition of @(t), we have
b(t)z" () + b'(t;)z'(tﬁ)j
b(t)z'(t,)

a2, D)
“l7@) b))

> —p(tk)a(tk)( bZ,z,% )) y tt);((ttk))]

#(t) = —a(t )(

> bi¢(tk),k =82 ... (2.33)
Kk

Using Lemma 2.1 in (2.32) and (2.33) for all t; =1;, we obtain

50902 5)et) TT - +[ TT o (0ea(s)a—pls-o)

t6<tk <t bk s<tk <t bk
Is«f du ¢(S)5(S) (/5(5))OI
t5 b(u) a(s)  a(s)

or

st = [] b—[é(t )o(ts )+f [ b(&s)als)(t- p(s-o))

t6<tk<t k t6<tk<s
'[S o du 1
5 b(u) 45(s)a(s)

Taking limitas t — o0 in the last inequality, we obtain a contradiction with (2.23) due to (2.27). Now the proof is complete.

)ds].

Theorem 2.3 Assume that (1.4) holds and and there exists a function 0O eCl(([tO,oo), (0,00)) such that for al
sufficiently large t =1, 21, >t >1,, we have (2.4) ,(2.5) and (2.23). If

!ED: 4 b(V) Itltllt_‘[vbk mj‘ s<1t_l<:ubk77(S)q(3)é:(t G)deUdV . (2.34)
where
Et-7-0)
1= plt-o)) = ja” >0 0= jb() (2.39
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then every solution X(t) of equation (1.1) is either oscillatory or |im X(t) =0.

t—w

Proof. Let X(t) be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that

X(t) >0,x(t—7)>0, and X(t—0)>0 for t>t >t,. For t=#t,,t>t from (1.4), there exist four possible
cases (1), (2), (3)(as in Theorem 2.2) and

@) z(t) >0,2'(t) <0,(b(t)z'(1))" < O,[a(t)(b(D)Z'(1))T <0,

For the cases (1),(2) and (3), we obtain the conclusion from Theorem 2.2. Now assume that case (4) holds. Since
b(t)z'(t) is non increasing, we have

b(s)z'(s) <b(t)z'(t),s=>t>t, >t.. (2.36)

Dividing (2.36) by D(S) and then integrating from t to ¢, and letting ¢ —> o0, we have

z(t) > —b(t)z' (t)j—ds =-b(t)Z'(t)&(t) = ME(L),t =t (2.37)
where M =—b(t)z'(t) > 0. Hence
[ﬂj > 0. (2.38)
&(t)
From (2.38), we see that
x(t) = z(t) — p(t)x(t —7) = z(t) - p(t)z(t — 7)
(1 p(t) C’E(g( )T)jz(t) t=t,. (2.39)
From equation (1.1), (2.37) and (2.39), we have
(a(t)(b(t)z'(t))) < -Ma(t)n()S(t - o). (2.40)
From equation (2.16), we have
b(t!)z(t;) < bb(t)Z/(t,). 2.41)

Using (2.41), we have
(b(t)Z'(t)) = b'(t)z'(t) +b(t)z"(t)
<b'(t)bz'(t)+b(t)z"(t,)
<b(b(t)z'(t))" (2.42)

Using Lemma 2.1 in (2.40) and (2.42) for t; >t;, we obtain

a(t)(b(t)z'(1)) < at:)(b(t:)2'(t:)) [ ] b - MI [ [ b.ats)

te<t <t s<t <t
1n(s)é(s —o)ds

or

(b Z'(t)) < _E j . [T bats)n(s)é(s - o)ds. (2.43)

Again using Lemma 2.1 in (2.41) and (2.43), we obtain
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b(t)z(t)<b(t)z(t)Hb—MJ. 15 jt]‘[ y

tg<ty <t us<t, <t a(U) Bs<t <u
q(s)n(s)f(s o)dsdu.
Dividing the last inequality by b(t) and using (2.15) in Lemma 2.1, we have

20 <2(t)-M[ [ ] "G L [T baa(s)n(s)&(s - o)ds)dudv.
b( ) Btg<t <v Bs<t <u
Taking limit as t — oo in the last inequality we get a contradiction with (2.34). This completes the proof.

3 EXAMPLES

In this section we provide two examples to illustrate the main results.

Example 3.1 Consider the following third order impulsive differential equation

[et(x(t)+—x(t 1))"]'+3eE X(t-2)= 01> 3t %t
x(t;):(%jx(tk), x'(t;):(k”j ) 61
X'(t) = ( jx”(t)k 12,.

B . B 1 B3 7 A 2 3 _k+1 _
Here a(t) =e?,b(t) =1,p(t) = 2—e,q(t) = Zez rt=lo0=24a =¢C = bk . ltis easy to see that all

the conditions of Theorem 2.2 are satisfied with p(t) =1. Hence any solution of equation (2.34) is either oscillatory or
converging to zero.

Example 3.2 Consider the following third order impulsive differential equation

[e'(e' (X(1) +%x(t—1))’)']’+;izx(t—2) —0t>3 14t

)= ), X =(1e ) @2

X"(t7) = x"(t )k =1,2,....

Here a(t) =b(t) =¢',p(t) = %,q(t) = eiz,r =lo0=2,4a = %,bk :1+%,Ck =1. It is easy to see that all the

conditions of Theorem 2.3 are satisfied with p(t) =1. Hence any solution of equation (3.1) is either oscillatory or
converging to zero.
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