The solvable subgroups of large order of L2(p), p ≥ 5

By

A. Abduh and Abeer A. AlGhawazi

Department of Mathematics, Umm Al-Qura University Makkah, P.O.Box 56199, Saudi Arabia
Keywords: Maximal subgroup;; solvable; p-nilpotent; formation
AMSC: 20D10, 20D20

Abstract

By using the following theoretical and computational algorithms, we determined the solvable subgroups of large order of the finite non-abelian simple linear groups $G=L_{2}(p)=P S L(2, p)$, for $p \geq 5$ and p is a prime number, also their presentations and permutation representations have been found

Theoratical algorithm

In this section we study theoreticaly the following :

- Determining the solvable subgroups of large order S of $L_{2}(p), p \geq 5$ and finding their structures up to isomorphisms.
- Finding the presentation of S,also we find its generators from its character table.
- Finding the permutation representations of S.

Determining S

Since any solvable subgroup of large order S of G is either one of the maximal subgroups of G or it is contained in one of them, so we have to deal with the maximal subgroups of G. We begin by stating Dickson's results [8] about the maximal subgroups of $\operatorname{PSL}(2, p)=L_{2}(p), p$ is an odd prime number . The result is divided according to p.

Theorem [8]

Let $\mathrm{p}=2^{f} \geq 4$. Then the maximal subgroups of $\operatorname{PSL}(2, \mathrm{p})$ are :
(1) . $C_{2}^{f} \rtimes C_{p-1}$, that is , the stabilizer of a point of the projective line ,
(2) $\cdot D_{2(p-1)}$
(3) $\cdot D_{2(p+1)}$,
(4) . $\operatorname{PGL}\left(2, \mathrm{p}_{0}\right)$, where $\mathrm{p}=p_{0}^{r}$ for some prime r and $\mathrm{p}_{0} \neq 2$.

Theorem [8]

Let $q=p^{f} \geq 5$ with p an odd prime. Then the maximal subgroups of $\operatorname{PSL}(2, q)$ are:
(1). $C_{p}^{f} \rtimes C_{(q-1) / 2}$, that is , the stabiliser of a point of a projective line ,
(2). D_{q-1}, for $q \geq 13$,
(3). D_{q+1}, for $q \neq 7,9$,
(4). $\operatorname{PGL}\left(2, q_{0}\right)$ for $q=q_{0}^{2}$ (2 conjugacy classes),
(5) . $\operatorname{PSL}\left(2, q_{0}\right)$, for $q=q_{0}^{r}$ where r an odd prime,
(6) . A_{5}, for $q \equiv \pm 1(\bmod 10)$, where either $q=p$ or $q=p^{2}$ and $p \equiv \pm 3$
($\bmod 10$) (2conjugacy classes),
(7) . A_{4}, for $q=p \equiv \pm 3(\bmod 8)$ and $q \not \equiv \pm 1(\bmod 10)$,
(8). S_{4}, for $q=p \equiv \pm 1(\bmod 8)$ (2 conjugacy classes).

Now, if we put $q=p^{1} \geq 5$, we get the following corollary as a result of the above theorem:

Corollary.

Let $p \geq 5, p$ is a prime number. Then the maximal subgroups of $L_{2}(p)$ are :
(1) $C_{p} \rtimes C_{(p-1) / 2}$
(2) D_{p-1}, for $\mathrm{p} \geq 13$
(3) D_{p+1}, for $p \neq 7,9$.
(4) A_{5}, for $p \equiv \pm 1(\bmod 10)$
(5) A_{5}, for $p \equiv \pm 3(\bmod 10)(2$ conjugacy classes $)$
(6) A_{4}, for $p \equiv \pm 3(\bmod 8)$ and $p \not \equiv \pm 1(\bmod 10)$
(7) S_{4}, for $\mathrm{p} \equiv \pm 1(\bmod 8)$ (2 conjugacy classes)

Proposition.

(1) The dihedral groups $D_{2 n}$ of order $2 n$ are solvable .
(2) The symmetric group S_{4} is solvable
(3) A_{5} is not solvable
(4) S_{3} and A_{4} are solvable
(5) If $\mathrm{H} \triangleleft \mathrm{G}$ and both H and G / H are solvable then G is solvable.
(6) The semi direct product $C_{p} \rtimes C_{q}$, where p and q are odd primes, is solvable

Theorem. Let H be the solvable subgroup of large order of $L_{2}(p)$. Then
(1) $\mathrm{H} \cong \mathrm{A}_{4}$, for $\mathrm{p}=5$
(2) $\mathrm{H} \cong \mathrm{S}_{4}$, for $\mathrm{p}=7$
(3) $\mathrm{H} \cong \mathrm{C}_{\mathrm{p}} \rtimes \mathrm{C}_{(\mathrm{p}-1) / 2}$, for $\mathrm{p} \geq 11$

Proof :

(1) For $p=5$, the maximal subgroups of $L_{2}(5)$ are A_{4} of order $12, D_{10}$ of order 10 and S_{3} of order 6 and all are solvable . But 12 is the largest order, so A_{4} is the solvable subgroup of large order in $L_{2}(5)$.
(2) For $p=7$, the maximal subgroups of $L_{2}(7)$ are S_{4} of order 24 and $C_{7} \rtimes C_{3}$ of order 21 and both are solvable. But $24>21$, S_{4} is the solvable subgroup of large order in $\mathrm{L}_{2}(7)$.
(3) For $p \geq 11$, by Corollary 4.1.1.3, the orders of the maximal subgroups of $\mathrm{L}_{2}(\mathrm{p})$ are as follows:
$\left|C_{p} \rtimes C_{(p-1) / 2}\right|=\frac{p(p-1)}{2}$ (solvable)
$\left|D_{p-1}\right|=p-1 \quad$ (solvable)
$\left|D_{p+1}\right|=p+1 \quad$ (solvable)
$\left|A_{5}\right|=60\left(A_{5}\right.$ is not solvable and also it does not contain a subgroup of
order large than 12)
$\left|A_{4}\right|=12$
(solvable)
$\left|S_{4}\right|=24$
(solvable)

Now, it is clear that $\frac{p(p-1)}{2}$ is greater than both $(p-1)$ and $(p+1)$. Also for the smallest $p=11$, we
have $\frac{p(p-1)}{2}=\frac{11(11-1)}{2}=\frac{11 \times 10}{2}=55$ and $55>12$ and $55>24$
So, the largest order is $\frac{p(p-1)}{2}$ and then $C_{p} \rtimes C_{\frac{(p-1)}{2}}$ is the solvable subgroup of large order of $\mathrm{L}_{2}(\mathrm{p})$, where $\mathrm{p} \geq 11$.

presentation of S.

The finite non-abelian simple group $L_{2}(p), p \geq 5$ and p is a prime number, of order $\frac{p(p-1)(p+1)}{2}$ can be presented as, [2]:
$\mathrm{L}_{2}(\mathrm{p})=\left\langle a, b: a^{2}=b^{3}=(a b)^{p}=1\right\rangle$, for $\mathrm{p} \geq 5$
The presentations of the solvable subgroup of large order S of $L_{2}(p), p \geq 5$ are as follows :(By using theorem 4.1.1.5and [11])

p	G	S	$\|S\|$	[G: S]	Presentation of S
5	$\mathrm{L}_{2}(5)$	A_{4}	12	5	$\left\langle a, b: a^{2}=b^{5}=(a b)^{2}=1\right\rangle[]$
7	$\mathrm{L}_{2}(7)$	S_{4}	24	7	$\left\langle a, b: a^{2}=b^{7}=(a b)^{2}=1\right\rangle[]$
$\mathrm{p} \geq 11$	$\mathrm{L}_{2}(\mathrm{p})$,	$C_{p} \rtimes C_{\frac{(p-1)}{2}}$	$\frac{p(p-1)}{2}$	$\mathrm{P}+1$	$S=\left\langle a, b \left\lvert\, a^{p}=b^{\frac{(p-1)}{2}}=e\right., a b a^{-1}=b^{k}\right\rangle \operatorname{with}\left(\frac{(p-1)}{2}, k\right)=1$ And it is a $\left(p, \frac{(p-1)}{2}, \frac{(p-1)}{2}\right)$-subgroup in $L_{2}(p)$

The permutation representations of S :

Let $G=L_{2}(5)$ and $S \cong A_{4}$
From the Character table of G and S

The character table of $A_{5} \cong L_{2}(5)$

	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$			1	i
		1a	2a	3		
	2P	1 a	1 a	3	a	
	3 P	1a	2a	1	a	d
	5 P	1a	2 a	3	a	a
X. 1		1	1		1	1
X. 2		3	-1			A
X. 3		3	-1			
X. 4		4			1	1
X. 5		5	1	-		

The character table of A_{4}

1a 2a 3a 3b 2p 1a 1a 3b 3a 3 1a 1a 1a 1a

X .1	1	1	1	1
X .2	1	1	A	$/ A$
X .3	1	1	$/ \mathrm{A}$	A
X .4	3	-1	.	.

$A=(1-\operatorname{Sqrt}(5)) / 2$

We have : $L_{2}(5)$ have 5 conjugacy classes of elements: $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, 5 \mathrm{a}, 5 \mathrm{~b}$ (of order $1,2,3,5,5$ respectively) and A_{4} have 4 conjugacy classes of elements $1 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{3a}, 3 \mathrm{~b}$ (of orders $1,2,3,3$ respectively). So, we have :

$\left\|C_{G}(\mathrm{a})\right\|$	60	4	3	5	5
$\mathrm{CL}(\mathrm{G})$	1 a	2 a	3 a	5 a	5 b
$\mathrm{CL}(\mathrm{S})$ fused up to $\mathrm{CL}(\mathrm{G})$	1 a	2 a	3 a 3 b		
$\left\|C_{S}(\mathrm{a})\right\|$	12	4	3		
Permutation character $\chi=1_{S} \uparrow^{G}=\frac{\mid C_{G}(\mathrm{a}\| \|}{\left\|C_{S}(\mathrm{a})\right\|}$ (reducible character)	5	1	$1+1=2$	0	0
χ splits to 2 irreducible characters	1	1	1	1	1

And so, the induced Character is : $1 \mathrm{~S} \uparrow^{G}=1 a+4 a$

Let $\mathrm{G}=\mathrm{L}_{2}(7)$ and $\mathrm{S}=\mathrm{S}_{4}$: From the Character table of G and S :

The character table of S_{4}

	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$			1	2
		1 a	2			a
	2P	1 a	1 a		a	b
	3 P	1 a	2		a	a
X. 1		1	-1	1	1	1
X. 2		3				1
X. 3		2			1	
X. 4		3	1			1
X. 5		1	1	1		

We have $L_{2}(7)$ have 6 conjugacy classes of elements: 1a , 2a $, 3 a, 4 a$, have 5 conjugacy classes of elements $1 \mathrm{a}, 2 \mathrm{a}, 2 \mathrm{~b}, 3 \mathrm{a}, 4 \mathrm{a}$ (of orders $1,2,2,3$

The character table of $\mathbf{L}_{2}(7)$

C_{G} (a)\|	168	8	3	4	7	7
CL(G)	1a	2a	3a	4a	7a	7b
$\mathrm{CL}(\mathrm{S})$ fused up to $\mathrm{CL}(\mathrm{G})$	1a	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~b} \end{aligned}$	3a	4a		
$\left\|C_{S}(\mathrm{a})\right\|$	24	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	3	4		
Permutation character $\chi=1_{S} \uparrow^{G}=\frac{\left\|C_{G}(\mathrm{a})\right\|}{\left\|C_{S}(\mathrm{a})\right\|}$ (reducible)	7	$2+1=3$	1	1	0	0
χ splits to 2 irreducible characters of G	1	1	1	1	1	1
	6	2	0	0	-1	-1

And So, the induced Character is: $1 \mathrm{~s} \uparrow^{G}=1 a+6 a$

$\mathrm{G}=\mathrm{L}_{2}(\mathrm{p})$, and $\mathrm{S}=c_{p} \rtimes C_{\frac{p-1}{2}}($ where $\mathrm{p} \geq 11)$.

The conjugacy classes, representations and the character tables of G have been found by adams [2] , as follows :

Conjugacy Classes of G	Representations of G
1. $\quad I$	1. $\rho(\alpha)\left(\alpha^{2} \neq 1\right), \rho(\alpha) \simeq \rho\left(\alpha^{-1}\right)$
2.	$c_{2}(\epsilon, \gamma)=\left(\begin{array}{cc}\epsilon & \gamma \\ 0 & \epsilon\end{array}\right)(\epsilon= \pm 1, \gamma \in\{1, \Delta\})$
3.	$c_{3}(x)(x \neq \pm 1), c_{3}(x)=c_{3}(-x)=c_{3}\left(\frac{1}{x}\right)=c_{3}\left(-\frac{1}{x}\right)$
4.	$c_{4}(z)\left(z \in \mathbb{E}^{1}, z \neq \pm 1\right), c_{4}(z)=c_{4}(\bar{z})=c_{4}(-z)=c_{4}(-\bar{z})$
	3. $\rho^{\prime}(1)$
	4. $\pi(\chi)\left(\chi^{2} \neq 1, \chi \neq \bar{\chi}\right), \pi(\chi) \simeq \pi(\bar{\chi})$
	5. $\omega_{e}^{ \pm}$if $\zeta(-1)=1$
	6. $\omega_{o}^{ \pm}$if $\zeta(-1)=-1$

Character Table of $P S L(2, q), q \equiv 1 \bmod (4)$							
		Number :	1	2	$\frac{q-5}{4}$	1	$\frac{q-1}{4}$
		Size :	1	$\left(q^{2}-1\right) / 2$	$q(q+1)$	$\frac{q(q+1)}{2}$	$q(q-1)$
Rep	Dimension	Number	1	$c_{2}(\gamma)$	$c_{3}(x)$	$c_{3}(\sqrt{-1})$	$c_{4}(z)$
$\rho(\alpha)$	$q+1$	$\frac{q-5}{4}$	$(q+1)$	1	$\alpha(x)+\alpha\left(x^{-1}\right)$	$2 \alpha(\sqrt{-1})$	0
$\bar{\rho}(1)$	q	1	q	0	1	1	-1
$\rho^{\prime}(1)$	1	1	1	1	1	1	1
$\pi(\chi)$	$q-1$	$\frac{q-1}{4}$	$(q-1)$	-1	0	0	$\begin{aligned} & -\chi(z) \\ & -\chi\left(z^{-1}\right) \end{aligned}$
$\omega_{e}^{ \pm}$	$\frac{q+1}{2}$	2	$\frac{q+1}{2}$	$\omega_{e}^{ \pm}(1, \gamma)$	$\zeta(x)$	$\zeta(\sqrt{-1})$	0

Character Table of $\operatorname{PSL}(2, q), q \equiv 3 \bmod (4)$							
		Number:	1	2	$\frac{q-3}{4}$	$\frac{q-7}{4}$	1
		Size :	1	$\left(q^{2}-1\right) / 2$	$q(q+1)$	$q(q-1)$	$\frac{q(q-1)}{2}$
Rep	Dimension	Number	1	$c_{2}(\gamma)$	$c_{3}(x)$	$c_{4}(z)$	$c_{4}(\delta)$

$\rho(\alpha)$	$q+1$	$\frac{q-3}{4}$	$(q+1)$	1	$\alpha(x)+\alpha\left(x^{-1}\right)$	0	0
$\bar{\rho}(1)$	q	1	q	0	1	-1	1
$\rho^{\prime}(1)$	1	1	1	1	1	1	$-\chi(z)$
$\pi(x)$	$q-1$	$\frac{q-3}{4}$	$(q-1)$	-1	0	$-\chi\left(z^{-1}\right)$	$-2 \chi(\delta)$
$\omega_{o}^{ \pm}$	$\frac{q-1}{2}$	2	$\frac{q-1}{2}$	$\omega_{o}^{ \pm}(1, \gamma)$	0	$-\nsim 0(z)$	$-\nsim 0(\delta)$

Property [10]

Let A be a normal subgroup of G such that A is the centralizer of every non-trivial element in A. If further G / A is abelian, than G has $|G: A|$ linear characters, and $(|A|-1) /|G: A|$ non-linear irreducible characters of degree $=|G: A|$.

Theorem

Let $\mathrm{G}=\mathrm{L}_{2}(\mathrm{p}), \mathrm{p} \geq 11$, and le $t \mathrm{~S}=C_{p} \rtimes C_{\frac{(p-1)}{2}}$. Then S has $\frac{p+3}{2}$ conjugacy classes of elements .

Proof:

Since $\mathrm{S}=C_{p} \rtimes C_{\frac{(p-1)}{2}} \Rightarrow($ fromt $\quad h$ edefinition $), C_{p} \unlhd S \Rightarrow$ every non-trivial element of C_{p} has centralizer of order p and isomorphic to C_{p}. Now, $\mathrm{S} / C_{p} \cong C_{\frac{(p-1)}{2}}$ is cyclic, and so it is abelian. So, by applying theorem 4.1.3.4 $\Rightarrow \mathrm{S}$ has [S: $\left.C_{p}\right]=\frac{(p-1)}{2}$ linear characters and $\left(\left|C_{p}\right|-1\right) /\left[\mathrm{S}: C_{p}\right]=\frac{p-1}{\frac{p-1}{2}}=2$ non-linear irreducible characters of degree $\frac{p-1}{2}$. Then , totally, S has $\frac{p-1}{2}+2=\frac{p+3}{2}$ irreducible characters and so by corollary1.9.7. (The number of conjugacy classes is equal to the number of irreducible characters) \Rightarrow The number of conjugacy classes of $S=\frac{p+3}{2}, p \geq 11$.

Theorem. Let $\mathrm{S}=C_{p} \rtimes C_{\frac{(p-1)}{2}}, \mathrm{p} \geq 11$. Then S has the following conjugacy classes of elements:
1- The identity.
2- 2 classes of order p.
3- If $\frac{p-1}{2}$ is a prime number, then S has $\frac{p-3}{2}$ classes of elements order $\frac{p-1}{2}$
4- If $\frac{p-1}{2}$ is not a prime number, then S has $\frac{p-3}{2}$ classes of elements of order m | $\frac{p-1}{2}$

Proof :

Since S is a group then it hase an identity element which is unique.
2- From the character tables of G mentioned above with respect to both cases $p \equiv 1(\bmod 4)$ and $p \equiv 3(\bmod 4)$, we find that G has only 2 conjugate classes of types $\mathrm{C}_{2}(\gamma)$ and $\overline{C_{2}(\gamma \gamma)}$ and each class is of size $\frac{p^{2}-1}{2}$, and the centralizer of an element in each class is of order p . Now the sylow p -subgroup of $\mathrm{S}=C_{p} \rtimes C_{\frac{(p-1)}{2}}$ is isomorphic to C_{p} and so S has conjugacy classes of elements of order p and they are must be only tow conjugate classes, for , if they are $>2 \Rightarrow$ they must be at least 4 conjugacy classes and 2 of them are fused to $\mathrm{C}_{2}(\gamma) \in \mathrm{G}$ and the remaining are fused to $\overline{C_{2}(\gamma \gamma)}$

G: $\quad 1 \mathrm{a} \quad \mathrm{C}_{2}(\gamma) \quad \overline{C_{2}(\gamma \gamma)}$
1
1
From character tables of G
if S has at least 4 conjugacy classes
a, \bar{a}, b, \bar{b}, they will be fused to :
$\left\{\begin{array}{cc}a & \bar{a} \\ \bar{b} & \bar{b} \\ 2 & 2\end{array}\right.$ which means the perm. Character is :
$\Rightarrow S$ has only 2 conjugacy classes of e therefore each class is of size $=\frac{|S|}{p}=\frac{p-1}{2}$
which is imposible because the value must be equal 1

3- If $\mathrm{p} \geq 11$ and $\mathrm{q}=\frac{p-1}{2}$ is also a prime number $\Rightarrow \mathrm{S}=C_{p} \rtimes C_{q} \Rightarrow \mathrm{~S}$ has elements of only orders
$1, \mathrm{p}, \mathrm{q}$ and it has no elements of order pq because S is not cyclic. Now, we have the numbers of conjugacy classes of type $\frac{p-1}{2}=\frac{p+3}{2}-1-2=\frac{P+3-2-4}{2}=\frac{p-3}{2}$ and since $\frac{p-1}{2}$ is prime \Rightarrow the centralizers of elements of order $\frac{p-1}{2}$ have the same order and so each of these classes contains p elements, and all are lieing in $\mathrm{C}_{3}(\mathrm{x}) \in \mathrm{G}$ and then we have :

4- If $p \geq 11$ and $\frac{p-1}{2}$ is not a prime number, then S has elements of order $1, p$ and $m \left\lvert\, \frac{(p-1)}{2}\right.$. We can easily show that S has $\frac{p-3}{2}$ conjugacy classes of order m and each class consist of p elements and has centralizers of order $\frac{p-1}{2}$ and all subgroups of order m in G have been determined in [7], and we have :

	Number of Classes	Order of element a	$\begin{aligned} & \text { Size of } \\ & \|C L(a)\| \end{aligned}$	$\mathrm{C}_{\mathrm{s}}(\mathrm{a})$	Classes Fusions up to G
Any prime $\mathrm{p} \geq 11$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1 p	$\begin{gathered} 1 \\ \frac{p-1}{2} \end{gathered}$	$\begin{aligned} & \|S\| \\ & \mathrm{p} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{C}_{2}(\gamma) \\ & \text { For }\left\|C_{S}(a)\right\|=p \quad \text { Which } \\ & \text { divides only }\left\|C_{G}(\mathrm{C} 2(\gamma))\right\| \end{aligned}$
When $\frac{p-1}{2}$ is not a prime number	$\left.\frac{p-3}{2} d \right\rvert\, \frac{p-1}{2}$	total $=\mathrm{p}$	$\frac{p-1}{2}$		$\mathrm{C}_{3}(\mathrm{x})$ For $\quad\left\|C_{S}(a)\right\|=\frac{p-1}{2} \quad$ Which divides only $\left\|C_{G}(\mathrm{C} 3(\mathrm{x}))\right\|$
S	$\frac{p+3}{2} \quad \text { and } \quad\|S\|=1+\frac{p-1}{2} \times 2+\left(\frac{p-3}{2}\right) \times p=\frac{p(p-1)}{2}$				

The permutation representations of S into $\mathrm{G}, 1_{\mathcal{S}} \uparrow^{G}$ can be obtained from the following tow tables as follows :

1- When $G=\boldsymbol{L}_{\boldsymbol{2}}(p), p \geq 11$ and $p \equiv \mathbf{1}(\bmod 4)$

Number of conjugacy classes:	1	2	$\frac{p-5}{4}$	1	$\frac{p-1}{4}$
Size of each class :	1	$\left(p^{2}-1\right) / 2$	$p(p+1)$	$\frac{p(p+1)}{2}$	$p(p-1)$
Order centralizers $C_{G}(a)$$\quad$ of	$\|G\|$	P	$\frac{(p-1)}{2}$	(p-1)	$\frac{(p+1)}{2}$
Order \quad of centralizers $C_{S}(a)$	$\|S\|$	P	$\frac{(p-1)}{2}$	No element in S has centralizer of order divides ($\mathrm{p}-1$)	No element in S has centralizer of order divides $\frac{(p+1)}{2}$
Type of classes [a]	1	$c_{2}(\gamma)$	$c_{3}(x)$	$c_{3}(\sqrt{-1})$	$c_{4}(z)$
Irreducible characters	(1+q)	1	$\begin{aligned} & \alpha(x) \\ & +\alpha\left(x^{-1}\right) \end{aligned}$	$2 \alpha(\sqrt{-1})$	0
Reducible character (induced	q	0	1	1	-1
$\text { character } \left.1_{S} \uparrow^{G}=\frac{\left\|C_{G}(a)\right\|}{1}\right)$	1	1	1	-1	1
	(1+q)	1	2	0	0

2-When $\boldsymbol{G}=\boldsymbol{L}_{\boldsymbol{z}}(\boldsymbol{p}), \boldsymbol{p} \geq \mathbf{1 1}$ and $\boldsymbol{p} \equiv \mathbf{3}(\bmod 4)$

Number of conjugacy classes:	1	2	$\frac{p-3}{4}$	1	$\frac{p-7}{4}$
Size of each class	1	$\left(p^{2}-1\right) / 2$	$p(p+1)$	$\frac{p(p-1)}{2}$	$p(p-1)$
Order of centralizers $C_{G}(a)$	$\|G\|$	p	$\frac{(p-1)}{2}$	(p+1)	$\frac{(p+1)}{2}$
Order centralizers $C_{S}(a)$	$\|S\|$	P	$\frac{(p-1)}{2}$	No element in S has centralizer of order divides ($\mathrm{p}-1$)	No element in S has centralizer of order divides $\frac{(p+1)}{2}$
Type of classes [a]	1	$c_{2}(\gamma)$	$c_{3}(x)$	$c_{4}(\delta)$	$c_{4}(z)$
Irreducible characters \{	($\mathrm{q}+1$)	1	$\alpha(x)+\alpha\left(x^{-1}\right)$	0	0
	q	0	1	1	-1
Reducible character (induced	1	1	1	-1	1
$\text { character } \left.1_{S} \uparrow^{G}=\frac{\left\|C_{G}(a)\right\|}{\left\|C_{S}(a)\right\|}\right)$	(1+q)	1	2	0	0

References:

1) Abdoly, V. D. ," An algorithm to construct representations of finite groups ", Ph.D thesis, Carleton University, 2003.
2) adams,J., " Character tables of GL(2) , SL(2) , PGL(2) and PSL(2) over a finite field",math.umd.edu,april2002. www2.math.umd.edu/~jda/characters/characters.pdf3)
3) Breuer,T., " Solvable Subgroups of Maximal Order in Sporadic Simple Groups" LehrstuhIDfurMathematikRWTH, 52056 Aachen, Germany, version(1) in 2006 and version(2) in 2012 . www.math.rwth-aachen.de/ ~Thomas.Breuer/ctbllib/doc/sporsolv.pdf.
4) Breuer ,T. , " The GAP Character Table Library ", Version 1.2,2012. www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib 2012, GAP package.
5) Burnside,W. ," Theory of groups of finite order" . Dover Publications Inc., New York, 1955.
6) Connon ,J.,Mckay,j. and Young,Kiang-Chuen , " The non-abelian simple groups G , $|\mathrm{G}|<10^{5}$ " , Communications in Algebra, Volume 7, Issue 13, pages 1397-1406, 1979.
7) Cameron P. J., Maimani H. R. , Omidi G. R. and Tayfeh-Rezaie B. , " 3-designs from PSL(2,q) ", Elsevier Science, 2004
8) Dickson ,L. E., " Linear groups with an exposition of the Galois field theory ", Dover Publications Inc., New York, 1958.
9) Dixon,John D. , " Constructing representations of finite groups " , Groups and computation (New Brunswick, NJ, 1991).
10) Dornhoff , L., " Group Representation Theory " , (Part A). Marcel Denker, 1971.
11) Drozd ,Yu.A. and Skuratovskii, R.v.," Generators and relations for products " , Ukrainian Mathematical Journal ,Volume 60, Number 7 (2008)
12) Giudici,M.,"Maximal subgroups of almost simple groups with socle PSL(2, q)" ,School of Mathematics and StatisticsThe University of Western Australia 35 Stirling Highway Crawley, Australia, 2009. http://arxiv.org/pdf/math/0703685.pdf
13) Gorenstein ,D., " Finite Groups " ,Harper \& Row New York, Evanston and London, Harper's Series in Modern Mathematics, 1968.
14) Gorenstein ,D., " The classification of finite simple groups " ,Vol. 1, journal of Groups, 1983.
15) Grove,L. C., " Groups and Characters" , John Wiley \& Sons, New York, 1997.
16) Hall, Marshall Jr., " Simple groups of order less than one million " , Journal of Algebra 20: 98-102, 1972.
17) Issacs, I.M. ," Character Theory Of Finite Groups " , Dover Books on Mathematics , 1994.
18) James,G. and Liebeck, M., " Representations and characters of groups " , Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.
19) Mann, A. , " Soluble subgroups of symmetric and alternating groups " ,Israel Journal of Mathematics , Volume 55, Number 2, 1986.
20) Nickerson,S. J., " An Atlas of Characteristic Zero Representations " , Ph.D Thesis, University of Birmingham , 2006.
21) Rose, H.E. , " A Course on Finite Groups " , Springer London Dordrecht Heidelberg ,New York, 2000.
22) Vdovin, E. P. , " Abelian and Nilpotent Subgroups of Maximal Orders of Finite Simple Groups " , Ph.d thesis SB RAS, Institute of Mathematics,2000.
23) WilsonR. , Walsh P., Tripp J., Suleiman, I., Rogers ,S.,Parker ,R., Norton ,S., Nickerson ,S ., Linton ,S., Bray ,J. and Abbott,R.,Conway,J.H. , Curtis, R.T., and Parker, R.A. " Atlas of Finite Group Representations",version(2) 1985 , version(3),2004-2012,Available online at : web.mat.bham.ac.uk/atlas/.
24) The GAP computational System , \{Groups, Algorithms, and Programming\}, Version 4.5, 2010 .(http://www.gapsystem.org)
