

Intuitionistic Fuzzy Dot BCK/BCI - Algebras

Dr.V.Veeramani, G. Subramani
Department of Information Technology, Sultanate of Oman, Salalah
jayaveer73@gmail.com
Department of Mathematics, Jayaram College of Engineering and Technology, Tiruchirapalli, India
gsjcet@gmail.com

ABSTRACT

In this paper we apply the concept of intuitionistic fuzzy set to dot BCK-sub algebra. The notion of an intuitionistic fuzzy dot BCK-sub algebra is introduced and some interesting properties are investigated. Then we study the homomorphism between intuitionistic fuzzy dot BCK- subalgebras.

Keywords

Fuzzy sets; intuitionistic fuzzy sets; BCK-algebra; intuitionistic fuzzy dot BCK-sub algebra; homomorphism.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 3, No 1 editor@cirworld.com www.cirworld.com, member.cirworld.com

124 | Page 140ct, 2013

INTRODUCTION

The study of BCK-algebras was initiated by Imai and Iseki in 1966 as a generalization of set-theoretic difference and proportional calculus. In the same year Iseki introduced BCI – algebras as a super class of the class of BCK-algebras. In particular BCK/BCI – algebras are non-classical logic algebras and they are algebraic formulations of BCK-system. The concept of intuitionistic fuzzy set was introduced by K.T.Atanassov[1], as a generalization of the notion of fuzzy set. In this paper, we introduced the concept of intuitionistic fuzzy dot BCK-sub algebras and study this structure. We state and prove some theorem in intuitionistic fuzzy dot BCK-sub algebras. Also we introduce the concept of homomorphism in intuitionistic fuzzy dot BCK-sub algebras and established some results.

Preliminaries: In this section, we first review some definitions and properties which will be used in the sequel.

1.1 **Definition [1]:** Let X be a non-empty set. A fuzzy subset A of X is a function

A:
$$X \to [0,1]$$
.

1.2 **Definition** [1]: An intuitionistic fuzzy set (IFS) A in X is defined as an object of the form

$$A = \{ \langle x, \mu_A(x), \lambda_A(x) \rangle \mid x \in X \}$$

where $\mu_A: X \to [0,1]$ and $\lambda_A: X \to [0,1]$ defined the degree of membership and the degree of non-membership of the element $x \in X$ respectively, and

$$0 \le \mu_A(x) + \lambda_A(x) \le 1$$
 for all $x \in X$.

- **1.3 Definition [1]:** For every two intuitionistic fuzzy sets $A = \langle x, \lambda_A, \lambda_A \rangle$ and $B = \langle x, \mu_B, \lambda_B \rangle$ in X, define the following operations.
- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \ge \lambda_B(x)$ for all $x \in X$.
- (ii) A=B if and only if $A \subseteq B$ and $B \subseteq A$,

(iii)
$$A^c = \{ \langle x, \lambda_A(x), \mu_A(x) \rangle | x \in X \},$$

(iv)
$$A \cap B = \{ \langle x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\} > | x \in X \}$$

(v)
$$A \cup B = \{ \langle x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\} > | x \in X \}$$

(vi)
$$\blacksquare A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle | x \in X \}$$

(vii)
$$\Delta A = \{\langle x, 1 - \lambda_A(x), \lambda_A(x) \rangle | x \in X\}$$

1.4 Definition [3]: A non-empty set X with a constant 0 and a binary operation * is called a BCC algebra if it satisfies the following conditions.

(i)
$$((x * y) * (z * y)) * (x * z) = 0$$

(ii)
$$x * x = 0$$

(iii)
$$0 * x = 0$$

(iv)
$$x * 0 = x$$

(v)
$$x * y = 0$$
 and $y * x = 0$ then $x = y$ for all $x, y, z \in X$.

1.5 Definition [3]: A BCC algebra X is said to be BCK algebra if

$$(x * y) * z = (x * z) * y$$
 for all $x, y, z \in X$.

- **1.6 Definition:** A nonempty subset S of a BCK algebra X is called a sub algebra of X if it is closed under the BCK operation.
- **1.7 Definition [2]:** A mapping $f: X \to Y$ of BCK –algebra is called a homomorphism if

$$f(x * y) = f(x) * f(y)$$
 for all $x, y \in X$.

1.8 Definition [4]: Let X be a BCK-algebra. An intuitionistic fuzzy subset A of X is said to be an intuitionistic fuzzy BCK/BCl-sub algebra if

(i)
$$\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$$

(ii) $\lambda_A(x * y) \le \max\{\lambda_A(x), \lambda_A(y)\}$ for all $x, y \in X$.

For the sake of simplicity, we just write $A = <\mu_A, \lambda_A >$ instead of

$$A = \{ \langle x, \mu_A(x), \lambda_A(x) \rangle | x \in X \}.$$

2. Results on intuitionistic fuzzy dot BCK/BCI-sub algebra

2.1 Definition: Let X be a BCK-algebra. An intuitionistic fuzzy subset A of X is said to be an intuitionistic fuzzy dot(IFD)[5] BCK/BCI-sub algebra if

$$\begin{split} \text{(i)} \ & \mu_A(x*y) \geq \mu_A(x). \mu_A(y) \\ \text{(ii)} \ & \lambda_A(x*y) \leq \lambda_A(x) + \lambda_A(y) \leq 1 \ \ \textit{for all } x,y \ \in X. \end{split}$$

2.2 Example: Let $X = \{0, a, b, c\}$ be a set with the following Cayley table

*	0	а	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	b	а	0
F - 91				

Then (X, *, 0) is a BCK – algebra.

Define an IFS $A = <\mu_A, \lambda_A > \text{ in X by}$

$$\mu_A(0) = 0.8, \mu_A(a) = 0.5, \mu_A(b) = \mu_A(c) = 0.3,$$

$$\lambda_A(0) = 0.1, (a) = 0.3$$
 and $\lambda_A(b) = \lambda_A(c) = 0.4.$

Then $A = <\mu_A, \lambda_A>$ is intuitionistic fuzzy dot BCK-subalgebra of X.

2.3 Theorem: If $A = \langle \mu_A, \lambda_A \rangle$ is a IFD BCK-subalgebra of X, then for all $x \in X$

$$\mu_A(0) \ge (\mu_A(x))^2$$
 and

$$\lambda_A(0) \leq 2\lambda_A(x)$$

Proof: For all $x \in X$, we have x * x = 0

Now,
$$\mu_A(0) = \mu_A(x * x)$$

$$\geq \mu_A(x).\mu_A(x)$$

$$= (\mu_A(x))^2$$

Hence
$$\mu_A(0) \ge (\mu_A(x))^2$$

Also,
$$\lambda_A(0) = \lambda_A(x * x)$$

$$\leq \lambda_A(x) + \lambda_A(x)$$

$$= 2\lambda_A(x)$$
 Hence $\lambda_A(0) \leq 2\lambda_A(x)$

2.4 Theorem: Let A be a IFD BCK – subalgebra of X. If there exists a sequence $\{x_n\}$ in X, such that $\lim_{n\to\infty}(\mu_A(x_n))^2=1$ and $\lim_{n\to\infty}(2\lambda_A(x_n))=0$ Then $\mu_A(0)=1$ and $\lambda_A(0)=0$.

Proof: By theorem 2.3, we have

$$\mu_A(0) \geq (\mu_A(x))^2$$
 for all $x \in X$.
$$\mu_A(0) \geq (\mu_A(x_n))^2$$
 for every positive integer n

Therefore,
$$1 \ge \mu_A(0) \ge \lim_{n \to \infty} \mu_A(x_n)^2 = 1$$

Which implies that $\mu_A(0) = 1$

Also,
$$\lambda_A(0) \leq 2\lambda_A(x)$$
 for all $x \in X$.
$$\lambda_A(0) \leq 2\lambda_A(x_n)$$
 for every positive integer n

Therefore,
$$0 \le \lambda_A(0) \le \lim_{n \to \infty} (2\lambda_A(x_n)) = 0$$

Which implies that $\lambda_A(0) = 0$.

2.5 Theorem: Let $A = <\mu_A, \lambda_A >$ and $B = <\mu_B, \lambda_B >$ are intuitionistic fuzzy dot BCK – subalgebras of X. Then $A \cap B$ is a intuitionistic fuzzy dot BCK–subalgebra of X.

Proof: Let $x, y \in A \cap B$

Then
$$x, y \in A$$
 and B

Since A and B are intuitionistic fuzzy dot BCK - subalgebras of X, we have

$$(\mu_{A} \cap \mu_{B})(x * y) = \min\{\mu_{A}(x * y), \mu_{B}(x * y)\}$$

$$\geq \min\{\mu_{A}(x), \mu_{A}(y), \mu_{B}(x), \mu_{B}(y)\}$$

$$\geq (\min\{\mu_{A}(x), \mu_{B}(x)\}), (\min\{\mu_{A}(y), \mu_{B}(y)\})$$

$$= (\mu_{A} \cap \mu_{B})(x), (\mu_{A} \cap \mu_{B})(y)$$

Therefore, $(\mu_A \cap \mu_B)(x * y) \ge (\mu_A \cap \mu_B)(x).(\mu_A \cap \mu_B)(y)$

Also,
$$(\lambda_A \cap \lambda_B)(x * y) = \max\{\lambda_A(x * y), \lambda_B(x * y)\}$$

$$\leq \max\{\lambda_A(x) + \lambda_A(y), \lambda_B(x) + \lambda_B(y)\}$$

$$\leq (\max\{\lambda_A(x), \lambda_B(x)\}) + (\max\{\lambda_A(y), \lambda_B(y)\})$$

$$= (\lambda_A \cap \lambda_B)(x) + (\lambda_A \cap \lambda_B)(y)$$

Therefore,
$$(\lambda_A \cap \lambda_B)(x * y) \le (\lambda_A \cap \lambda_B)(x) + (\lambda_A \cap \lambda_B)(y)$$

Hence $A \cap B$ is an intuitionistic fuzzy dot BCK-subalgebra of X.

- **2.6 Corollary:** If $\{A_i | i \in N\}$ be a family of intuitionistic fuzzy dot BCK-subalgebra of X then $\bigcap_{i \in N} A_i$ is also an intuitionistic fuzzy dot BCK-subalgebra of X.
- **2.7 Theorem:** If $A = <\mu_A \lambda_A >$ is IFD BCK –subalgebra of X then $\blacksquare A$ is also IFD BCK- subalgebra of X.

Proof: It is sufficient to show that $1 - \mu_A(x)$ satisfies condition (ii) in definition 2.1.

127 | Page 140ct, 2013

For $x, y \in X$,

$$\begin{split} (1 - \mu_A)(x * y) &= 1 - \mu_A(x * y) \\ &\leq 1 - (\mu_A(x).\mu_A(y)) \\ &\leq \left(1 - \mu_A(x)\right) + (1 - \mu_A(y)) \\ &= (1 - \mu_A)(x) + (1 - \mu_A)(y) \end{split}$$

Therefore, $(1 - \mu_A)(x * y) \le (1 - \mu_A)(x) + (1 - \mu_A)(y)$.

Hence $\blacksquare A = <\mu_A, 1-\mu_A>$ is IFD BCK-subalgebra of X.

2.8 Theorem: Let $A=<\mu_A, \lambda_A>$ be an IFD BCK-subalgebra of X. Then $U(\mu_A;1)=\{x\in X|\mu_A(x)=1\}$ and $L(\lambda_A;0)=\{x\in X|\lambda_A(x)=0\}$ are either empty or subalgebras of X.

Proof: Let $x, y \in U(\mu_A; 1)$

Then
$$\mu_A(x*y) \ge \mu_A(x) \cdot \mu_A(y)$$

 $\mu_A(x*y) \ge 1$

Which implies that $\mu_A(x * y) = 1$.

Therefore, $x * y \in U(\mu_A; 1)$

Hence $U(\mu_A; 1)$ is a subalgebra of X.

Also, let $x, y \in L(\lambda_A; 0)$

Then
$$\lambda_A(x*y) \le \lambda_A(x) + \lambda_A(y)$$

 $\lambda_A(x*y) \le 0$

Which implies that $\lambda_A(x * y) = 0$.

Therefore, $x * y \in L(\lambda_A; 0)$

Hence $L(\lambda_A; 0)$ is a subalgebra of X.

3. IFD BCK-subalgebra of X under homomorphism:

3.1 Theorem: Let $f: X \to Y$ be a one to one function. Then the homomorphic image of an intuitionistic fuzzy dot BCK-subalgebra of X is an intuitionistic fuzzy dot BCK-subalgebra.

Proof: Let $f: X \to Y$ be a BCK homomorphism from X into Y and B = f(A), where A is intuitionistic fuzzy dot BCK-subalgebra of X.

We have to prove that B is IFD BCK-subalgebra of Y.

Now, for f(x), f(y) in Y,

$$\mu_B(f(x) * f(y)) = \mu_B(f(x * y))$$

$$= \mu_A(x * y)$$

$$\geq \mu_A(x) \cdot \mu_A(y)$$

$$= \mu_B(f(x)) \cdot \mu_B(f(y))$$

Which implies that $\mu_B(f(x) * f(y)) \ge \mu_B(f(x)) \cdot \mu_B(f(y))$

Also,
$$\lambda_B(f(x) * f(y)) = \lambda_B(f(x * y))$$

$$= \lambda_A(x * y)$$

$$\leq \lambda_A(x) + \lambda_A(y)$$

$$= \lambda_B(f(x)) + \lambda_B(f(y))$$

Which implies that $\lambda_B(f(x)*f(y)) \leq \lambda_B(f(x)) + \lambda_B(f(y))$

Hence B is an IFD BCK-subalgebra of Y.

3.2 Theorem: (The homomorphic preimage of an IFD BCK - subalgebra is an IFD BCK-subalgebra.

Proof: Let $f: X \to Y$ be a BCK homomorphism from X into Y and let B = f(A) where B is an IFD BCK-subalgebra of X. We have to prove that A is IFD BCK-subalgebra of X.

Nov for $x, y \in X$,

$$\mu_A(x * y) = \mu_B(f(x * y))$$

$$= \mu_B(f(x) * f(y))$$

$$\geq \mu_B(f(x)) \cdot \mu_B(f(y))$$

$$= \mu_A(x) \cdot \mu_A(y)$$

Which implies that $\mu_A(x * y) \ge \mu_A(x) \cdot \mu_A(y)$

Also,
$$\lambda_A(x*y) = \lambda_B(f(x*y))$$

$$= \lambda_B(f(x)*f(y))$$

$$\leq \lambda_B(f(x)) + \lambda_B(f(y))$$

$$= \lambda_A(x) + \lambda_A(y)$$

Which implies that $\lambda_A(x * y) \le \lambda_A(x) + \lambda_A(y)$

Hence, A is IFD BCK-subalgebra of X.

Conclusion:

In the present paper, we have introduced the concept of intuitionistic fuzzy dot sub algebras of BCK/BCl-algebras and investigated some of their useful properties. In our opinion, these definitions and important results can be extended to some other fuzzy algebraic systems.

REFERENCES

- [1] K.T.Atanassov, Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1),87-96(1986).
- [2] F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131,537-553(1988)
- [3] Arsham Borumand Saeid, Fuzzy dot BCK/BCI-algebras, Internal journal of Algebra, Vol. 4,no.-7, 341-352(2010).
- [4] M.Akram, Intuitionistic fuzzy closed ideals in BCI-algebras, International mathematical forum, vol.1,no. 9,445-453(2006).
- [5] D.R.Prince Williams, Intuitionistic fuzzy n-ary subgroups, Thai journal of mathematics, Vol.8,no.2,391-404(2010).

129 | Page 140ct, 2013