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1. Introduction

1.1. Approximating the Riemann-Stieltjes Integral. The Riemann-Stieltjes Integral fabf(t)dg(t) is

an important concept in Mathematics with multiple applications in several subfields including Probability Theory &
Statistics, Complex Analysis, Functional Analysis, Operator Theory and others. In Numerical Analysis, the
number of proposed quadrature rules to approximate this type of integrals is very small by comparison with the

huge number of methods available to approximate the classical Riemann integral. fab f@®)

In recent years, R the approximation problem of the Riemann—Stieltjes integral fab dg has been studied with the

methods of modern Inequalities Theory and several error approximation bounds for the proposed quadrature
rules had been established. Some of the most interesting approximations have been done using Ostrowski and
Generalized Trapezoid type rules.

Dragomir [17] has introduced the following Ostrowski type quadrature rule:
D
/ f(t)du(t) =~ f(z)[u(b) —u(a)], z € [a,b].
Ja

For several error bounds of this approximation rule under various assumptions for the functions involved, the
reader may refer to [8], [9], [11]-[18], [30], [31], [33]-[35] and the references therein, as well as the recent works
[3, 6]. From a different point of view, the authors of [19] considered the problem of approximating the Riemann—

Stieltjes integral f: f(@®)du(t) with the Generalized Trapezoid rule [u(x) + u(a)]f(a) + [u(bx) + u(x)]f(b), i.e.,

l"'
/ ft)du(t) ~[u(z)—u(a)] fla)+ [u(b) —u(zx)] f(b).z € |a,b].
a
For various bounds of the above Generalized Trapezoid rule the reader may refer to [19]-[23] and the references

therein. For new quadrature rules regarding Riemann—Stieltjes integral see [1], [2] and [4,5].

In order to approximate the Riemann-Stieltjes integral fab f(x)du(x)by the Riemann Integral fab f(t)dt, Dragomir
and Fedotov [27], have introduced the following functional:

3
4 h —oe
(1.1) D(fiu):= / f(z)du(z)— =\ “'m/ f(t)dt,

b—a
provided that the Riemann-Stieltjes integral ff f(x)du(x)and the Riemann integral fab f(@®)dt exist.
In the same paper [27], the authors have proved the following result:
Theorem 1. Let f,u: [a,b] - R such that u is of bounded variation on [a, b] andf

Lipschitzianwith constant K > 0.Then we have

b

< é]\' [b—u)V[u].

a

—
(8]

ID(f:u)

The constant is sharp in the sense that it cannot be replaced by a smaller quantity.
In [22], Dragomir has obtained the following inequality:
Theorem 2. Let f,u: [a, b] = R such that u is L — Lipschitzian on [a, b],i.e
lu(y) —u(z)| < Llxr—y|.Vz,y € [a,b], (L >0)
and f is Riemann integrable on [a,b].

If m,M € R, are such that m < f(x) < M for any = € |a,b], then we have the
inequality

o

(1.3) [D(f:u)| < zL(M —m)(b—a)

2
The constant = is sharp in the sense that it cannot be replaced by a smaller quantity.

Recently, Mercer [32] has obtained some new midpoint and trapezoid type inequalities for the Riemann-Stieltjes
integral which provide a natural generalization of Hermite-Hadamard'’s integral inequality, as follows:
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Theorem 3. Let g be continuous and increasing on [a,b], let ¢ € |a, b] satisfies

b
/ g(t)ydt=(c—a)g(a)+{b—c)g(bh).

a

If f" >0, then we have

b
(1.4) f((-'){g(b)—g(aJ]‘S/ fdg < [G —g(a)] f(a)+[g(b) — G]f(b)

where
b

1
Ga= t) dt.
b—a_/: g(t)a

For a generalization of this result where the positivity of the second derivative f"is replaced by the convexity of f,
see [28].

However, it seems that Mercer didn’t notice that the following significant relation between the right-hand side of
(1.4) and the functional D(g, ) exists:

b
(1.5) /f“)dg(f)—[G'—gmﬂf(a)-[g(b)-cl_,f(b;
b) — Y b |
=f( l,)_(jl’(ﬂ)/ g{_t_‘,dt—/ y(}t)df(t) = —'D(g_:f).

This follows by the integration by parts formula
b

b :
/f(r)dgcr)=f(b).q<b>—f(a,)g(u>—/ g (t)df (1),

a
and some simple calculations.

1.2. Comparing Two Integral Means. In order to study the difference between two Riemann
integral means, Barnett et al. [7] have proved the following estimates:

Theorem 4.Let f:[a,b] —» R be an absolutely continous function with the property that
f' € Ly[a, b, i.e.,

17 lloc == ess sup |£(£)].

tea,bl

Then for a < ¢ < d < b, we have the inequality

1 b 1 d
E/ f((}d{ - m/ f(,)({g

!1 ( (@+b)/2— (c+d) /2
-

(1.6)

<

A

4"

4 (b—a)—(d—rc) ) ]i‘(b—“.}—(d—f)] 15l

[A

1 : N
s[b—a)— (@d— )] |f]l -
The constant 1/4 in the first inequality and 1/2 in the second inequality are the best possible.

After that, Cerone and Dragomir [10] have obtained the following three results as well:

Theorem 5. Let f:[a, b] » R be an absolutely continous function mapping.Then for a < ¢ <d < b, we have
the inequality
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| b 1 d
(1.7) b—a./u f(t)dt—m/; f(s)ds,
-Qﬁlv"r

(b—a) ’-l + (_P_) I 9 [I‘Q+1 +/\'~?—»|]l’:‘q ||f'”p

(a+1)i77 | T+p ) |
ffeL,lab], 1<p<c,

-

IA
Q|-
I

—

b~ N

S—p+ =AU,  f €Liab];

where (b —a)v=c—a,(b—a)p =d —cand(b — a)A = b — d. Both inequalities in (1.7) are sharp.

Theorem 6. Assume that mapping f:[a,b] » Ris of r — H — Holder type on[a,bl.a < c < d < b,
we have the inequality

. 1 7t R ! (c—a) ' +(b-a)"
1.8 (1) dt — —— (s)ds| < H— : ‘ .
(1.8) b—a/,;f’) ' LI—C_/C f(s) "EE I(r+l)[[b—a)—(d—c)]

Inequality (1.8) is best possible in the sense that we cannot put in the right-hand side a constant less than 1.

Theorem 7. Let f:[a, b] » R be a mapping of bounded variation on [a,b). The following
bounds holds

19 |

‘b—a L

b { d
[ (t)dt— m/ f(s)ds

( [b—a—:d—m

c+d a+b
(0 4 et ot

]vim.

b—a !

piezal Hbod) . gr ¢ is LL-Lipschitzian

2|(b—a)—(a—c)]’

IA

) — / e r+d—{a+b)
(B2) 70— (52) £ (@) + [ =52 £ (s0):
L if f is monotonic nondecreasing

where, sq = —2=ad _ ¢ e, d].
{b—a)—(d—c)

In this paper by utilising amongst others the inequalities from Theorems 4-7, several new bounds for the Mercer—
Trapezoid Quadrature rule error

b
[ 10 dg)~16 -9 @]f @~ lo®)~ 17 ®),
and, equivalently, for the Dragomir-Fedotov functional,

% o (b) — b
Mwn=/ymﬂm—Lﬁ7ﬁﬂ/gmm

a

are provided.

The inequalities (1.6)—(1.9) are used in an essential way to obtain new error bounds for the above quadrature
rule and hence for the functional D(g, f), which gives a significant application for these inequalities. Applications
for compounding quadrature rules and for functions of self adjoint operators on complex Hilbert Spaces are
provided as well.

2. The Case of Bounded Variation f’

We may start with the following result:
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Theorem 8. Let f, g: [a, b] — R be a such that f'is of bounded variation on [a,b] and g is

absolutely continous on [a, b], then

b
f f(t)dg(t) — [G—g(a)] f(a)—g(b)—G]f(b)

((L—a) |7l ¢ € Lo a1

(2.1)

<

b /
1 1/a
g —a) I+3 ' ’
Y ()4 £ ’(—zm;‘{,) lg'l,. ¢ €Lpla,b];

(s (b—a)llg'll,, g’ € Ly[a,b],

where ||-||,, are the usual Lebesque norms, i.e.,

1/p

b
lwm:=(/|huww0 forp>1

and

Al = ess S Ih t)|-

l|a

Proof. Define h (t) = g (t) — G, so that H (t) = fa h (u) du satisfies H (a) = H (b) =
0, (see Theorem 1 in [32]). Using integration by parts (twice), we have

./H t)——/ftMH(

=/fMﬂﬂﬂ —[G—g(a)] f(a) - [g(b) - C] f (b)

b
(2.2) 5/fm@m—w—wmfm—mm-Qfm

It is known that for a continuous function p: [a, b] - R and a function v: [a, b] —» R of bounded variation, the
Riemann-Stieltjes integral f: p(t)dv(t) exists and one has the inequality

A%mwr)

As f'is of bounded variation on [a, b], by (2.3) we have

< sup |p(t IV(V)

tela,b)

(2.3)
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(2.6)

ISSN 2347-1921

b
/H(t)d(f t

< sup |H (t)|v

ica,b]
b
/h ) du|\/ (f

= sup /[g — G du

tca,b)

= sup
tela,b]

v ()
b
V(f’)
1 L
t—a_/; (u)du — ]
1 L
=le{il.)b] (t—a) [t— Ag(u)d‘u—ml g(u)du]

In the inequality (1.6), setting d =t and ¢ = a, we get

3 ip S i
— [ g as— = [a(s)as| <

Substituting (2.5) in (2.4), we get

= sup /g(u)du-(t—a)G

teia,b)

= sup (t—a)[

tcia,b]

b
V).

(2.5)

5 (=119l -

b

L9l 2. {(t—a) -1}V ()

a

| =

NJI

(b—a)® ||g'umV(f'),

since sup {(t —a)(b—t)}, occurs at t = “,:,f". therefore, sup {(t—a)(b—1t)} =
tela,b] tela,b)
1 (b—a)*, which proves the first inequality in (2.1).

In the inequality (1.7), setting d =t and ¢ = a, we get

1. O
—t_a/ag(s)ds——b_a/a- g(s)ds

1
‘e q1/q
b—t) 4@ 2
- I [1 * (Eit—a'za) ] lg'll,, ¢ € Lpla,b],
{g+1)'/9(b—a)9

o) —

IA

Lt . ¢ €Li[a,b].
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Substituting (2.6) in (2.4), we get

b
[ H@a @
b

<\ ()

a

1
. 14 = qg11/q
b—t) 4 £
—0 T (5) ] s o € L e,
x sup (t—a)- (q+1)/9(b—a) 9
tefa,b]
3= lg'lly s 9 € Ly [a,b]

b—a 1/q
sy L+ G gl o € Lyla.bl;

1

b
<\ () %
’ z(b—a)llg"ll, g’ € Li[a,b];

where, p > 1 and ﬁ +-‘l; = 1, which proves the second and the third inequalities in
(2.1). 1

We have the following bound for the trapezoidal rule:

Corollary 1. In Theorem 8, by setting g(t) = t, we obtain

(2.7) / £ (t)dt — (a) ; £ ()

Another result when g is of r-H -Holder type is as follows:
Theorem 9. Let f,g: [a.b] — R be such that f' is of bounded variation on |a, b

and g is of r-H -Hdlder type on [a,b], then

b
(2.8) / f(t)dg (t) G — g (a)] f (a) — o (b) — G] £ (b

<H +l,WL,(b—a““‘V(f

Proof. As f' is of bounded variation and g is of r-H-Hélder type on [a, b], by (2.4)
and using (1.8) we have

b
/ H(t)d(f ()
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b
V()

t b
< sup |(t—a) —1——/ g(u)du——l—/ g(u)du
tefa.b] t—a /, b—a J,
b
< sup (t—a)(b—1)"
i A L] \a/
— H— - r+1
( r+ l)r‘+l ) V(f
since sup (t—a)(b—1t)" W‘"’ (b— a)”], which completes the proof. |i
tea,b]

Theorem 10. Let f,g: [a,b] — R be such that f' is of bounded variation on [a, b

and g is monotonic nondecreasing on [a,b], then

b
/f(t)dy(t)—[G—g(a)]f(a)—[g(b)—G]f(b)

b

(b—a)*[g(b) —g(@]\/ (f).

a

(2.9)

<

| =

Proof. As f' and g is of bounded variation on |a, b] and g is monotonic nondecreasing
on [a,b], by (2.3) and using (2.4) we have

b
[ HOdE )
b t b b
< [|e-a [t_lf o) du—5— [ g(u)du] at\/ (1)

In the third part of inequality (1.9), setting d =t and ¢ = a, we get

t—a_/a g(e)ds = b—ﬂ/a Lt

Substituting (2.11) in (2.10), we get

(2.10)

(2.11) SH[g(b)—g(G)k

d(f' ()] <

(b) a)/ b—1t) dtV(f
1

50— o) - g(a‘]V(f'),

and thus the proof is finished.
3.The Case of Lipschitzian f"'

In this section, we give some new bounds when f'is L — Lipschitzian.
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Theorem 11. Let f,g : [a,b] — R be such that f’ is L—Lipschitzian on [a,b] and
g is an absolutely continuous on [a,b], then

8 |[ 10d0-16-9(@)f@~l9) -1 0)
(-0 lglle, & €Loclab];
<Ly Gt D ool o € Lpll]
| L0-0ldl, o €Lilab;

where, p > 1 and;+—q-=

Proof. Using the fact that for a Riemann integrable function p : [c.d] — R and
L-Lipschitzian function » : [¢,d] — R, one has the inequality

d d
(3.2) [rewo| <t [ o

As f' is L-Lipschitzian on [a, b], by (3.2) we have

b b
/ H(t)d(f (1) < L / \H (1)) dt

—L/ /h(u)du

=L / [g(u) — Gldu|d

=L /tg(u)d-u—(t—a)G‘dt

=I (t—a)[tia/tg(u)du—G”dt

b | t 1 b
(3.3) =L ; (t—a) |m/a g(u)du—ml g(u)du]

| b 1 —
<lrien / (E=af (b=t = L tilh—aF el
3 X 2

dt

where, for the last inequality we used the inequality (1.6), with d =t and a = ¢,
(see (2.5)).

In the inequality (1.7), setting d =t and a = ¢, we get
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(3.4) / s)ds——/
(-t %
S| ad = ] lg°ll,
(q+x)‘/"(b—aw
<9 ggL[a.b],lSp(oo.-:;-i-%: }

=gl g' € Ly[ab].

\ a

1
Substituting (3.4) in (3.3), we get

’ ,l_ q l/q
”9 ||p s f:(t—a)(b—t)Hq |:1+(tH-¢t__.aga) ] dt. g'eLp[a.b].

(g+1)*/9(b—a)

ol b _ayp—tyat, o € Lifad],

( ”gr"}1 wp 1+( ) ]qu
T/9(h_ayl g
{g+1)* /9 (b—a)’/e telab] b+l 2a

1
<Ly xfab(t—a)(b—t)l+5dt. g €Lyab],

{ & (b—a)’|gll; ¢ €Ly[a,b],
2

[ ll'| 111/a 344
G T b—a) [L+5] 7 (b—a)"7 ey 9 € Lela.b],

=Lﬁ

L S (b—a)|gll; g €Ly ab],

v, [+ (st5) ] = 4 207,

b 1
/ (t—a)(b—t)' "7 dt

B gyl [ 4=, a4+l q
—(b—a) q/0(1-z)r vt = (b- o't L

which proves the second and the third inequalities in (3.1). |}

[

Corollary 2. In Theorem 11, setting g(t) = t, we obtain

@@ Ly gy

(3.5) S

t)dt — (b—a)
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Theorem 12. Let f,g: [a,b] — R be such that f’ is L-Lipschitzian on [a,b] anc
g is of r-H -Hélder type on [a,b], then

b
/ f(t)dg(t) - [G—g(a)] f (a) - [y(b)—G]f(b)l

(b Al a)r+2
(r+1)*(r+2)
Proof. As f'is L-Lipschitzian and g is of r-H-Hélder type on [a,b], by (3.3) anc

using (1.8) we have
b 1 t 1 b
SL/ (t —a) l—/ g(u)du——/ g(u)du] dt
£ t—a J, b—a J,

LH [ .
< —a)(b— :
_"+1/a(t a)(b—t) dt
(b = o a)r+2
(r+1)*(r+2)
where, for the last inequality, a simple calculation yields that
b b - a)7'+2
t—a)(b—t)" dt=(b—a)"t? / 1—t)t"dt = Mb=a)
[ t-aye-tra=m-a [ ( e

which completes the proof. i
Corollary 3. In Theorem 12, if g is M -Lipschitzian on [a,b], then we have

1

(3.6)

<LH

b
/ H(t)d(f (1))

(3.7) LM (b—a)®.

/f(t)dg ) — (G —g(a)] £ (a) — [o.(b) — C1 £ (B)

Theorem 13. Let f,g: [a.b] — R be such that f' is of bounded variation on [a, b

and g is monotonic nondecreasing on [a.b], then

(3.8)

/f )dg () — [C — g (a)] f (a) — [g (b) — G £ (B)

< gL—afls() — g ().

Proof. As f’ is L-Lipschitzian on [a,b] and g is monotonic nondecreasing on [a, b],
by (3.2) and using (3.3) we have

(3.9)

b
[ @ @)

b t b
gL/ (t —a) [ﬁ/ g(u)du——ﬁ/ g(u)du] dt

In the third part of inequality (1.9), setting d =t and ¢ = a, we get

t_la/g(s)ds——/ s) ds
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Substituting (3.10) in (3.9), we get

|A

b
Lg(bg:—-;’(“)/ (t—a)(b—t)dt

L(b—a)*[g(b) - g(a)].

| -

which completes the proof.

4. More Inequalities

In this section we give other related results:

Theorem 12. Let f, g: [a, b] = R be such thatf and gare of bounded variation on [a, b].
then

(4.1) f(t)dg(t) —[G—g(a)] f (a) —[g(b) — G| f (b)

Proof. As f" and g is of bounded variation on [a,b], by (2.3) and using (2.4), we

have
b
(4.2) / H(t)d
1 1
St;‘l}')b] (i—a)[ / g(u)du—-b—/ u)du] V(f)

In the first inequality of (1.9), setting d = ¢ and ¢ = a, we get
Substituting (4.3) in (4.2), we get

/Ht)d

—a te(a, b]

% V g)\/

b
sup {(t—a)(b \/ \/

which completes the proof.
Corollary 4. In Theorem 14, let g(t) = t, then
HOES LI

b

3 (b—a)*\/ (£).

a

/ff)dt (b—a)

When the integrator is of bounded variation we have:
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Theorem 15. Let f,g : [a,b] — R be such that f" is L-Lipschitzian on [a,b] and
g is of bounded variation on |a,b|, then

b b
[ f0da)-ic-a@]f@-lst)-Cl1 @) < SL(b—a)?\/(9),

Proof. As f' is L-Lipschitzian on [a,b] and g is of bounded variation on [a,b], by
(2.3) and using (2.4), we have

(4.4)

b
[ H@a @)

b t b
<[ |e-a [t—_la-/g(u)du—bfa/ g(u)du]

In the second inequa.litv of (1.9), setting d =t and ¢ = a, we get

/ g(s)ds———/

Substituting (4.5) in (4.4), we get

/H(t)d

dt.

(4.5)

1 2
=§L(b—a)'V(g),

and the proof is completed.
When both functions are Lipschitzian we have:

Theorem 16. Let f.g : [a,b] — R be respectively such that f' and g are L,
Lo -Lipschitzian on [a,b], then
1

3
EL L (b—(l) H

b
/ £ (t)dg (t) — [C — 9 ()]  (a) — [o (b) — G] f (b

Proof. As f' and g are L,-, L,-Lipschitzian on |a.b|, respectively: by (3.2) and
using (3.3), we have

b
/ H(t)d(f (1))

SLJ‘/;b(t—-a)[l / (u)du—-—/ (u)du]

In the second inequality of (1.9), setting d =t and ¢ = a, we get

I ot
t—alg(s)ds-b—a_/a g(s)ds

Substituting (4.7) in (4.6), we get

/H(t
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(4.6)

S—I-L'_)(b—t).

(4.7)

b
L L7/ (t—a)(b—t.)dt=%L,L2(b—a)3,




)

which completes the proof.

Corollary 5. In Theorem 16, let g(t) =t, then

b

f(r)dt_(b_a}f(a)+:f(b)

Remark 1. Let g be as in Theorems 8-16. By applying the same techniques used in the corresponding proofs of
each theorem, we may obtain several inequalities for monotonic non-decreasing integrator f* using the fact that
for a monotonic nondecreasing function v: [a, b] - R and continuous function p: [a, b] - R one has the inequality

b
/ t)dv (t / |p(t)|dv (t

We leave the details to the interested reader.
Remark 2. We also observe that the inequalities in the previous sections hold for | D(g, f )|, which therefore
give new bounds for the functional (1.1). The details are omitted.

5. Applications To Quadrature Rules

L1 (b—(l) ]

=19

Let I, :a =1xg < x; < +++ < T, = b, be a division of the interval [a,b]. Define
the Mercer-Trapezoid Quadrature rule as
n—1
(31) qun)—Z[C_Q(l ]f(’ [ t+l) Gi]f(l'x+l)~

where.

T1i1
G; = ;‘/ g(s)ds.
Litl — Ti Jr,

In the following, we establish an upper bound for the error approximation of the Riemann-Stieltjes f: f®)dg ()
integral by its Riemann-Stieltjies sum S(f, 96 ) As a sample we use only the inequality (4.1).

Theorem 17. Under the assumptions of Theorem 14, we have

b
/ f(t)dg(t)=S(f,g.In)+ R(f,g9.1)

where, S (f,g.1y) is given in (5.1) and the remainder R (f, g, I,) satisfies the bound

1 b » b
R(f,9,In)| < I(b—a)\!(g)\{(f’>.

Proof. Applying Theorem 14 on the intervals [z;, ;. ], we may state that

/ £ (t)dg (t) — [C: — g ()] £ () — lg (i) — Cil £ (ziga)

forallie {0,1,2,--- ,n— l}.
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Summing the above inequality over i from 0 to n — 1 and using the generalized
triangle inequality, we deduce

IR(fsgeIn)l
n—1 Ti)1
=Y | 10ds) - (G- 9@l (@) ~ g @i01) = Gl (i)
i=0 'V T1
q n—1 Tein Te41
< L Ly T =) \/ (9) V (f)
i=0 Ty 1
1 n—1 Tt Typa
L3 SOp. (Zita —Ii)z V (9) V (f)
i=0 n-— i=0 2y )
l Tyt n—1 Tl ,
<i-a s V(@3 V()
1=0, n-1 . i—0 =
\ b b
<3¢-aVeVe)

which completes the proof.

Remark 3. One may use the remaining inequalities in the previous sections to obtain other bounds for
R(f,g,1, ). We omit the details.

6. Applications for Selfadjoint Operators

We denote by B(H) the Banach algebra of all bounded linear operators on a
complex Hilbert space (H:; (-,:)). Let A € B (H) be selfadjoint and let ¢, be defined
for all A € R as follows

1, for —oo. <8<,
oa(s) =
0, for A < s < 400,

Then for every A € R the operator
(6.1) E) = p, (4)
is a projection which reduces A.

The properties of these projections are collected in the following fundamental result concerning the spectral
representation of bounded selfadjoint operators in Hilbert spaces, see for instance [29, p. 256]:

Theorem 18 (Spectral Representation Theorem). Let A be a bonded selfadjoint
operator on the Hilbert space H and let m = min {A|A € Sp(A) } =: minSp(A) and
M =max{A|A € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex}y\cr, called the spectral family of A, with the following properties

a) Ex < Ey for A< )\

b) B, o=0,Eyy =1 and E\ .o =FE), for all A € R;

c) We have the representation

M
(6.2) A= / AE}.
m—0
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More generally, for every continuous complex-valued function ¢ defined on R
and for every € > 0 there exists a § > 0 such that

(6.3) 2 (A) =) o (\) (Bx, —Ex,_,)|[ <=
k=1
whenever
M<mMm=A < ..< 1< =M,
(6.4) A=A <dfor1<k<n,

A € k-1, M) for1 <k <nm
this means that
M
(6) o= [ pde,
where the integral is of Riemann-Stieltjes type.
Corollary 6. With the assumptions of Theorem 18 for A, Ey and ¢ we have the

representations
M
(6.6) e(A)z = / @(A)dE\z forallz e H
m—0
and
M
(6.7) (p(A) z,y) = / w(A)d(Exz,y) forallz,ye H.
m—0
In particular,
M
(6.8) (p(A)z,z) = / p(A)d(Exz,z) forallze H.
m—0
Moreover, we have the equality
M
(6.9) le@=l?= [ |pM)PdlEsal® for allz e H.
m—0

We recall the following result, see [24] that provides an upper bound for the total
variation of the function R 3 A — (E,z,y) € C on an interval [a. ] :

Theorem 19. Let {E\}, _p be the spectral family of the bounded selfadjoint oper-
ator A and let m = min Sp(A) and M = maxSp(A). Then for any z,y € H and
a < 3 we have the inegquality

3 2
V ((E(-)Ivy»] < ((Eg— Ea)z,7) ((Eg — Ea)y,Y) s

o

(6.10)

8
where V ((E(yz.y)) denotes the total variation of the function (Eyz.y) on [a.f].

82|Page Sep30, 2013



Remark 4. Fora = m—= withz > 0 and 3 = M we get from (6.10) the ineguality

M
(6.11) V ((Eyx.w)) < ((ln — Em—s) 2,2)' (1 — Epi_2) y.0)'/?

for any z,y € H.
This implies, for any xz,y € H, that

M

(6.12) \/ ((E(_)r,y)) < =l lylf

m—0

M M
where V ((E(yz,y)) denotes the limit lim. .o [V ((E(_);r_.y»] .

m—0 —E

The inequality (6.12) was also proved in the recent monographs [25] and [26] and will be utilized in the following.

After these preparations we can state and prove the following trapezoidal type inequality for functions of
selfadjoint operators on Hilbert spaces:

Theorem 20. Let A be a bonded selfadjoint operator on the Hilbert space H

and let m = min{A|A € Sp(A)} =: minSp(A) and M = max{A|A € Sp(A)}

=: maxSp(A). If f : [m,M] — C is such that its derivative f' is of bounded
variation on [m, M|, then we have the inequality

. fm)(Mly —A)+ f(M)(A—mly) -
(6.13) |<[ M—-—m ]I"y>‘
1 M A
<7 (M- m)\/(f V (Eqz.v))
m—0

M

21
<7(M- m)V(f =l liy

for any z,y € H.

Proof. Utilising the inequality (4.1) for the function of bounded variation g (A) =
(E\z,y) and the continuous function f we have

M M R d\
/ Ly o {E5:1)

(6.14) d{Exz.y) - f (m) ==F—
| f (E\z y) d\
—f (M) ((I,y) — T
1 M M M
< 7 (M —m)\/ (s \/ (Eyz,y)) < —(M —m V(f')IIrII Iyl

for any r,y € H.
By the Spectral Representation Theorem we have

/ f (A d(Exz,y) = (f (A) z,y)

and
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)

M M
/ (Eaz.y)d\ = (E)z,y /\lm o / A (Exz,y)

n—>0 n—0
= M(z,y)— (Az,y) = (M1ly — A)x,y)
for any z,y € H.

If we take f () =t with p > 1, then for any positive operator A with Sp(A) C
[m, M| c [0,0c) we have the inequality

P (] AV L MP(A —
(6.15) s mP (Mly —A)+ MP (A —mly) 5% '
' : M —m ;
M
—p(M —m) (M?' —m?~') \[ ((E()z.y))
m—0

p(M —m) (MP~' —mPY) ||z |ly|

for any =,y € H.
If we take the function f (t) = Int, then for any positive definite operator A with

Sp(A) C [m.M] c (0,00) we have the inequality
(6.16) I e Inm(Mly—-—A)+InM(A—-mlyg) -
[ M—m
2 M
1 (M —m)° 1(\! m)
SR T E/\x, < —— |
<3 mar VY (Bom) <y " el ol
for any =,y € H.
Finally, if we take f (t) = exp(t). then we have for any selfadjoint operator A
with Sp(A) c [m,M] C R the inequality
(6.17) i () exp(m)(Mly — A) +exp(M) (A —mly) e
M—m
1 M
< —1( M —m) (expM — expm) V ((Eyz,y))
m—0
1
< 1 (M —m) (expM —expm) ||z]| ||yl

for any z,y € H.
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