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Abstract. 

In this paper several new error bounds for the Mercer–Trapezoid quadrature rule for the Riemann-Stieltjes 
integral under various assumptions are proved. Applications for functions of selfadjoint operators on complex 
Hilbert spaces are provided as well. 

Keywords and phrases. Trapezoid inequality; Functions of bounded variation; Riemann–Stieltjes 

integral; Selfadjoint operators; Hilbert spaces. 

Mathematics Subject Classification. 26D10, 26D15, 47A63. 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 Council for Innovative Research 

Peer Review Research Publishing System 

      Journal: Journal of Advances in Mathematics  

       Vol 2, No 2 

      editor@cirworld.com 
      www.cirworld.com, member.cirworld.com 
 

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/


  ISSN 2347-1921 
 

68 | P a g e                               S e p 3 0 ,  2 0 1 3  
 

 

1. Introduction 

1.1. Approximating the Riemann-Stieltjes Integral. The Riemann–Stieltjes Integral  𝑓 𝑡 𝑑𝑔 𝑡 
𝑏

𝑎
 is 

an important concept in Mathematics with multiple applications in several subfields including Probability Theory & 
Statistics, Complex Analysis, Functional Analysis, Operator Theory and others. In Numerical Analysis, the 
number of proposed quadrature rules to approximate this type of integrals is very small by comparison with the 

huge number of methods available to approximate the classical Riemann integral.  𝑓 𝑡 
𝑏

𝑎
 

In recent years, R the approximation problem of the Riemann–Stieltjes integral  𝑑𝑔
𝑏

𝑎
 has been studied with the 

methods of modern Inequalities Theory and several error approximation bounds for the proposed quadrature 
rules had been established. Some of the most interesting approximations have been done using Ostrowski and 
Generalized Trapezoid type rules. 

Dragomir [17] has introduced the following Ostrowski type quadrature rule: 

                            

 For several error bounds of this approximation rule under various assumptions for the functions involved, the 
reader may refer to [8], [9], [11]–[18], [30], [31], [33]–[35] and the references therein, as well as the recent works 
[3, 6]. From a different point of view, the authors of [19] considered the problem of approximating the Riemann–

Stieltjes integral  𝑓 𝑡 𝑑𝑢 𝑡 
𝑏

𝑎
 with the Generalized Trapezoid rule  𝑢 𝑥 + 𝑢 𝑎  𝑓 𝑎 +   𝑢 𝑏𝑥 + 𝑢 𝑥  𝑓 𝑏 , i.e., 

 

For various bounds of the above Generalized Trapezoid rule the reader may refer to [19]–[23] and the references 
therein. For new quadrature rules regarding Riemann–Stieltjes integral see [1], [2] and [4,5].  

In order to approximate the Riemann-Stieltjes integral  𝑓 𝑥 𝑑𝑢 𝑥 
𝑏

𝑎
by the Riemann Integral  𝑓 𝑡 𝑑𝑡,

𝑏

𝑎
 Dragomir 

and Fedotov [27], have introduced the following functional:  

 

provided that the Riemann-Stieltjes integral  𝑓 𝑥 𝑑𝑢 𝑥 
𝑏

𝑎
and the Riemann integral  𝑓 𝑡 𝑑𝑡

𝑏

𝑎
 exist. 

In the same paper [27], the authors have proved the following result: 

Theorem 1. 𝐿𝑒𝑡 𝑓, 𝑢:  𝑎, 𝑏 → ℝ 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑢 𝑖𝑠 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛  𝑎, 𝑏  𝑎𝑛𝑑𝑓 

 𝐿𝑖𝑝𝑠𝑐𝑕𝑖𝑡𝑧𝑖𝑎𝑛with constant 𝐾 > 0. 𝑇𝑕𝑒𝑛 𝑤𝑒 𝑕𝑎𝑣𝑒 

 

The constant is sharp in the sense that it cannot be replaced by a smaller quantity. 

In [22], Dragomir has obtained the following inequality: 

Theorem 2. 𝐿𝑒𝑡 𝑓, 𝑢:  𝑎, 𝑏 → ℝ 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑢 𝑖𝑠 𝐿 − 𝐿𝑖𝑝𝑠𝑐𝑕𝑖𝑡𝑧𝑖𝑎𝑛 𝑜𝑛  𝑎, 𝑏 , 𝑖. 𝑒., 

                      

  

Recently, Mercer [32] has obtained some new midpoint and trapezoid type inequalities for the Riemann–Stieltjes 
integral which provide a natural generalization of Hermite-Hadamard’s integral inequality, as follows: 
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For a generalization of this result where the positivity of the second derivative 𝑓"is replaced by the convexity of 𝑓, 

see [28]. 

However, it seems that Mercer didn’t notice that the following significant relation between the right-hand side of 
(1.4) and the functional 𝒟(𝑔, 𝑓) exists: 

 

This follows by the integration by parts formula 

 

and some simple calculations. 

1.2. Comparing Two Integral Means. In order to study the difference between two Riemann 

integral means, Barnett et al. [7] have proved the following estimates: 

Theorem 4.𝐿𝑒𝑡 𝑓:  𝑎, 𝑏 → ℝ 𝑏𝑒 𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑡𝑕𝑎𝑡  

 

                                

Then for 𝑎 ≤ 𝑐 < 𝑑 ≤ 𝑏, we have the inequality   

 

The constant 1/4 in the first inequality and 1/2 in the second inequality are the best possible. 

After that, Cerone and Dragomir [10] have obtained the following three results as well: 

Theorem 5. 𝐿𝑒𝑡 𝑓:  𝑎, 𝑏 → ℝ 𝑏𝑒 𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝𝑝𝑖𝑛𝑔. 𝑇𝑕𝑒𝑛 𝑓𝑜𝑟 𝑎 ≤ 𝑐 < 𝑑 ≤ 𝑏, we have       

the inequality 
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where  𝑏 − 𝑎 𝑣 = 𝑐 − 𝑎,  𝑏 − 𝑎 𝜌 = 𝑑 − 𝑐 𝑎𝑛𝑑 𝑏 − 𝑎 𝜆 = 𝑏 − 𝑑. Both inequalities in (1.7) are sharp. 

Theorem 6.  𝐴𝑠𝑠𝑢𝑚𝑒 𝑡𝑕𝑎𝑡 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑓:  𝑎, 𝑏 → ℝ 𝑖𝑠 𝑜𝑓 𝑟 − 𝐻 − 𝐻𝑜𝑙𝑑𝑒𝑟 𝑡𝑦𝑝𝑒 𝑜𝑛  𝑎, 𝑏 . 𝑎 ≤ 𝑐 < 𝑑 ≤ 𝑏, 

𝑤𝑒 𝑕𝑎𝑣𝑒 𝑡𝑕𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 

 

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (1.8) is best possible in the sense that we cannot put in the right-hand side a constant less than 1. 

Theorem 7. 𝐿𝑒𝑡 𝑓:  𝑎, 𝑏 → ℝ 𝑏𝑒 𝑎 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛  𝑎, 𝑏 . 𝑇𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  

𝑏𝑜𝑢𝑛𝑑𝑠 holds 

  

 

 

 

 

 

 

 

 

 

 

 

In this paper by utilising amongst others the inequalities from Theorems 4–7, several new bounds for the Mercer–
Trapezoid Quadrature rule error  

                         

and, equivalently, for the Dragomir-Fedotov functional, 

                                     

are provided. 

The inequalities (1.6)–(1.9) are used in an essential way to obtain new error bounds for the above quadrature 
rule and hence for the functional 𝒟(𝑔, 𝑓), which gives a significant application for these inequalities. Applications 

for compounding quadrature rules and for functions of self adjoint operators on complex Hilbert Spaces are 
provided as well. 

2. The Case of Bounded Variation𝒇′  

We may start with the following result:   
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Theorem 8. 𝐿𝑒𝑡 𝑓, 𝑔:  𝑎, 𝑏 → ℝ 𝑏𝑒 𝑎 𝑠𝑢𝑐𝑕 𝑡h𝑎𝑡 𝑓 ′𝑖𝑠 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛  𝑎, 𝑏  𝑎𝑛𝑑 𝑔 𝑖𝑠   

 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑜𝑛  𝑎, 𝑏 , 𝑡𝑕𝑒𝑛 

 

 

  

                                      

 

and 

 

     

 

 

It is known that for a continuous function 𝑝:  𝑎, 𝑏 → ℝ and a function 𝜈:  𝑎, 𝑏 → ℝ of bounded variation, the 

Riemann–Stieltjes integral  𝑝 𝑡 𝑑𝜈 𝑡 
𝑏

𝑎
 exists and one has the inequality 

 

As 𝑓′ is of bounded variation on [a, b], by (2.3) we have 
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3.The Case of 𝑳𝒊𝒑𝒔𝒄𝒉𝒊𝒕𝒛𝒊𝒂𝒏 𝒇′  

In this section, we give some new bounds when 𝑓′ is 𝐿 − 𝐿𝑖𝑝𝑠𝑐𝑕𝑖𝑡𝑧𝑖𝑎𝑛. 
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which completes the proof. 

4. More Inequalities 

In this section we give other related results: 

Theorem 12. 𝐿𝑒𝑡 𝑓, 𝑔:  𝑎, 𝑏 → ℝ 𝑏𝑒 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡𝑓 ′𝑎𝑛𝑑 𝑔𝑎𝑟𝑒 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑛  𝑎, 𝑏 . 

 𝑡𝑕𝑒𝑛 

 

 

 

which completes the proof. 
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and the proof is completed. 

When both functions are Lipschitzian we have: 

 

 

 



  ISSN 2347-1921 
 

80 | P a g e                               S e p 3 0 ,  2 0 1 3  
 

 

which completes the proof. 

 

Remark 1. Let 𝑔 be as in Theorems 8–16. By applying the same techniques used in the corresponding proofs of 

each theorem, we may obtain several inequalities for monotonic non-decreasing integrator 𝑓 ′ using the fact that 

for a monotonic nondecreasing function 𝜈:  𝑎, 𝑏 → ℝ and continuous function 𝑝:  𝑎, 𝑏 → ℝ one has the inequality 

                                                          

We leave the details to the interested reader. 

Remark 2. We also observe that the inequalities in the previous sections hold for | 𝒟(𝑔, 𝑓 )|, which therefore 

give new bounds for the functional (1.1). The details are omitted. 

 5. Applications To Quadrature Rules 

 

 

In the following, we establish an upper bound for the error approximation of the Riemann-Stieltjes  𝑓 𝑡 𝑑𝑔 𝑡 
𝑏

𝑎
 

integral by its Riemann-Stieltjes sum 𝑆 𝑓, 𝑔, 𝐼𝑛   . As a sample we use only the inequality (4.1). 
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which completes the proof. 

Remark 3. One may use the remaining inequalities in the previous sections to obtain other bounds for 

𝑅 𝑓, 𝑔, 𝐼𝑛   . We omit the details. 

6. Applications for Selfadjoint Operators 

 

 

is a projection which reduces 𝐴. 

The properties of these projections are collected in the following fundamental result concerning the spectral 
representation of bounded selfadjoint operators in Hilbert spaces, see for instance [29, p. 256]: 
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The inequality (6.12) was also proved in the recent monographs [25] and [26] and will be utilized in the following. 

After these preparations we can state and prove the following trapezoidal type inequality for functions of 
selfadjoint operators on Hilbert spaces: 

 

 

 

 

 

and 
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