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ABSTRACT : Pseudoquotients generalize the field of quotients of integral domains. Many integral transforms are
widely extended to Boehmians but a few to pseudoqoutients. In this paper we display an idea of research. We consider
certain space of pseudoquotients. The Fourier transform of a pseudoquotient in the proposed space is introduced as a

pseudoquotient in the same space. Some properties are established.
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1. INTRODUCTION

The set of natural numbers (Q can be thought as the minimal extention of the ring of integers 7Z . Two pairs (p ,q) and

(I‘,S) where p,Ir €Z,and ,S € N , the set of natural numbers, are said to be equivalent, denoted by

(p,q ) ~ (r,s) (I‘,S) ,if Sp =rq . Then Q is given as the set of equivalence classes of pairs [( p.q )] , pez,
g € N which leads to an integral domain.

The concept of integral domains lead Boehme, T.K. [14] to the idea of regular operators which has been motivated to the
concept of Boehmian spaces [6]. The space of Boehmians is constructed using an algebraic approach, which utilizes
convolution and approximate identities or delta sequences. A proper subspace can be identified with the space of
distributions. In [8,9,10,11,12,13,15,16,17,18,19] integral transforms found their application to various spaces of
Boehmian. In the sequence of these integral transforms, Mikusinski, P. [12] first extended the Fourier transform

Kf (&)=]"f (x)p™dx

to a space ﬁf of integrable Boehmians by the limit

K [f—"}limn% Kf,
5

n

where convergence is considered over compact subsets of IR . Later, Fourier transforms have then been given various
forms by Karunakarana, V. and Ganesana, C. in [11] and Nemzer in [13].

A special class of the abstract Boehmians is the class of pseudoquotients. Pseudoquotients are simpler than general
Boehmians and have desirable properties.

The general construction is as follows.
Theorem 1 Let G be a commutative semigroup acting on X injectively. Then the operation
(X, @)~ (Y.v) iff wx =gy (1)
where (X ,gD) : (y ,I//) € X xG generalizes to an equivalence relation. The space of all equivalence classes is denoted
by B (X,G , ~) whose elements are called generalized quotients or pseudoquotients; see [1] and [2]. Elements of

X are identified with elements of B (X,G , ~) via the embedding

i :X 5B (XG,~)

: X

i (x)=— )
(0)-2

The action of G is extended to B (X,G , ~) by the formula

X X
r_9 ©)
v oy

Then it is seen that
X X

ol =" —x (@)
v oy

Let (X, *) be commutative group and G be a commutative semigroup of injective homomorphisms on X , then

B (X,G , ~) is a commutative group with the group operations
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Y _yX*oy

®)
7 4 pry

Theorem 2. If X is avector space and G is a commutative semigroup of injective linear mappings from X into X ,

then B (X,G ,~) is a vector space with the operations

Xy _yx+oy

(6)
o v oy
And
AX A
o @

2. PSEUDOQOUTIENTS OF RAPID DESCENTS

Let S denote the linear space of rapid descents whose elements are smooth functions and decay to zero faster than

every power of t . When t is one dimensional, every function (D(t) in S satisfies the infinite set of inequalities

t"p") ()] <bp t €,
where M and K run through nonegative integers. The above expression can be interpreted to mean
limt"p™") (t)=0.

Members of S are testing functions of rapid descent or rapidly decreasing functions. The dual space S "of S isthe
space of distributions of slow growth . We refer reader for [4] for more properties of S and S i

Let S =R and G =S and ~ is defined by

Xy
=~ ifyx =gy (7)
¢ v

where Y ,X € R and (/RS S , then the pseudoquotient space B (R,S ,~) is ofcourse of rapid descents.

Each X € R isidentified in B (R,S ,~)via the embedding

i :‘R—>B(R,S,~)
. X
()-2

X X
The action of S may be extended to B (R,S ,~) by p— = s @, €S,X €R. Then it gives
724

» @
Theorem 3Let @ €S then KpeS .

Proof of this theorem can be obtained from [5].

Details are thus avoided.

The pesudogoutient space B (R, S ,~) is a commutative group with the group operations
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Yy _yx*oy
o v oy

where * is the usual product on R . Further, B (R,S ,~) is a vector space with the operations

XY _wXrey X X

(24 a4 » @

3. FOURIER TRANSFORMS OF PSEUDOQOUTIENTS

Definition 4 Let X eB (]R,S ,~) then we introduce the Fourier transform of X (x/9) as the extension of K defined

%4
by
Ki:K_X (9)
o @

whereX € R and p €S .

Righthand side of (9), belongs to B (R, S ,~) by Theorem 3 .

Theorem 5 The extended Fourier transform K is well defined mapping from B (R,S ,~) into B (R,S ,~) )

X
Proof Let — = Yy in the sense of B (R,S ,~)then (7) implies
24

WX =y . (10)
Applying the Fourier transform to (10) yields

Kyx =Koy . (12)
The mappings K/, K @ €S , by Theorem 3. Hence, by (7), (11) gives
X ..

Ko Ky’
Thus using (9),(12) then gives

(12)

KX_k¥L
oy

Hence the theorem is established.

Theorem 6 The extended Fourier transform K is one-to-one mapping from B (R,S ,~) into B (R,S ,~).
X y

Proof LetX ,Y € R, @,y €S and K — =K = then, by (9), we get
4 "4

X Y
Ko Ky
Using (7) we get K yx =K oy .

The fact that K is injective implies X = @Y . Therefore
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This proves the theorem.

Theorem 7 The extended transform K is surjective.

Proof of this theorem is straightforword.
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