

ON FOURIER TRANSFORMS AND ITS EXTENSION TO A SPACE OF GENERALIZED FUNCTIONS

S.K.Q.AL-OMARI

Department of Applied Sciences, Faculty of Engineering Technology Al-Balqa Applied University, Amman 11134, Jordan E-mail: s.k.q.alomari@fet.edu.jo

ABSTRACT: Pseudoquotients generalize the field of quotients of integral domains. Many integral transforms are widely extended to Boehmians but a few to pseudoquotients. In this paper we display an idea of research. We consider certain space of pseudoquotients. The Fourier transform of a pseudoquotient in the proposed space is introduced as a pseudoquotient in the same space. Some properties are established.

Keywords: Pseudoquotients; Fourier Transform; Distribution; Boehmian.

SUBJECT CLASSIFICATION: Primary 54C40, 14E20; Secondary 46E25, 20C20

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 1, No 1

editor@cirworld.com www.cirworld.com, member.cirworld.com

10 | Page Aug 25, 2013

1. INTRODUCTION

The set of natural numbers $\mathbb Q$ can be thought as the minimal extention of the ring of integers $\mathbb Z$. Two pairs $\left(p,q\right)$ and $\left(r,s\right)$ where $p,r\in\mathbb Z$, and $q,s\in\mathbb N$, the set of natural numbers, are said to be equivalent, denoted by $\left(p,q\right)\sim\left(r,s\right)\left(r,s\right)$, if sp=rq. Then $\mathbb Q$ is given as the set of equivalence classes of pairs $\left[\left(p,q\right)\right]$, $p\in\mathbb Z$, $q\in\mathbb N$ which leads to an integral domain.

The concept of integral domains lead Boehme, T.K. [14] to the idea of regular operators which has been motivated to the concept of Boehmian spaces [6]. The space of Boehmians is constructed using an algebraic approach, which utilizes convolution and approximate identities or delta sequences. A proper subspace can be identified with the space of distributions. In [8,9,10,11,12,13,15,16,17,18,19] integral transforms found their application to various spaces of Boehmian. In the sequence of these integral transforms, Mikusinski, P. [12] first extended the Fourier transform

$$Kf\left(\xi\right) = \int_{-\infty}^{\infty} f\left(x\right) e^{-ix\xi} dx$$

to a space $eta_{\scriptscriptstyle\ell}$ of integrable Boehmians by the limit

$$K\left[\frac{f_n}{\delta_n}\right] = \lim_{n \to \infty} K f_n$$

where convergence is considered over compact subsets of \mathbb{R} . Later, Fourier transforms have then been given various forms by Karunakarana, V. and Ganesana, C. in [11] and Nemzer in [13].

A special class of the abstract Boehmians is the class of pseudoquotients. Pseudoquotients are simpler than general Boehmians and have desirable properties.

The general construction is as follows.

Theorem 1 Let G be a commutative semigroup acting on X injectively. Then the operation

$$(x,\varphi) \sim (y,\psi) \text{ iff } \psi x = \varphi y \tag{1}$$

where $(x, \varphi), (y, \psi) \in X \times G$ generalizes to an equivalence relation. The space of all equivalence classes is denoted by $B(X, G, \sim)$ whose elements are called generalized quotients or pseudoquotients; see [1] and [2]. Elements of X are identified with elements of $B(X, G, \sim)$ via the embedding

$$i: X \to B(X,G,\sim)$$

$$i\left(x\right) = \frac{\varphi x}{\varphi} \tag{2}$$

The action of G is extended to $B(X,G,\sim)$ by the formula

$$\varphi \frac{x}{\psi} = \frac{\varphi x}{\psi} \tag{3}$$

Then it is seen that

$$\varphi \frac{x}{\psi} = \frac{\varphi x}{\psi} = x \tag{4}$$

Let (X,*) be commutative group and G be a commutative semigroup of injective homomorphisms on X, then $B(X,G,\sim)$ is a commutative group with the group operations

11 | Page Aug 25, 2013

$$\frac{x}{\varphi} * \frac{y}{\psi} = \frac{\psi x * \varphi y}{\varphi * \psi} \tag{5}$$

Theorem 2. If X is a vector space and G is a commutative semigroup of injective linear mappings from X into X, then $B\left(X,G,\sim\right)$ is a vector space with the operations

$$\frac{x}{\varphi} + \frac{y}{\psi} = \frac{\psi x + \varphi y}{\varphi \psi} \tag{6}$$

And

$$\lambda \frac{x}{\varphi} = \frac{\lambda x}{\varphi} .$$

2. PSEUDOQOUTIENTS OF RAPID DESCENTS

Let S denote the linear space of rapid descents whose elements are smooth functions and decay to zero faster than every power of t. When t is one dimensional, every function $\varphi(t)$ in S satisfies the infinite set of inequalities

$$\left|t^{m}\varphi^{(k)}(t)\right| \leq b_{m,k}, t \in \mathbb{R},$$

where m and k run through nonegative integers. The above expression can be interpreted to mean $\lim_{k \to \infty} f^{(k)}(t) = 0$.

Members of S are testing functions of rapid descent or rapidly decreasing functions. The dual space S' of S is the space of distributions of slow growth . We refer reader for [4] for more properties of S and S'.

Let $S = \mathbb{R}$ and G = S and \sim is defined by

$$\frac{x}{\varphi} \sim \frac{y}{\psi} \quad \text{if } \psi x = \varphi y \tag{7}$$

where $y, x \in \mathbb{R}$ and $\varphi, \psi \in S$, then the pseudoquotient space $B(\mathbb{R}, S, \sim)$ is of course of rapid descents.

Each $x \in \mathbb{R}$ is identified in $B\left(\mathbb{R},S,\sim\right)$ via the embedding

$$i: \mathbb{R} \to B(\mathbb{R}, S, \sim)$$

$$i\left(x\right) = \frac{\varphi x}{\varphi} . \tag{8}$$

The action of S may be extended to $B\left(\mathbb{R},S,\sim\right)$ by $\varphi\frac{x}{\psi}=\frac{\varphi x}{\psi}, \varphi,\psi\in S$, $x\in\mathbb{R}$. Then it gives

$$\varphi \frac{x}{\varphi} = \frac{\varphi x}{\varphi} = x$$
.

Theorem 3 Let $\varphi \in S$ then $K \varphi \in S$.

Proof of this theorem can be obtained from [5].

Details are thus avoided.

The pesudoquatient space $B\left(\mathbb{R},S,\sim\right)$ is a commutative group with the group operations

$$\frac{x}{\varphi} * \frac{y}{\psi} = \frac{\psi x * \varphi y}{\varphi \psi} .$$

where st is the usual product on $\mathbb R$. Further, $B\left(\mathbb R,S,\sim
ight)$ is a vector space with the operations

$$\frac{x}{\varphi} + \frac{y}{\psi} = \frac{\psi x * \varphi y}{\varphi \psi}$$
 and $\lambda \frac{x}{\varphi} = \frac{\lambda x}{\varphi}$.

3. FOURIER TRANSFORMS OF PSEUDOQOUTIENTS

Definition 4 Let $\frac{x}{\varphi} \in B\left(\mathbb{R}, S, \sim\right)$ then we introduce the Fourier transform of $\frac{x}{\varphi}$ (x/ ϕ) as the extension of K defined by

$$K\frac{x}{\varphi} = \frac{Kx}{\varphi} \,. \tag{9}$$

where $x \in \mathbb{R}$ and $\phi \in S$.

Righthand side of (9), belongs to $B\left(\mathbb{R},S,\sim
ight)$ by Theorem 3 .

Theorem 5 The extended Fourier transform K is well defined mapping from $B\left(\mathbb{R},S,\sim\right)$ into $B\left(\mathbb{R},S,\sim\right)$.

Proof Let
$$\dfrac{x}{\varphi}=\dfrac{y}{\psi}$$
 in the sense of $B\left(\mathbb{R},S,\sim\right)$ then (7) implies

$$\psi x = \varphi y \quad . \tag{10}$$

Applying the Fourier transform to (10) yields

$$K\psi x = K\varphi y . (11)$$

The mappings $K\psi, K\varphi \in S$, by Theorem 3. Hence, by (7), (11) gives

$$\frac{x}{K\varphi} = \frac{y}{K\psi} \,. \tag{12}$$

Thus using (9),(12) then gives

$$K\frac{x}{\varphi} = K\frac{y}{\psi}$$
.

Hence the theorem is established.

Theorem 6 The extended Fourier transform K is one-to-one mapping from $B\left(\mathbb{R},S,\sim\right)$ into $B\left(\mathbb{R},S,\sim\right)$.

Proof Let
$$x$$
 , $y \in \mathbb{R}$, $\varphi, \psi \in S$ and $K \frac{x}{\varphi} = K \frac{y}{\psi}$ then, by (9), we get

$$\frac{x}{K \omega} = \frac{y}{K w}$$
.

Using (7) we get $K\psi x = K\varphi y$.

The fact that K is injective implies $\psi x = \varphi y$. Therefore

$$\frac{x}{\varphi} = \frac{y}{\psi} \ .$$

This proves the theorem.

Theorem 7 The extended transform K is surjective.

Proof of this theorem is straightforword.

ACKNOWLEDGMENTS

Our thanks to the experts who have contributed towards development of the Paper.

REFERENCES

- [1] Mikusinski, P., Boehmians and Bseudoquotients, Applied Math Inform. Sci. 5(2), (2011), 192-204.
- [2] Mikusinski, P., Generalized Quotients with Applications in Analysis, Methods and Appli. 10(3)(2003),377-386.
- [3] Atanastu, D., Mikusinski, P.and Nemzar, D., An Algebraic Approach to Tempered Distributions, J.math. Appl. 384(2011), 307-319.
- [4] Banerji, P.K., Alomari, S.K. and Debnath, L.Tempered Distributional Fourier Sine (Cosine) Transform, Integ. Trans. Spl. Funct.17(11) (2006),759-768.
- [5] R. S. Pathak, Integral transforms of Generalized Functions and their Applications, Gordon and Breach Science Publishers, Australia, Canada, India, Japan (1997).
- [6] P. Mikusinski, Convergence of Boehmians, Japan J. Math 9 (1983), 159--179.
- [7] P. Mikusi nski, Boehmians and generalized functions, Acta Math. Hungar. 51 (1988),271--281.
- [8] R. Roopkumar, Generalized Radon Transform, Rocky Mountain J. Math. 36 (2006),1375--1390.
- [9] R. Roopkumar, Stieltjes transform for Boehmians, Integ. Trans. Spec. Funct. 18(2007), 819--827.
- [10] R. Roopkumar, An Extension of Distributional Wavelet Transform, Coll. Math. 115(2009), 195--206.
- [11] V. Karunakarana and C. Ganesana, Fourier transform on integrable Boehmians. Integ.Transf. specl.funct. 20(12), (2009), 937-941.
- [12] P. Mikusinski, Fourier transforms for integrable Boehmians, Rocky Mountain J. Math. Volume 17, Number 3 (1987), 577-582
- [13] Dennis Nemzer, Integrable Boehmians, Fourier Transforms, And Poison's Summation Formula, Applicable Analysis and Discrete Mathematics, 1 (2007), 172--183
- [14] Boehme, T.K., The Support of Mikusinski Operators, Tran.Amer. Math.Soc.176 (1973), 319-334.
- [15] S.K.Q.Al-Omari, Loonker D., Banerji P.K. and Kalla, S.L. Fourier Sine (Cosine) Transform for Ultradistributions and their Extensions to Tempered and UltraBoehmian spaces, Integ. Trans. Spl. Funct. 19(6)(2008), 453--462.
- [16] S.K.Q. Al-Omari. Hartley Transforms on Certain Space of Generalized Functions, Georgian Mathematical Journal, 20 (2013) (To Appear).
- [17] S.K.Q. Al-Omari and A.Kilicman, Note on Boehmians for Class of Optical Fresnel Wavelet Transforms, Journal of Function Spaces and Applications, Vol. 2012, Article ID 405368, doi:10.1155/2012/405368.
- [18] S.K.Q.Al-Omari and A.Kilicman, On Generalized Hartley-Hilbert and Fourier-Hilbert Transforms, Advances in Difference Equations, Vol. 2012, 2012:232 doi:10.1186/1687-1847-2012-232, 1-12.
- [19] S. K. Q. Al-Omari and A. Kilicman , On Diffraction Fresnel Transforms for Boehmians, Abstract and Applied Analysis, Vol. 2011, Article ID 712746. 1-13.

14 | Page Aug 25, 2013