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ABSTRACT 

We propose an adapted Mellin transform method that gives the solution of a fractional differential equation with variable 
coefficients in ordinary domain. After we mention a transformation of cosmic time to individual time (CTIT), we explain how 
it can reduce the problem from fractional form to ordinary form when it is used with Mellin transformation, via an example 
for 0<α<1; where α is the order of fractional derivative. Then, we give an application of the results. 
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1. INTRODUCTION  

Mellin Transform has many application areas including digital data structures, probabilistic algorithms, asymptotics of 
Gamma‐related functions, coefficients of Dirichlet series, asymptotic estimation of integral forms, asymptotic of algorithms 
and communication theory [1]. On the other side, in recent decades, non integer (fractional) differentiation has become a 
more and more popular tool for modeling physical systems from diverse areas such as heat flow [2], electrical circuits [3]-
[5], control [6]-[8] and medicine [9]. Thus the hug of Mellin analysis and fractional analysis was inevitable and in the 
literature, one can find so many fractional calculus applications that use Mellin transform as a solution method [10]-[13]. 
While some of them introduce an α‐th order Mellin transform operator (M) in different forms, some use conventional Mellin 

transform operator (M) directly or but as far as we know, in the current literature, there is not any approach that gives 
Mellin transform of the α‐th derivative of a function in terms of Mellin transform of another function’s integer order 

derivative. Such an approach means reducing the process of working with Mellin transform from fractional domain to 
integer domain of which theory is constructed with various advanced techniques when compared with the fractional theory. 
The main objective of this paper is to test if such an alternative treatment is possible rather than implementing Mellin 
transform method directly while finding the solution of a fractional dierential equation with variable coefficients. 

In this context, the article is organized as follows: In Section 2, some preliminaries about fractional calculus and Mellin 
transform are presented. In Section  3, for the convenience of the reader, we mention about the motivation under the 
proposed Mellin transform method. Some main results are drawn in Section 4. Section 5 is devoted to an example to show 
the applicability of the adapted Mellin transform method. Finally, some conclusions are given in Section 6. 

 

2. PRELIMINARIES 

Definition 1. The Caputo type fractional derivative of order  of a func‐ tion  is defined by 

(2.1)    

where  is the integer part of . 

Definition 2. Let  be locally Lebesgue integrable over  . The Mellin transform of  is defned by 

(2.2)    

The largest open strip   in which the integral converges is called the fundamental strip. The inverse Mellin transform 

is defined as the following: 
 

Definition 3. Let  be integrable with fundamental strip  . If  is such that  and 

 is integrable, then the equality 

(2.3)    

 

holds almost everywhere. Moreover if  is continuous, then equality holds everywhere on  . 
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Definition 4. The Mellin convolution operator of two functions  and  , given on , is defined for  

by the integral 

(2.4)    

that yields the form 

(2.5)    . 

 

3. FROM TWO KINDS OF TIME TO A TRANSFORMATION METHOD 

It is generally known that as conventional calculus includes just integer order differential and integral operators, it 

significantly simplify its use for solving applied problems in various fields of science. However, in case of fractional 

calculus, it is not so, even if it represents a rapidly growing field both in theory and in applications to real world problems. 

Because of this, if a link between the ordinary domain and the fractional domain was provided, it would be ideal to facilitate 

the fractional order applications. Such a relation might be constructed on using two kinds of time: the individual time, , 

(which is considered as flowing equably) and the cosmic time, , (which flows non‐equably). Transformation from Cosmic 

Time to Individual Time (CTIT) can be described by the equation  

 

(3.1)       

   
or equivalently 

(3.2)    . 

This relationship between two time scales is used for giving a meaningful geometric and physical interpretation of 

fractional integration and fractional differentiation by the paper of Igor Podlubny and interested readers can find a detailed 

information on these two kinds of time in [14]. By using above equality, a transformation method that gives the exact 

solution of a fractional differential equation in terms of the solution of the corresponding integer order differential equation 

is presented in [15].  extension of this method is also presented in [16]. Also, we have recently found a fractional Laplace 

transform method in the framework of this transformation [20]. Following the same methodology we generate a new 

adapted Mellin transform method which can be used to solve fractional dierential equations with variable coefficients in the 

form: 

(3.3)    

where  represents the Caputo type fractional dierentiation,   

4. MAIN RESULTS 

Theorem 1. 

Let  be Mellin transormable function defnned on . If differentiation under the integral sign is allowed, then we have 

(1)  

(2)  where   

Mellin transform of a functions ‐th Caputo derivative is given by the following theorem in [18]. 

Theorem 2. Let  be Mellin transformable defined on , and  is a fractional derivative function for all 

 , then: 

(4.1)    
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Theorem 3. 

(4.2)    where 

   and . 

 

Proof. Let us use the induction method for the proof: First we should check the validity of the theorem for . When 

one substitutes the equality (3.2) into the denition of  , the equality (4.2) is easily obtained: 

 

 

 

 

 
Now assume that the equality (4.2) is provided for  where ,… Then is the equality (4.2) verificated for 

 where ,… or is the equality 

 

(4.3)    
 

 

true for ? 

As  where ,… and  (see (2.143) in [19]),  

can be written as  where  2,3,4… and . Let say  . Then 
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and the proof is completed. 
 

5. EXAMPLE 

 

Example 1. To show the applicability of the proposed method we choose the simplest form of the equation (3.3) as 

(5.1)    

 

where  . Applying Mellin transform (4.2) to (5.1) and taking the properties (1) and (2) in Theorem 1 

into account, we find the solution of the given fractional dierential equation as 
 

(5.2)    

 

where  

 

6. CONCLUSION 
 

In this paper, we propose an alternative way including conventional Mellin transform to solve the fractional differential 
equations with variable coefficients. Our proposed methodology produces the solution just by applying a transformation, 
namely the CTIT transformation, to the definition of a functions α‐th order derivative and reduces the problem into ordinary 

domain. Also, an illustrative example is given to provide the usage of the method. 
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