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ABSTRACT 

 In this paper, we present some new oscillation criteria for second order neutral type difference equation of the 

form  

  0,>,=)()( 0nnexfqza nnnnn  
 

 where lnnnn xxz  =  and   is ratio of odd positive integers. Examples are provided to illustrate the results.  
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INTRODUCTION 

 In this paper, we study the oscillatory behavior of second order neutral type difference equation of the form  

      0,>,=)()( 1nnexfqza nnnnn  
                  (1) 

 where lnnnn xxz  =  and > 0  is a ratio of odd positive integers, l  is a positive integer. 

Subject to the following hypothesis:   

(H1)  }{ n , }{ nq  and { }ne  are sequences of real numbers with 1<0   n , 0,nq   0ne   and }{ na  is a 

positive real sequence with  1/

0
=

1

s

n

ns a
 as n .  

(H2)  RRf :  such that 0>)(uuf  for all 0u  and there exists a positive constant M  such that M
u

uf




)(
for 

all 0u , where   is a positive constant.   

 By a solution of equation (1), we mean a real sequence }{ nx  defined for all 0nn   and satisfying equation (1). 

A solution }{ nx  of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise 

it is said to be non-oscillatory. 

 Recently there has been an increasing interest in the study of the oscillation and non-oscillation of the second 

order neutral difference equations, see for example [6, 7, 10-14] and the references cited there in. In [14], we see that the 

oscillation criteria for second order non-positive neutral term of the form  

   0,>0,=)()( 0nnxfqza nnnn  


         (2) 

 where lnnnn xxz  =
 
 with  1/

0
=

1

s

n

ns a
 as n  and M

u

uf




)(
. 

In [6] the authors studied oscillation criteria for second order neutral difference equation of the form  
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   .=)( 1 nnnknnn exqxxr 
               (3) 

 In section 2, we present some oscillation criteria for equation (1) and in section 3, we provide some examples to 

illustrate the main results.  

Definition 1.1 A solution }{ nx  of equation (1) is said to be almost oscillatory if either }{ nx  is oscillatory or nx  is 

oscillatory or 0nx  as n .  

  

 We provide two lemmas which are useful in proving the main results.  

Lemma 1.1  Set 




x

b
axxF =)(  for 0>x . If 0>0,> ba  and 1>  , then )(xF  attains its minimum  

 .
)(

=
/1/

/1/

min 












ba
F              (4) 

 Lemma 1.2  For all 0 yx  and 1 , we have the following inequality  

 .)(  yxyx                           (5) 

 

2. ALMOST OSCILLATION RESULTS 

 In this section, we establish new almost oscillation criteria for equation (1).  

Theorem 2.1  Assume that there exists a sequence }{ nP  such that  

 ,=
1)(

)()(
limsup

1

1/

1

1
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
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


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
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 s

sss
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nsn P

aPP
QP                         (6) 

 and  

  
11 1

= =
0 0

= ,
n s

u u

s n u n

Mb q e 

 
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                  (7) 

 where  

 

// 1 /

/ 1 /

(1 )
= ,

( )

n n
n

M q e
Q

     

   

 

  








 

      ,)(1,min =*

nnnnn edMqdQQ                           (8) 

 0>M  and 0>d . Then every solution of equation (1) is almost oscillatory.  

Proof. Suppose that sequence }{ nx  is not almost oscillatory solution of equation (1). There exists a positive solution 

}{ nx  of a equation (1) such that 0>lnx   and 0>nx  for all 01 nnn  . Then by definition of almost oscillatory there 

are two possible cases arise. 

Case I: Assume that 0>nx  for all 1nn  . Thus 0>nz  for all 1n n . From the definition of nz , we have 

lnnnn xxz  =  and nnn zx )(1  . Then from equation (1) and )( 2H , we have  

  ( ( ) ) (1 ) .n n n n n na z Mq z e         
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  ( ( ) ) (1 ) .n n n n n na z Mq z e               (9) 

 From the above inequality, we conclude that  

 .)()( 11


  nnnn zaza                       (10) 

 Let us denote the sequence }{ nw  by the following  

   1.
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 By mean value theorem, there exists ),( 1 nn zz  such that  

 ,=)( 1

nn zz     

 we have  
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 In the view of (9), (10) and (11), we obtain  
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 
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 Set  
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e
uMquF n

nn  )(1=)(                                    (13) 

 since u  is increased, there is a constant 0>d  such that 0>du   and  

 .)(1)( nnn edMqduF      

 By using the inequality  
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 we have  
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 From inequalities (12), (13) and (14), we have  
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 Summing the inequality (16) from 1n  to 1n , we obtain  
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 which is contradiction to (6). 

Next, we assume that 0<nx  for all 1nn  . We use the transformation nn xy = , then we have }{ ny  is an 

eventually positive solution of equation  

   ,=)()( nnnnn eyfqza  
                (17) 

 where 0>= lnnnn yyz   . Define  

 .,
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= 1nn
z
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w

n
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n 
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         (18) 

 Thus 0>nw  and satisfies  
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 Using Lemma 1.1, we see that  
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 and also (14) holds. Then the rest of the proof is similar to that of the above and hence is omitted. 

Case II: Assume that 0<nx  for all 1nn  , then 0<nz  for all 1nn  . From 0>nx  and 0<nx , we 

obtain  

 0.>=lim bxn
n 

           (21) 

 Hence there exists 12 nn   such that 
 bxn   for .2nn   Therefore we have  

   nnnn ebMqza  )( .            (22) 

 Summing the last inequality from 2n  to 1n , we obtain  
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 Again summing the above inequality from 2n  to 1n , we obtain  
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 Letting n , from condition (7) implies that nz  is negative for all 2nn  , a contradiction. 

 Finally, we assume that }{ nx  is an eventually negative sequence. It means that there exists Nn 3  such that 

0<nx  for all 3nn  . We use the transformation nn xy =  in equation (1). Then ny  is an eventually positive solution 

of the equation  

   nnnnn eyfqza  =)()( 

         
                (25) 

where =n n n n lz y y  . The rest of the proof is similar to the above and hence omitted. The proof is now complete.  

  

Corollary 2.1.  Assume that all the conditions of Theorem 2.1 hold except the condition (6) is replaced by  
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 Then every solution of equation (1) is almost oscillatory.  

  

Theorem 2.2.  Assume that condition (7) holds. Furthermore, assume that there exist a positive sequence }{ np  and a 

double sequence 0}:{ ,  nmH nm  such that 0=,nmH  for 0m , 0>,nmH  for 0>> nm  and  

2 , , 1 ,= 0m n m n m nH H H    for 0 nm . If  
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 Then every solution of equation (1) is almost oscillatory.  

Proof. Proceeding as in Theorem 2.1, we have two cases to consider. 
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Case I: Assume that 0>nx  for all 1nn  . Define nw  by (11), then 0>nw  and satisfies  
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 Multiply both side by 
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 and summing from 1n  to 1n , we have  
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Using summation by parts, we obtain  
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From inequalities (31) and (14), we obtain  
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 which contradicts the assumption (28). 

 Next we consider the case when 0<nx  for all 1nn  . We use the transformation nn xy =  then ny  is a 

positive solution of equation  

 
nnnnn exfqza  =)())(( 

                     
(33) 

 when lnnnn yyz  = . Define nw  by (18) and (20) hold. The remaing of the proof is similar to that of first case of 

Theorem 2.1 and hence omitted. The proof of the case II is similar to that of second case of Theorem 2.1. The proof is 

now complete.  

Corollary 2.2.  Assume that all the conditions of Theorem 2.2 hold except the condition (28) is replace by  

 ,=
1

limsup
*

,

1

0
=,





sssm

n

nsnmn

QPH
H

 

 and  
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1

1

1 2 , ,1
1

=, ,0

1
< .limsup

s
s m s m s sn

s

n s nm n m s s

P
P H H a

P

H H P





 










 
  
    

 Then every solution of equation (1) is almost oscillatory.  

 

Examples 
 In this section, we provide three examples.  

Example 3.1. Let us consider the second order neutral difference equation of the form  

 2.,1)13(
1)(

3
=

2

11)(
2 3

1 





















  n

nn
xxx

n

n

nnn

n

           (34)  

Here 
n

a
n

n

1)(
2=


 , 

2

1
=n , 1= , 1=l , 1=nq , 3( )f u u and n

n
nn

e 1)13(
1)(

3
= 


. All the 

conditions of Theorem 2.1 are satisfied. Hence every solution of the equation (34) is almost oscillatory. In 

fact one such solution is 
11)(  n

. Here }{ nx  is oscillatory.  

Example 3.2. Let us consider the second order neutral difference equation of the form  

 3

1

1
2 ( 1) ( ) =14 25( 1) , 2.

2

n n

n n nx x x n

  
          

  
                  (35) 

 Here n

na 1)(2=  , 
2

1
=n , 1= , 1=l , 1=nq , 

3=)( uuf  and 14 25( 1)n

ne    . All the conditions 

of Theorem 2.1 are satisfied. Hence every solution of the equation (35) is almost oscillatory. In fact one such 

solution is 12 ( 1)n

nx    . Here }{ nx  is nonoscillatory but nx  is oscillatory.  

Example 3.3. Let us consider the second order neutral difference equation of the form  

   2.,
2)1)((1)(

32)1)(1)((
=2

3

1 32

1 














  n

nnnn

nnn
xnxx

n
nnn

           (36)  

Here 
1

=
3

na
n

, 2=n , 1= , 1=l , 2= nqn , 
3=)( uuf  and 

2)1)((1)(

32)1)(1)((
=





nnnn

nnn
en . All the 

conditions of Theorem 2.1 are satisfied. Hence every solution of the equation (36) is almost oscillatory. In 

fact one such solution is 
n

xn

1
= . Here }{ nx  tends to zero as n .  
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