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ABSTRACT 

In this paper, the equations of motion for the spatial circular restricted three- body problem in sidereal parabolodial 
coordinates system were established. Initial value procedure that can be used to compute both the parabolodial and 
Cartesian sidereal coordinates and velocities was also developed. The application of the procedure was illustrated by 
numerical example of a hypothetical Trojan asteroid in the Sun Jupiter system and by  graphical representations of the 
variations of the two sidereal coordinate systems. 

Keywords 

Spatial restricted circular three body problem; regularization; coordinate transformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: Journal of Advances in Mathematics 

Vol 3, No 1 

editor@cirworld.com 
www.cirworld.com, member.cirworld.com 
 

http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/


 ISSN 2347-1921 

131 | P a g e                               O c t 1 4 ,  2 0 1 3  

 

1.INTRODUCTION  

Depending on the application,  a certain coordinate system may be simpler to use than the Cartesian coordinate system. 
As an example, a physical problem with spherical symmetry defined in R

3
 (e.g., motion in the field of a point mass), is 

usually easier to solve in spherical polar coordinates than in Cartesian coordinates.  Also, for instance, in the galactic 
rotation, cylindrical coordinates are usually adopted, while the spherical coordinates are suitable for the dynamics of 
globular clusters. In fact , the change of the dependent and/or independent variables for the differential equations of 
motion becomes  of the focal point of researches in space dynamics. Some authors proposed  successful methods  to 
change  of the dependent and/or independent variables so as to regularize the differential equations of motion. Of  these , 
the  method established by Stiefel and Scheifele,  in 1971, also Sharaf and Alshaery were established new differential 
equations of motion for the spatial circular restricted three body problem in cylindrical coordinates (Sharaf and Alshaery 
2012) and spherical sidereal coordinates(Sharaf and Alshaery 2012) .Many studies on the applications of these devices 
for some orbital systems were done for the perturbed two body problem [e.g Sharaf ,et-al,1987 ; Sharaf ,et-al,1992; Sharaf 
and Sharaf 1995; Sharaf ,and Sharaf 1998]. 

The  great success of the these devices in regularizing  the equations of motion  for the perturbed two body problem  ,and 
on the other hand , the importance of the three body problem  in space  dynamics (e.g Szebehely 1967) and in stellar 
dynamics (e.g Binney  and  Tremaine 1987),tempted us to develop the corresponding deceives for the three body –
problem. 

The objective of the  present paper, is to establish analytically and computationally the equations of motion for spatial  
restricted  circular three body problem in Parabolodial coordinates system. By this  paper, we aims at obtaining differential  
equations  which are: (1) regular. (2) Suitable for the geometry to which they referred. (3) Producing slow variations in the 
coordinates during the orbital motion, a property which produces more stable numerical integration procedures. Also, . 
Initial value procedure that can be used to compute both the parabolodial and Cartesian sidereal coordinates and 
velocities was  developd. The application of the algorithm was illustrated by numerical example of a hypothetical Trojan 
asteroid in the Sun Jupiter system and by  graphical representations of the variations of the two sidereal coordinate 
systems. 

2.CIRCULAR RESTRICTED THREE-BODY PROBLEM IN SIDEREAL SYSTEM   

If   two of the  bodies, say 21 m andm in the three-body problem  move in circular, coplanar orbits about their common 

center of mass and the mass say 3m  of the third body is too small to affect the motion of the other bodies, the problem of 

the motion of the  third body is called the circular ,restricted ,three body problem. The two revolving bodies are called the 
primaries; their masses are arbitrary but have   such internal mass distributions that they may be considered point 
masses.                     

The equations of motion of the third body in a dimensionless sidereal (inertial) coordinate )z,y,x(  system with the mean 

motion 1n  , are  (Szebehely 1967)              
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   denotes the mass of the smaller primary when the total mass of the primaries has been normalized to unity. 
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and 2,1i;ri   are the distances of the third body from the primaries which are  located at 2,1i);0,y,x( ii  ,these 

coordinates are functions of the time t and  are given as  
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3. THE EQUATIONS OF MOTION IN SIDEREAL PARABOLODIAL COORDINATE 
SYSTEM 

Corresponding to the Cartesian sidereal coordinate system )z,y,x( , the coordinate system related to the system 

)z,y,x(  by certain transformation ,is also called   sidereal coordinate system. In this respect the system )u,u,u( 321 of 

Equations (7) is called sidereal parabolodial coordinate system.                                                                

In what follows we shall establish, the differential equations for the spatial circular restricted three body-problem in sidereal  
parabolodial coordinate system. 

3.1 Coordinate, Velocity Transformations and The  Scale Factors   
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3.2 Inverse Transformations 

Since  
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then we get from Equations (7) that: 
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   Since 1u  and 2u  are both non-negative, then we get from  Equations(7) and (10) that 
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Differentiating the last of Equations (7) and Equations (9) and (10) with respective to the time t we get: 
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where r (hence 21 u and u ) is given in terms of    )z,y,x(  from Equation (9), 

3.3 The Equations Of Motion 

The kinetic energy of  a particle of unit mass in the  parabolodial coordinate system is 
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 By using the transformation equations ( Equations(7)), the gravitational potential V could be expressed in term of 

)u,u,u( 321 .     

Using Lagrange's dynamical equations, we have  
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Consequently, we deduce for the equations of motion in sidereal  parabolodial coordinate system, the forms 
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4.COMPUTATIONAL DEVELOPMENTS 

4.1  Initial Value Procedure 

In what follows, we shall establish a procedure that can be used to compute   )say(ttt f0   both: 

1-the parabolodial sidereal coordinates and velocities )u,u,u,u,u,u( 321321
 ,and 

2- the Cartesian sidereal coordinates and velocities )z,y,x,z,y,x(  . 
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So, such procedure is a double usefulness computational algorithm, for which a differential solver can be used for the 

parabolodial  sidereal six order system to obtain )u,u,u,u,u,u( 321321
 . While the Cartesian sidereal coordinates and 

velocities )z,y,x,z,y,x(   are obtained by the substitutions in the direct transformation formulae (Equations (7) and (8)), 

rather than solving the six order system of Equations (1),(2) and (3).By this way, great time can be saved.  

This initial value procedure using sidereal parabolodial coordinate system will be described through its basic points, input, 
output and computational steps.
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 Output: 3,2,1j;u;u  )1( jj      f0 ttt   

              z,y,x;z,y,x  )2(     f0 ttt 
 

Computational steps 

          1-Using the  given values 000000 z,y,x,z,y,x   at 0tt   and the inverse transformations to compute  the initial         

values .6,5,4,3,2,1j; u  
j0   

2-Using  the partial   derivatives 
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equations of motion as first order system . 

3- Using the initial conditions 6,5,4,3,2,1j; u  
j0   from step 1 to solve numerically the above differential system of 

step 2 for ju ; 6,2,1j       f0 ttt   , (note that 362514 uu,uu,uu    ).  

4- Using 3,2,1j;u;u  jj   from step 3 and the direct transformations of  Equations (7) and (8) to compute 

numerically z,y,x  and  z,y,x      f0 ttt  . 

5-End 

4.2  Numerical Example 

Consider  hypothetical Trojan asteroid (Hellings 1994) in the Sun Jupiter system. Since we considered circular motion ,it is  
therefore necessary to  ignore the eccentricity of the orbit of Jupiter( 0.048417). In addition to circular motion we shall 
assume( as in the above reference) that motion is also  planner, that is to say, the asteroid moves exactly in the Jupiter's 
orbital plane. The initial conditions are 

  0.0z0                20.88334591 y0           50.50904612- x0   

  0.0w 0               180.01492724 v0          120.02589752 u0   

  0.8t f                              0.0t 0               50.00095387     

applying the above procedure we get the results as displayed in Tables I and II   
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Table I: The values  of sidereal parabolodial coordinates and velocities 

t u1 t u2 t u3 t u4 t u5 t u6 t
0. 1.00971 1.00971 2.09358 1.40136 106 1.40136 106 0.0293191

0.4 0.930374 1.01113 2.0812 0.417503 0.0192519 0.0345867

0.8 0.639829 1.06086 2.06272 1.08771 0.34353 0.0672527

1.2 0.150741 1.3923 1.97971 1.07097 1.21282 0.709588

1.6 0.171981 1.87728 0.978504 0.596866 1.14226 0.299887

2. 0.368162 2.29833 1.02417 0.4098 0.970926 0.0436589

2.4 0.512263 2.66076 1.03501 0.31993 0.848419 0.0168258

2.8 0.628994 2.98165 1.0399 0.267798 0.760558 0.00888699

3.2 0.728848 3.27209 1.04269 0.233598 0.694525 0.0054958

3.6 0.817172 3.53917 1.0445 0.209264 0.642827 0.00373702

4. 0.897054 3.78767 1.04578 0.190944 0.601028 0.00270755

4.4 0.970449 4.02094 1.04672 0.176569 0.566366 0.00205286

4.8 1.03867 4.24147 1.04745 0.164931 0.537037 0.00161055

5.2 1.10266 4.45112 1.04802 0.155277 0.511812 0.00129761

5.6 1.16309 4.65135 1.0485 0.147109 0.489819 0.00106802

6. 1.2205 4.84332 1.04889 0.140088 0.470427 0.000894548

6.4 1.27528 5.02797 1.04922 0.133971 0.453162 0.000760265

6.8 1.32777 5.20608 1.0495 0.128583 0.437663 0.000654176

7.2 1.37823 5.3783 1.04974 0.12379 0.42365 0.000568894

7.6 1.42687 5.54517 1.04996 0.119493 0.410899 0.000499304

8. 1.47388 5.70716 1.05014 0.115611 0.399232 0.000441775 

                             Table II: The values of sidereal Cartesian coordinates and velocities 

t x y z x


y


z


0. 0.509046 0.883346 0. 0.02589752 0.01492724 0. 1021

0.4 0.459572 0.820836 0.0783984 0.225871657 0.33682436 0.40790011

0.8 0.320598 0.598283 0.35802 0.48143596 0.801783085 1.06038392

1.2 0.0834494 0.192573 0.957888 0.65683986 1.141211731 1.85005272

1.6 0.180239 0.267863 1.7473 0.65486728 1.146661321 2.041689889

2. 0.439836 0.72286 2.57339 0.64382950 1.129187522 2.08063439

2.4 0.695844 1.17201 3.40861 0.63674253 1.11738416 2.093551114

2.8 0.949555 1.61729 4.24731 0.63211715 1.10954735 2.099276478

3.2 1.20172 2.05995 5.08768 0.62890938 1.10406545 2.102292260

3.6 1.4528 2.50074 5.92899 0.62656696 1.10004158 2.10407048

4. 1.70305 2.94011 6.77086 0.62478577 1.09697115 2.10520543

4.4 1.95268 3.3784 7.6131 0.62338755 1.09455477 2.105973545

4.8 2.2018 3.81582 8.45561 0.62226158 1.09260512 2.10651730

5.2 2.45051 4.25253 9.2983 0.62133589 1.09099982 2.106916354

5.6 2.69889 4.68865 10.1411 0.620561571 1.08965535 2.107217725

6. 2.94698 5.12428 10.9841 0.61990443 1.088513192 2.10745086

6.4 3.19482 5.55949 11.8271 0.61933988 1.08753114 2.10763504

6.8 3.44246 5.99432 12.6702 0.61884964 1.08667778 2.10778302

7.2 3.68991 6.42884 13.5133 0.61841997 1.08592938 2.10790364

7.6 3.9372 6.86308 14.3565 0.61804030 1.085267732 2.10800322

8. 4.18435 7.29707 15.1997 0.61770248 1.08467875 2.10808657  

  

4.3 Graphical Representations  

The following figures  illustrate the  time variations of  the two sidereal coordinate systems )z,y,x( ( left) 

and )u,u,u( 321 (right).                                          
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Graphical representions for the time variations of position vector ;j1,2,3
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Graphical representions for the time variations of velocity vectors ;j4,5,6
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CONCLUSION   5 

In this paper, the equations of motion for the spatial circular restricted three- body problem in sidereal parabolodial 
coordinates system were established. Initial value procedure that can be used to compute both the spherical and 
Cartesian sidereal coordinates and velocities was also developed. The application of the procedure was illustrated by 
numerical example of a hypothetical Trojan asteroid in the Sun Jupiter system and by  graphical representations of the 
variations of the two sidereal coordinate systems. 
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