Oscillatory Behavior of Second Order Neutral Difference Equations with Mixed Neutral Term

M. Angayarkanni ${ }^{1}$ and S. Kavitha
${ }^{1}$ Department of Mathematics, Kandaswami Kandar's College, Velur - 638 182, Namakkal (Dt), Tamil Nadu, India. maniangaiangai@gmail.com

Abstract

In this paper, we study the oscillatory behavior of solution of second order neutral difference equation with mixed neutral term of the form $$
\Delta\left(a_{n}\left(\Delta z_{n}\right)\right)+q_{n} x_{\sigma(n)}=0, \quad n \in N_{0}
$$ where $z_{n}=x_{n}+b_{n} x_{n-1}+c_{n} x_{n+k}$ and $\sum_{s=n_{\infty}}^{\infty} \frac{1}{\alpha_{s}}=\infty$. We obtain some new oscillation criteria for second order neutral difference equation. Examples are presented to illustrate the main results.

2010 Mathematics Subject Classification: 39A10.
Key Words: Oscillation; second order; neutral difference equation; mixed neutral term.

INTRODUCTION

This paper is concerned with the oscillatory behavior of solution of second order neutral difference equation with mixed neutral term of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)\right)+q_{n} x_{\sigma(n)}=0, \quad n \in N_{0} \tag{1}
\end{equation*}
$$

where $z_{n}=x_{n}+b_{n} x_{n-l}+c_{n} x_{n+k}$.
Subject to the following conditions:
$\left(\mathrm{H}_{1}\right)\left\{b_{n}\right\},\left\{c_{n}\right\}$ and $\left\{q_{n}\right\}$ are non-negative real sequences with $0 \leq b_{n}<b<\infty, 0 \leq c_{n} \leq c<\infty$ and $q_{n}>0$;
(H_{2}) $\left\{a_{n}\right\}$ is real sequence with $\sum_{s=n_{0}}^{\infty} \frac{1}{a_{s}}=\infty$;
$\left(\mathrm{H}_{3}\right) l, k$ are nonnegative constant, $\sigma(n)$ is a sequence of positive integers with $\Delta \sigma(n)>0$ and Δ is the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$.

Let $\theta=\max \{l, k\}$. By a solution of equation (1), we mean a real sequence $\left\{x_{n}\right\}$ which is defined for $n \geq n_{0}-\theta$ satisfies equation (1) for all n. A non trivial solution $\left\{x_{n}\right\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise. The oscillatory behavior of nonlinear neutral delay difference equation of second order have been investigated by several authors, see for example [6, 9, 11, 12] and the references quoted therein. Following this trend, in this paper, we obtain some new oscillation criteria for equation (1) which extend some known results. Some examples are provided to illustrate the main results.

2 Main Results

We begin with the following theorem.
Theorem 2.1 If

$$
\begin{equation*}
\sum_{s=n_{0}}^{\infty} Q_{s}=\infty \tag{2}
\end{equation*}
$$

where $Q_{n}=\min \left\{q_{n}, q_{n-l_{l} q_{n+k}}\right\}$, then every solution of equation (1) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1) for all $n \geq n_{0}$. Then there exists $n_{1} \geq n_{0}$ such that $\left\{x_{n}\right\} \neq 0$ for all $n \geq n_{1}$. With out loss of generality, we may assume that $x_{n}>0, x_{n-l}>0, x_{n+k}>0$ and $x_{\sigma(n)}>0$ for all $n \geq n_{1}$.

From equation (1), we have

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)\right)=-q_{n} x_{\sigma(n)}<0 \quad \text { for all } \quad n \geq n_{1} \tag{3}
\end{equation*}
$$

Therefore $a_{n}\left(\Delta z_{n}\right)$ is nonincreasing and hence $\left(\Delta z_{n}\right)$ is nonincreasing. We shall show that $\Delta z_{n}>0$ for all $n \geq n_{1}$.
If not, there exists $n_{2} \geq n_{1}$ such that $\Delta z_{n_{2}}<0$. Then

$$
\begin{equation*}
a_{n}\left(\Delta z_{n}\right) \leq a_{n_{2}}\left(\Delta z_{n_{2}}\right), \quad n \geq n_{2} \tag{4}
\end{equation*}
$$

Summing the above inequality from n_{2} to $n-1$, we obtain

$$
\begin{align*}
& z_{n}-z_{n_{2}} \leq a_{n_{2}}\left(\Delta z_{n_{2}}\right) \sum_{s=n_{2}}^{n-1} \frac{1}{a_{s}} \\
& z_{n} \leq z_{n_{2}}+a_{n_{2}}\left(\Delta z_{n_{2}}\right) \sum_{s=n_{2}}^{n-1} \frac{1}{a_{s}} \tag{5}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (5), we obtain $z_{n} \rightarrow-\infty$, which is a contradiction. We conclude that $\Delta z_{n}>0$. From equation (1) and definition of z_{n}, we have

$$
\begin{align*}
& \Delta\left(a_{n}\left(\Delta z_{n}\right)\right)+q_{n} x_{\sigma(n)}+b \Delta\left(a_{n-l}\left(\Delta z_{n-l}\right)\right)+b q_{n-l} x_{\sigma(n-l)} \\
& +c \Delta\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)+c q_{n+k} x_{\sigma(n+k)}=0 \tag{6}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta z_{n}\right)\right)+b \Delta\left(a_{n-l}\left(\Delta z_{n-l}\right)\right)+c \Delta\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)+Q_{n} z_{\sigma(n)} \leq 0, \quad n \geq n_{1} \tag{7}
\end{equation*}
$$

Summing the above inequality from n_{1} to $n-1$, we obtain

$$
\begin{align*}
& \sum_{s=n_{1}}^{n-1} Q_{s} z_{\sigma(s)}+a_{n}\left(\Delta z_{n}\right)-a_{n_{1}}\left(\Delta z_{n_{1}}\right)+b\left(a_{n-l}\left(\Delta z_{n-l}\right)\right) \\
& -b\left(a_{n_{1}-l}\left(\Delta z_{n_{1}-l}\right)\right)+c\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)-c\left(a_{n_{1}+k}\left(\Delta z_{n_{1}+k}\right)\right) \leq 0 \\
& \sum_{s=n_{1}}^{n-1} Q_{s} z_{\sigma(s)} \leq a_{n_{1}}\left(\Delta z_{n_{1}}\right)-a_{n}\left(\Delta z_{n}\right)+b\left(a_{n_{1}-l}\left(\Delta z_{n_{1}-l}\right)-a_{n-l}\left(\Delta z_{n-l}\right)\right) \\
& \left.+c\left(a_{n_{1}+k}\left(\Delta z_{n_{1}+k}\right)\right)-a_{n+k}\left(\Delta z_{n+k}\right)\right) . \tag{8}
\end{align*}
$$

But $\Delta z_{n}>0$ for all $n \geq n_{1}$. There exists a constant $c>0$ such that $z_{n} \geq c>0$ for all $n \geq n_{1}$. From inequality (8), we have

$$
\begin{equation*}
\sum_{s=n_{1}}^{\infty} Q_{s}<\infty_{,} \tag{9}
\end{equation*}
$$

which is contradiction to condition (2). This completes the proof.
Theorem 2.2 Assume that $\sigma(n)=n-m$ such that $m>l$ and m is positive constant. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{s=n-m+l}^{n-1} R_{(s-m)} Q_{s}>(1+b+c)\left(\frac{m}{m+1}\right)^{m+1}, \tag{10}
\end{equation*}
$$

where $R_{n}=\sum_{s=n_{0}}^{n} \frac{1}{a_{s}}$, then every solution of equation (1) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of equation (1) for all $n \geq n_{0}$. As in the proof of Theorem 2.1, we obtain inequality (7). Let

$$
\begin{equation*}
w_{n}=a_{n}\left(\Delta z_{n}\right)+b\left(a_{n-l}\left(\Delta z_{n-l}\right)\right)+c\left(a_{n+k}\left(\Delta z_{n+k}\right)\right), \tag{11}
\end{equation*}
$$

then from inequality (7), we obtain

$$
\Delta w_{n}+Q_{n} z_{n-m} \leq 0, \quad n \geq n_{1}
$$

Since $a_{n}\left(\Delta z_{n}\right)$ is non-increasing, we have

$$
a_{s} \Delta z_{s} \geq a_{n}\left(\Delta z_{n}\right), \quad n \geq s
$$

Dividing the last inequality by a_{s}, we have

$$
\begin{equation*}
\Delta z_{s} \geq \frac{a_{n}\left(\Delta z_{n}\right)}{a_{s}} \tag{12}
\end{equation*}
$$

Summing from n_{1} to $n-1$, we obtain

$$
\begin{align*}
& z_{n} \geq a_{n}\left(\Delta z_{n}\right) \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \\
& z_{n} \geq R_{n} a_{n}\left(\Delta z_{n}\right), \quad n \geq n_{1} \tag{13}
\end{align*}
$$

From equation (11), we obtain

$$
\begin{equation*}
w_{n} \geq a_{n-l}\left(\Delta z_{n-l}\right)(1+b+c) \tag{14}
\end{equation*}
$$

Combining (12), (13) and (14), we obtain

$$
\begin{equation*}
\Delta w_{n}+\frac{\left.R_{[n}-m\right]}{(1+b+c)} w_{n+l-m} \leq 0 \tag{15}
\end{equation*}
$$

By Theorem 6.20.5 in [1] and the condition (15) implies that equation (10) has no positive solution. This contradiction completes the proof.
Next to define the operator T by $T: \sum_{s=\sigma(n)}^{n-1} \phi(s) g(s)$ and $T[\Delta g(s)]=-T[g(s+1) \chi(s)], \sigma(n)<n$, where $\left\{\phi_{n}\right\},\left\{g_{n}\right\}$ and $\left\{\chi_{n}\right\}$ are positive real sequences.

Theorem 2.3 Assume that $\sigma(n) \leq n-l$. There exists a positive real sequence $\left\{k_{n}\right\}$ such that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup T}\left[k_{s} Q_{s}-(1+b+c) \frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a_{\sigma(s)}\right]>0 \tag{16}
\end{equation*}
$$

where Q_{n} is defined as in Theorem 2.1. Then every solution of equation (1) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1). Then there exists $n_{1} \geq n_{0}$ such that $x_{n} \neq 0$ for all $n \geq n_{0}$. Without loss of generality, we assume that $x_{n}>0, x_{n-l}>0, x_{n+k}>0$ and $x_{\sigma(n)}>0$ for all $n \geq n_{1}$.

Define

$$
\begin{equation*}
w_{n}=k_{n} \frac{a_{n}\left(\Delta z_{n}\right)}{z_{\sigma[n)}}, \quad n \geq n_{1} \tag{17}
\end{equation*}
$$

Thus $w_{n}>0$ for $n \geq n_{0}$, we have

$$
\begin{equation*}
\Delta w_{n}=\frac{k_{n}}{z \sigma(n)} \Delta\left(a_{n}\left(\Delta z_{n}\right)\right)+\frac{a_{n+1}\left(\Delta z_{n+1}\right)}{z \sigma(n+1)} \Delta k_{n}-\frac{k_{n} a_{n+1}\left(\Delta z_{n+1}\right) \Delta z \sigma(n)}{z \sigma(n) z \sigma(n+1)} \tag{18}
\end{equation*}
$$

From (3) and fact that $\Delta z_{n}>0$, we have

$$
\begin{equation*}
\frac{\Delta z \sigma(n)}{\Delta z_{n+1}} \geq \frac{a_{n+1}}{a \sigma(n)} \quad \text { for all } \quad n \geq n_{1} \geq n_{0} \tag{19}
\end{equation*}
$$

Using (17) and (19) in (18), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq \frac{k_{n} \Delta\left(a_{n}\left(\Delta z_{n}\right)\right)}{z \sigma(n)}+\frac{\Delta k_{n}}{k_{n+1}} w_{n+1}-\frac{k_{n}}{k_{n+1}^{2}} \frac{w_{n+1}^{2}}{\alpha \sigma(n)} \tag{20}
\end{equation*}
$$

Next we define

$$
\begin{equation*}
u_{n}=k_{n} \frac{\left(a_{n-i}\right)\left(\Delta z_{n-1}\right)}{z_{\sigma(n)}}, \quad n \geq n_{1} \tag{21}
\end{equation*}
$$

Then $u_{n}>0$ for all $n \geq n_{0}$, we have

$$
\begin{equation*}
\Delta u_{n}=k_{n} \frac{\Delta\left(a_{n-1}\left[\left(\Delta z_{n-1}\right)\right)\right.}{z_{\sigma(n)}}+\Delta k_{n} \frac{\left(a_{n+1}-1 \Delta\left(z_{n+1-1}\right)\right)}{z \sigma(n+1)}-\frac{k_{n}\left(\left(a_{n+1}-1\left(\Delta z_{n+1-1}\right) \Delta z \sigma(n)\right)\right.}{z \sigma(n) z \sigma(n+1)} \tag{22}
\end{equation*}
$$

From (3) and fact that $\Delta z_{n}>0$, noting that $\sigma(n) \leq n-l$, we obtain

$$
\begin{equation*}
\frac{\Delta z \sigma(n)}{\Delta z_{n+1-I}} \geq \frac{a_{n+1-I}}{a \sigma(n)} . \tag{23}
\end{equation*}
$$

Using (21) and (23) in (22), we obtain

$$
\begin{equation*}
\Delta \mathrm{u}_{n} \leq k_{n} \frac{\Delta\left(a_{n-l}\left(\Delta z_{n-1}\right)\right.}{z \sigma(n)}+\Delta k_{n} \frac{u_{n+1}}{k_{n+1}}-k_{n} \frac{u_{n+1}^{\pi}}{k_{n+1}^{2} \alpha \sigma(n)^{2}} \tag{24}
\end{equation*}
$$

Define

$$
\begin{equation*}
v_{n}=\frac{k_{n}\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)}{z \sigma(n)}, \quad n \geq n_{1} \tag{25}
\end{equation*}
$$

Then $v_{n}>0$ for all $n \geq n_{0}$, we have

$$
\begin{equation*}
\Delta v_{n}=\frac{k_{n} \Delta\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)}{z \sigma(n)}+\frac{\Delta k_{n}\left(a_{n+1+k}\left(\Delta s_{n+1+k}\right)\right)}{z \sigma(n+1)}-\frac{k_{n}\left(a_{n+1+k}\left(\Delta z_{n+1+k}\right)\right) \Delta z \sigma(n)}{z \sigma(n) z \sigma(n+1)} . \tag{26}
\end{equation*}
$$

From (3) and fact that $\Delta z_{n}>0$, noting that $\sigma(n) \leq n-l \leq n+k$, we have

$$
\begin{equation*}
\frac{\Delta z \sigma(n)}{\Delta a_{n+1+k}} \geq \frac{a_{n+1+k}}{a \sigma(n)} \tag{27}
\end{equation*}
$$

Using (25) and (27) in (26), we obtain

$$
\begin{equation*}
\Delta v_{n} \leq \frac{k_{n} \Delta\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)}{z \sigma(n)}+\frac{\Delta k_{n} v_{n+1}}{k_{n+1}}-\frac{k_{n} v_{n+1}^{2}}{k_{n+1}^{2} a \sigma(n)} . \tag{28}
\end{equation*}
$$

Combining (20), (24) and (28), we obtain

$$
\begin{align*}
& \Delta w_{n}+b \Delta u_{n}+c \Delta v_{n} \leq \frac{k_{n} \Delta\left(a_{n} \Delta z_{n}\right)}{z \sigma(n)}+b k_{n} \frac{\Delta\left(a_{n-1}\left(\Delta z_{n-D}\right)\right)}{z \sigma(n)} \\
& +c k_{n} \frac{\Delta\left(a_{n+k}\left(\Delta z_{n+k}\right)\right)}{z \sigma(n)}+\frac{\Delta k_{n}}{k_{n+1}} w_{n+1}-\frac{k_{n} w_{n+1}^{z}}{k_{n+1}^{2} a \sigma(n)} \\
& +b \frac{\Delta k_{n}}{k_{n+1}} u_{n+1}-b \frac{k_{n} u_{n+1}^{z}}{k_{n+1}^{2} a \sigma(n)}+c \frac{\Delta k_{n}}{k_{n+1}} v_{n+1}-c \frac{k_{n} v_{n+1}^{z}}{k_{n+1}^{2} a \sigma(n)} \tag{29}
\end{align*}
$$

From (7) and (29), we obtain

$$
\begin{align*}
& \Delta w_{n}+b \Delta u_{n}+c \Delta v_{n} \leq-k_{n} Q_{n}+\frac{\Delta k_{n}}{k_{n+1}} w_{n+1}-\frac{k_{n} w_{n+1}^{2}}{k_{n+1}^{2} \sigma \sigma(n)} \\
& +b \frac{\Delta k_{n}}{k_{n+1}} u_{n+1}-b \frac{k_{n} u_{n+1}^{2}}{k_{n+1}^{2} a \sigma(n)}+c \frac{\Delta k_{n}}{k_{n+1}} v_{n+1}-c \frac{k_{n} v_{n+1}^{2}}{k_{n+1}^{2} \sigma \sigma(n)} \tag{30}
\end{align*}
$$

Apply the operator T on (30), we obtain

$$
\begin{align*}
& T\left[\Delta w_{s}+b \Delta u_{s}+c \Delta v_{s}\right] \leq T\left[-k_{s} Q_{s}+\frac{\Delta k_{s}}{k_{s+1}} w_{s+1}-\frac{k_{S} w_{S+1}^{2}}{k_{S+1}^{2} a \sigma(s)}\right. \\
& \left.+b \frac{\Delta k_{s}}{k_{s+1}} u_{s+1}-b \frac{k_{s} u_{S+1}^{2}}{k_{S+1}^{2} a \sigma(s)}+c \frac{\Delta k_{s}}{k_{s+1}} v_{s+1}-c \frac{k_{s} v_{s+1}^{2}}{k_{S+1}^{2} a \sigma(s)}\right] \tag{31}\\
& T\left[k_{s} Q_{s}\right] \leq T\left[\left(\chi_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right) w_{s+1}+b\left(\chi_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right) u_{s+1}+c\left(\chi_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right) v_{s+1}\right. \\
& \left.-\frac{k_{s} w_{S+1}^{2}}{k_{S+1}^{2} a \sigma(s)}-\frac{k_{s} u_{s+1}^{2}}{k_{S+1}^{2} a \sigma(s)}-\frac{k_{s} v_{S+1}^{2}}{k_{S+1}^{2} a \sigma(s)}\right] \\
& T\left[k_{s} Q_{s}\right] \leq T\left[\frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a \sigma(s)+b \frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a \sigma(s)\right. \\
& \left.+c \frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{S+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a \sigma(s)\right]
\end{align*}
$$

or

$$
T\left[k_{s} Q_{s}-(1+b+c) \frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a \sigma(s)\right] \leq 0
$$

which is contradiction to inequality (16). This completes the proof.
Corollary 2.1 Assume that $\sigma(n)=n-l$ and there exists a sequence $\left\{k_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}\left[(n-s)^{\alpha}\left(s-n_{0}\right)^{\beta} k_{s} Q_{s}-(1+b+c) \frac{\left(x_{s}+\frac{\Delta k_{s}}{k_{s+1}}\right)^{2}}{4 k_{s}} k_{s+1}^{2} a \sigma(s)\right]>0
$$

where $\alpha>\frac{1}{2}, \beta>\frac{1}{2}$ and $\chi_{s}=\frac{\beta_{(n)}-(b+c) s+\alpha_{n_{0}}}{(n-s)\left(s-n_{0}\right)}$. Then every solution of equation (1) is oscillatory.

3 Examples

In this section, we provide three examples.
Example 3.1 Consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(2 \Delta\left(x_{n}+2 x_{n-2}+x_{n+3}\right)\right)+16 x_{n-3}=0, \quad n \geq 4 \tag{32}
\end{equation*}
$$

where $a_{n}=2, b_{n}=2, c_{n}=1, l=2, k=3, \sigma(n)=n-3$ and $q_{n}=16$. Since all the conditions of Theorem 2.2 are satisfied. Hence every solution of equation (32) is oscillatory. In fact one such solution is $x_{n}=(-1)^{n}$.

Example 3.2 Consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(\frac{1}{10 n+13} \Delta\left(x_{n}+x_{n-2}+3 x_{n+2}\right)\right)+\frac{2}{n-3} x_{n-3}=0, \quad n \geq 4 \tag{33}
\end{equation*}
$$

where $a_{n}=\frac{1}{10 n+13}, b_{n}=1, c_{n}=3, l=2, k=2, \sigma(n)=n-3$ and $q_{n}=\frac{2}{n-3}$, since all the conditions of Theorem 2.3 are satisfied. Hence every solution of equation (33) is oscillatory. In fact one such solution is $x_{n}=n(-1)^{n}$.

Example 3.3 Consider the second order neutral difference equation of the form

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+2 x_{n-2}+5 x_{n+3}\right)+8 x_{n-2}=0, \quad n \geq 3 \tag{34}
\end{equation*}
$$

where $a_{n}=1, b_{n}=2, c_{n}=5, l=2, k=3, \sigma(n)=n-2$ and $q_{n}=8$. Since all the conditions of Corollary 2.1 are satisfied. Hence every solution of equation (34) is oscillatory. In fact one such solution is $x_{n}=(-1)^{n+1}$.

References

[1] R.P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York, 2000.
[2] R.P. Agarwal, M. Bohner, S.R. Grace and D.'O. Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
[3] R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second order delay difference equations, Appl. Math. Lett., 10(2)(1997), 103-109.
[4] J. Cheng, Existence of nonoscillatory solution of second order linear difference equations, Appl. Math. Lett., 20(2007), 892-899.
[5] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
[6] J. Jiang, Oscillation criteria for second order quasilinear neutral delay difference equations, Appl. Math. Comput., 125(2002), 287-293.
[7] W.G. Kelley and A.C. Peterson, Difference Equations: An Introduction with Applications, Acad. Press, New York, 1991.
[8] G. Ladas, Ch.G. Philos and Y.G. Sticas, Sharp condition for the oscillation of delay difference equations, J. Appl. Math. Simul., 2(2)(1989), 101-112.
[9] H.J. Li and C.C. Yeh, Oscillation criteria for second order neutral delay difference equations, Comput. Math. Appl., 36(1999), 123-132.
[10] E. Thandapani, J.R. Graef and P.W. Spikes, On the oscillation of second order quasilinear difference equations, Nonlinear World, 3(1996), 545-565.
[11] E. Thandapani and K. Mahalingam, Oscillation and nonoscillation of second order neutral difference equations, Czechoslovak Math. J., 53(128)(2003), 935-947.
[12] E. Thandapani and S. Selvarangam, Oscillation theorems for second order nonlinear neutral difference equations, J. Math. Comput. Sci., 2(4)(2012), 866-879.

This work is licensed under a Creative Commons Attribution 4.0 International License.

