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ABSTRACT 

In this paper, time series theory is used to modelling monthly inflation data in Albania during the period from January 2000 
to December 2016. The autoregressive conditional heteroscedastic (ARCH) and their extensions, generalized 
autoregressive conditional heteroscedasticity (GARCH)) models are used to better fit the data. The study reveals that the 
inflation series is stationary, non-normality and has serial correlation.   Based on minimum AIC and SIC values the best 
model turn to be GARCH (1, 1) model with mean equation ARMA (2, 1)x(2, 0)12. Based on the selected model one year of 
inflation is forecasted (from January 2016 to December 2016). 
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INTRODUCTION  

The concept of time series is based on observations that have been collected over a period of time with a particular 
frequency, see [1]. Modeling and forecasting time series volatility is a crucial area that has received considerable attention 
during the last two decades. Several models have been suggested for capturing special features of financial data, and 
most of these models have the property that the conditional variance depends on the past. Various models are introduced 
to model the volatility of a time series.  One such a model is introduced by Engle (1982) named autoregressive conditional 
heteroscedasticity model (ARCH). This model is generalized by Bollerslev (1986) into GARCH models. Nelson (1991) 
proposes the exponential GARCH (EGARCH) model which allow for asymmetric effect between positive and negative 
asset returns. Another model which allow for asymmetric is the threshold GARCH model (TGARCH), proposed by 
Zakoian(1994). This model allows having differential impacts on conditional variance of the past shocks, see [5]-[9]. 
 Inflation is an important element of measuring macroeconomic performance of a country. Increase in prices of goods and 
services are an important aspect which is deemed for fluctuations in the economic growth. Inflation can be grouped into 
four types, according to its magnitude: creeping inflation, walking inflation, running inflation and hyper inflation. Inflation 
can be defined as the persistent increase in the level of consumer prices or a persistent decline in the purchasing power of 
money, see [2]. Also inflation can be expresses as a situation where the demand for goods and services exceeds their 
supply in the economy, see [3]. In reality inflation means that your money can not buy as much as what it could have 
bought yesterday. Inflation dynamics and evolution can be studied using a stochastic modelling approach that captures 
the time dependent structure embedded in the time series inflation data, see [4]. The most common measure of inflation is 
the consumer price index, which measures the inflation of a country over a time period, e.g. monthly, quarterly or annually.  
Consumer Price Index (CPI) measures the change over time in the general price level of goods and services that 
households acquire for the purpose of consumption. The inflation rate  at time  is calculated as 

 
 

where   is the consumer price index at time t and  is the consumer price index at time t-1.  

The current paper explains inflation modeling using recent monthly data using several ARCH models and a temptation to 

forecast inflation is made. All the data are analyzed by using Eviews 9. 
  

DATA 
 
The inflation data cover the period from January 2000 to December 2016, i.e. 204 observations. Most frequently, the term 
inflation refers to a rise in the Consumer Price Index (CPI), which measures prices of a representative fixed basket of 
goods and services purchased by a typical consumer.  The inflation rate, , at time t is calculated as  
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where  is the Consumer Price Index in time t and  is the Consumer Price Index in time t-1.  The data sets 

is obtained from INSTAT, Statistics Institute of Albania. 

 

METHODOLOGY 
The general form of the ARIMA (p, q) is represented by the backward shift operator as 

 
and a seasonal ARMA  is represented by 

 
where d is the seasonality period and L is the backshift operator. 

 

Volatility models 
The autoregressive conditional heteroscedasticity (ARCH) model violated this conditions assumed that variance of the 

residual of the mean equation fluctuate on time. ARCH (p) model is defined as follows 

 
Bollerslev(1986) developed the ARCH model into GARCH  model, which allow the conditional variance to depend not only 

by the squared residuals of mean equation but even by the previous own lags. The GARCH(p, q) model is  

  ,   and . 

Nelson (1991) proposes the exponential GARCH model. The EGARCH (p, q) models is define as follows 

 
This model allowed capturing asymmetric effects of positive and negative shocks of the same magnitude. 
 

Unit root test 
The foundation of a time series is stationarity or weakly stationarity.  In order to check for stationarity we use Augmented 
Dicker Fuller (ADF) test and Philip Perrons (PP) test. The null hypothesis of ADF test is the existence of unit root against 
the alternative hypothesis of no unit root. The null hypothesis is rejected if the test statistic is greater than the critical value. 
Null hypothesis is  in the regression equation  

 
The PP test is similar to the ADF test, but correct for any serial correlation and heteroscedasticity in the errors terms.  The 
null hypothesis of PP test is rejected if the test statistic is greater than the critical value. 
 

Test of Heteroscedasticity 
In order to apply the GARCH model first we examine the residual of the mean equation for heteroscedasticity, known as 
ARCH effects, by using ARCH-LM test and Ljung-Box statistic.  
The ARCH-LM test is used to test the presence of conditional heteroscedasticity by regressed the squared residual on q 
lag. The null hypothesis of the test is no heteroscedasticity in the model residual versus the alternative hypothesis of 
heteroscedasticity in the model residual. The test statistic is 

, 

where N is the number of observation and is the coefficient of determination of the residual regression. The null 

hypothesis is rejected if the p-value is less that the significance level. 
Ljung–Box Q statistics test the joint hypothesis that the autocorrelation coefficients up to lag q are equal to zero on the 

squared residual series. This test is defined as 

, 

where  are the autocorrelation on lag q. The null hypothesis, that the autocorrelation function of the series is zero, is 

rejected if the p-value of the test is less than the significance level. 

 

Test of Asymmetry 
Before applied any asymmetric model we investigate for leverage effect by using sign and size bias test for asymmetry in 
volatility proposed by Engle and Ng (1993). Define  as an indicator dummy that takes the value 1 if  and zero 

otherwise and . A joint test for sign and size bias based on the regression 

 
A joint test statistic is formulated in the standard fashion by calculating T  from the regression which will asymptotically 

follow a  distribution with 3 degrees of freedom under the null hypothesis of no asymmetric effects, i.e.  

. 
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RESULTS AND DISCUSSION 
As we can see from the value of kurtosis the series do not performs a normal distribution, this results reinforced by 
Jarque- Bera test with p-value 0.000, see table 1. Before settling the best model for inflation data we first analyzed the 
data for stationarity. Both ADF and PP test indicate stationarity of the series, see table 2. From the graph, see figure 1, 
and autocorrelation of the series, figure 2, it seems that the data are seasonality. Significant spikes at lags 12 of the ACF 
at lags 12 of the PACF suggests  for seasonal moving average and seasonal autoregressive components in the mean 
equation. 
 
 

 
Figure 1: Monthly inflation from January 2000 to December 2016 

 
 

Table 1. Description statistics of monthly inflation 

 

 

 

 

Figure 2: ACF and PACF on the level of inflation series 

 
 
 

Table 2. Unit root test on the level 

Unit root test Test statistic 1% critical value 5% critical value 10% critical value 

Augmented Dicker 
Fuller (ADF) 

-7.684 -3.464460 -2.876435 -2.574788 

Phillips-Perron  
(PP) 

-14.01894 -3.462574 -2.875608 -2.574346 

 
We performed several ARMA  model and according to AIC and SIC value ARMA (2,0,1)x(2,0,0)12  was 

Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera Probability 

0.253 0.193  1.228  2.463 17.579 2013.022       0.000 
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selected as the best model, see table 3. Next we estimate this model. As we can see all the coefficients of the model are 
significant, Durbin – Watson statistic seems to be nearly to two and .  

 
 

Table 3. Model selection 

Model AIC SIC 

(1,0,1)x(0,0,0)12 3.210005 3.275066 

(1,0,1)x(1,0,0)12 2.85684 2.938167 

(1,0,1)x(0,0,1)12 3.034306 3.115632 

(1,0,1)x(1,0,1)12 2.747022 2.844614 

(1,0,2)x(0,0,0)12 3.132063 3.213390 

(1,0,2)x(1,0,0)12 2.775386 2.872978 

(1,0,2)x(1,0,1)12 2.682230 2.796087 

(2,0,1)x(0,0,0)12 3.083731 3.271537 

(2,0,1)x(1,0,0)12 2.755075 2.852667 

(2,0,1)x(1,0,1)12 2.677698 2.791555 

(2,0,1)x(2,0,0)12 2.652278 2.766135 

(2,0,1)x(2,0,1)12 2.660139 2.790261 

 

 

Table 4. Estimation of ARIMA (2,0,1)x(2,0,0)12 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.282903 0.118043 2.396606 0.0175 

AR(1) 0.857848 0.099625 8.610781 0.0000 

AR(2) -0.357109 0.053320 -6.697475 0.0000 

SAR(12) 0.301642 0.019167 15.73750 0.0000 

SAR(24) 0.524954 0.027907 18.81114 0.0000 

MA(1) -0.807488 0.084013 -9.611462 0.0000 

SIGMASQ 0.722370 0.052525 13.75297 0.0000 

     
R-squared 0.518620     Mean dependent var 0.253473 

Adjusted R-squared 0.503958     S.D. dependent var 1.228012 

S.E. of regression 0.864892     Akaike info criterion 2.652278 

Sum squared resid 147.3635     Schwarz criterion 2.766135 

Log Likekihood -163.2063      Durbin –Watson stat  2.030475 
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Figure. 3 Graph of actual, fitted and residual series 
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Applied ARCH test and Q test on the residual of the series the tests strongly suggests for heteroscedasticity and 

autocorrelation on the residual of the series, see table 5. In order to avoid the heteroscedasticity some ARCH and GARCH 

model are performed and GARCH(1,1) model was select as the best model, see Table 6. 

 

Table 5. Heteroscedasticity test 

Test Lag 1 12 24 

ARCH Test       13.019 [0.000] 28.654 [0.000]   8.459 [0.000] 

Q- Test 6.862 [0.009] 85.795 [0.000] 92.984 [0.000]  

Note: p-value is in square breeches  

 

Table 6. Selected best GARCH model 

          Model                        

AIC value  

ARCH(1) ARCH(2) GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 1.553290 1.564131 1.351252 1.381616 1.489729 1.530183 

 

In Table 7 the GARCH(1,1) model evaluated. All the coefficient of the model seems to be significant except the constant 

coefficient of variance equation.  is equal to 0.7 and adjusted  is 0.69, see table 7. 

 
Table 7. GARCH(1,1) estimation 

Variable Coefficient Std. Error z-Statistic Prob.   

Mean Equation 

C 0.121133 0.046903 2.582631 0.0098 

AR(1) 0.949844 0.001654 574.3231 0.0000 

AR(2) -0.278983 0.047476 -5.876347 0.0000 

SAR(12) 0.469317 0.058611 8.007312 0.0000 

SAR(24) 0.259754 0.069287 3.748979 0.0002 

MA(1) -0.898870 0.000435 -2068.033 0.0000 
     
 Variance Equation   

     
C 0.004487 0.003035 1.478550 0.1393 

RESID(-1)^2 -0.071494 0.022163 -3.225807 0.0013 

GARCH(-1) 1.042219 0.017723 58.80618 0.0000 

R-squared 0.701690      Durbin-Watson stat      2.115887 

Adjusted R-squared 0.693018     S.D. dependent var 0.904409 

 

In order to investigate for asymmetric effects in volatility LM test of asymmetry is performed and the result show no 

asymmetry on volatility. So non asymmetric volatility model need to be implemented.  The ARCH-LM test and Ljung-Box 

statistic on the residual of GARCH(1,1) model suggests for no heteroscedasticity and no autocorrelation.  

So the model turns to be adequate see table 8.                                                    

 

Table 8. Diagnostics tests 

Test statistic ARCH-LM Q(12) stat (12) stat LM test of 

asymmetry 

Test value (p-value) 0.1623 (0.687) 10.357 (0.178) 9.866 (0.628) 3.815 (0.282) 

 

Finale one year out of sample forecasting were obtain for the year 2016 and table 9 shows the various measures of 
forecasting errors, mean absolute error, root mean squared error and Thiele’s U  test. The smaller the error, the better the 

forecaster.  The Thail U statistic 0.505 indicates that the forecasts are accurate. 
  

Table 9. Forecast evaluation 

RMSE MAE Thail inequality 

coefficient 

Thail U2 coefficient 

0.288 0.229 0.207 0.505 
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Figure 4. Forecasting performance of GARCH(1,1) 
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Figure 5. Time plot of inflation and one year forecasts 

 

 

CONCLUSION  
The study attempt to provide empirical evidence of modelling inflation in Albania using the Autoregressive Conditional 
Heteroscedastic models, i.e. ARCH and GARCH model. Several forms of these models were fitted using the monthly 
inflation data in Albania and based on the AIC and SIC values the best model was selected GARCH(1,1) with mean 
equation ARMA(2, 1)x(2,0)12. The coefficients of the estimated model are all significant at 5% level, except for the 
constant in the variance equations. Finale one year out of sample forecasting were obtain for the year  2016 and  it can be 
concluded that the prediction power of the model suitable for forecasting. 
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