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Abstract

A new one-point k-order iterative method for finding zeros of nonlinear equations having unknown multiplicity is
introduced. In terms of computational cost the new iterative method requires k+1 evaluations of functions per
iteration. It is shown that the new iterative method has a convergence of order k.
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1 Introduction

We propose a new one-point k-order iterative method to find multiple roots of the nonlinear equation. The root-
solver is of great practical importance since it overcomes theoretical limits of iterative methods concerning
convergence order and computational efficiency. In this paper, we are interested in the case that & is a root of

multiplicity M >1 of a nonlinear equation. Therefore, the purpose of this study is to develop a new class of
iterative method for finding multiple roots of nonlinear equations of a higher order than the existing iterative
methods [2,5-8] and show further development of the Thukral third and fourth order methods [6-8].

2 Preliminaries

In order to establish the order of convergence of the new k-order iterative method, we use the following definitions
[2,5-8].

Definition 1 Let f (X) be a real-valued function with a root & and let {Xn} be a sequence of real
numbers that converge towards ¢. The order of convergence p is given by

m(z‘(mi—;‘;‘fgio, M

where P € 07 and é’ is the asymptotic error constant [1-9].

Definition 2 Let &, = X, — & be the error in the kth iteration, then the relation

— p p+l
€1 =08 + O(ek )’ )
is the error equation. If the error equation exists, then p is the order of convergence of the iterative method [1-9].

Definition 3 Let r be the number of function evaluations of the method. The efficiency of the method is
measured by the concept of efficiency index and defined as

El(r,p)={p, 3)
where p is the order of convergence of the method [3].
Definition 4 suppose that X,.1» X, and X, are three successive iterations closer to the root & of (1).

Then the computational order of convergence may be approximated by

In|5, + 6,
COCr ————

" In|s,, <6, | @

where & = f (X )+ f'(X), [6-81.
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3 Construction of the new k-order iterative method

In this section we present a new scheme to find multiple roots of a nonlinear equation. Our aim is to define a new
one-point iterative method of k-order of convergence and in process we shall demonstrate that three established
methods are formed namely, the classical Schroder method, the Thukral third-order method [6], and the Thukral

fourth-order method [8].

First we denote the following

t:L: .::((X”)’ t2: f/(xn)’ t3: f/r(Xn)’ (5)
%) f'(x,) (%)

L= :‘u’gxn)’ ty = fiv(Xn)’ ;= fs(xn)’ ©
X,) (%) f2(x,)

The Method

In general, we define a new scheme as

N, (105 0), 1705 f<k1><X“))]( el .
D, (f (%), F/(%,) (%) £ (x,))

X =%, —(k —1)

where

Nk(f(xn)’ f,(xn)’ f”(xn)""’ f(kl)(xn)i):gailzik : )

Dy (£ (6, (%), £, ) T (x,)) = S AR ©

Fr=f'(x,),

F2=1f'(x), F2=f(x)f"(x)

F=f(x), Fi=f(x)f(x)f"(x), Fi=f(x) f"(x,)

Fr=1(x), Fr=f(x)F06) (%), F=f(x)f(x)f"(x), F'=f(x)f"(x),

(10)

o, =P {ai, J}EER (11)
P q

> =0, > =0 (12)
i=1 i=1

N (£ O F06), £ O 60)) = (=) 105D, (£ (%), () £ ), £ (),

(13)

Nk(f(xn),f'(xn),f”(xn), f Xn)) o (14)
D, (1 (1) 1/0), 0 ) 19(x)) |

k>1, (15)
P<q. (16)
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{n.k,p,q} eN. (17)

When K =1, without loss of generality, we consider the classical Newton method as our first scheme and in fact
it has first-order convergence given by

X =X ——= (18)
n+1 n f,(xn)
X1 = X, _l' (19)
b

When K = 2, the classical Schroder second-order method [4] is obtained and is given as

n(f00). ) T 1) .
Btorior it v

)_ f (%) Dy( (%), F'(x%,)) _’ (1)

—
1

o =X, — (k-1

N+

R DY RECAREDY)
1= X f(xn)f'(xn) , (22)
M (kY = £ (%) £(x,)

X0 =X, — f(x)" ) ) N
ni1 = X l:f’(xn)z—f(Xn)f”(Xn)](f'(X”)j N

(24)

n - ’
t1 o tz
Next K = 3, the Thukral third-order method is obtained [6] and is given as,

oot ML) 1) )
nd — “n (k 1)|:D3(f(xn),f'(Xn),f”(Xn),fm(xn)) (f'(Xn)J -

o
T D (P (%), F(%,) F1(%,) (%)

[ A e ) ) (fvn} &
nil = M 2f!<xn)3_3f(xn)f'(xn)f”(Xn)+fm(xn)f(xn)z

N 2(F06) T ) = (%) (%))
n+l ~ M 2f'(xn)3—3f(xn)f’(xn)f”(xn)Jrf"'(xn)f(xn)

o —2t,
X =Xy — 2 ’
2t -3t +tt,

And next when K = 4, we obtain the Thukral fourth-order method [8], given by

X (26)

(28)

(29)

7232 |Page
June, 2017 https://cirworld.com/



ISSN 2347-1921
Volume 13 Number 3
Journal of Advance in Mathematics

NG (F (%) F(%) £ (%), £7(x,)) ]{f(xn)} o
00) F7 00 £706). O (x,))

I f(%)D5(F (%) £'(x,), £ (%), £"(x,)) } (31)

Sk (1)) .

Xy =X, —3 ZS:,BiFi4 f'(x,)
where -

Ri=1(x,)"

R =1f(x,) f'(x,)" f"(x,)

Fl= f(xn)2 f'(x,) f"(x,), (33)
Fi=f(x) f(x,),

R =(f (%) (%))

o, =6, a,=-9, a;=3, (34)
B=6 p,=-12, p=4 pB,=-1 B=3 (35)
Also, it was shown that the fourth-order method (32) can also be expressed as

B 6t; —Ott, + 3.t )

Xn+1 Xn T3 2 2!
6L — 1207, + ALt — Lt t, + 34t

When k =5, we progress to define a fifth-order iterative method for finding multiple roots of a nonlinear
equation. In order to construct the new iterative method we require a total of five function evaluations. Hence the

N (F00) F06)s 700 ), F7(%), £ (x,)) }{f(xn)]’ -
Dk(f xn),f’(xn),f”(xn),f’"(xn),f(iv)(xn),f(v)(xn))

X1 = X, _(k _1)

)P 06), 100, F7(%). 1706). £ (%)) | )

7233 |Page
June, 2017 https://cirworld.com/



& ISSN 2347-1921
Volume 13 Number 3
Journal of Advance in Mathematics

5
X = X, —4 ‘Z;llaiFi (f(x”)} (40)
> e [ F00)
i=1
where
F’= f'(xn)s,
Fr= () f/(%) £"(x,),
FP=f(x) /(%) (%),
S =f(x,) (%) f"(x,), @
Fo=(f(x)f"(x,)) (%),
Fo = f(x, f"(xn)f’(xn)s,
F’= f(xn)4 f(v)(xn),
=24 a,=-48 ;=16 o,=4 o =12 (42)
B =24 pB,=-60 B,=20 p,=-5 £.=30 £ =-10 p =1 (43)
Also, the new fifth-order method (39) can also be expressed as
B 2417 — 48t2t, + 16ttt — 4ttt +12tt] @)

Xn+1 - Xn - 4 3. 2 242 2 '
24t —-60tt, + 20t t,t, — 5t ttt, +30tt; —10t tot, +tt.t,t.
It is essential to analyse the order of convergence of the new iterative method.
Theorem 1
Let f:1 <[] be a function for an open interval | —[J. Let f (Xn) has a multiple root, X=c €| with

multiplicity m>1 and X, is the initial guess of the multiple root. Assume that f(Xn)is a sufficiently

differentiable function in I, then iteration defined by the new scheme (39) has fifth-order convergence and satisfies
the error equation

o - (a)lTl“ ~ 0, T T, + oI, + T} ]eﬁ. s
s

where

o =(m+1)(m+2)(m+3), @, =2m(2m+3)(m+3),

o, =2m*(2m+3), @, =2m*(m+3), (46)
w, =m*(m+1)° (m+2)(m+3).

Proof

Let & be a root of multiplicity m, that is f (o) = f'(ar)="-- f(mY) (a)=0, and f(m (a)#0. since
f (X,) is a sufficiently differentiable function, therefore we expand f () about X = ¢ by the Taylor series.

Also let e, =X, —« and using the Taylor series expansion of

(%), F'(%,), £7(%), £7(x,), F¥(x,), £'(X,), about & , we have

7234 |Page
June, 2017 https://cirworld.com/



ISSN 2347-1921
Volume 13 Number 3
Journal of Advance in Mathematics

(m)
f(xn)={f m(!a)Jenm[HAien+A2e§+A3e§+---], (47)
, f(m)(a) .
f'(x,)= CEY ert[1+Be, +B,el + Bl +- |, (48)
; t"(a)) o
f(x,) = CEIk *[1+Ce, +Cel +Ce) +--, (49)
" F"(@)) o
f7(x,) = (m-3) el 3[1+D1en+D2en2+D3eﬁ+...], (50)
iv f(m)(a) m-4
f (X”):{(m—4)!Je” [1+E1en+E2e§+E3ej+---], (51)
, f(m)(a) .
f (X”)z[(m—s)!}}” 5[1+Glen+Gzen2+G3e§’+--], (52)
where
- f(m+k)(a), A - m!T, B - (m—l)!Tk, c - (m—2)!Tk’
£ () (m+k)! (m+k-1)! (m+k-2)! .
53
(m-3)IT, (m—4)IT, (m-5)IT,
Dy =r—"0t, B=r—"5, G =r—"10%,
(m+k—3)! (m+k—4)! (m+k-5)!
From (47)-(52), we get
f(x) e  Te +(T12(m+2)—2mT2)e§ "
f'(x) m m*(m+l)  m’(m+1)(m+2)
’ 2 —
o) _m, T (F(me2)—(meyT)e, o5
f(x,) e (m+1) (m+1)*(m+2)
f(x) m-1 T, (TZ(m+1)-2mT,)e,
) T 2 L (56)
f'(x,) e m m*(m+1)
fﬂ/(xn):m_2+ T1 _(lem—Z(m—l)Tz)en e (57)
f'(x,) e (m-1) m(m—l)z ’
fiV(Xn):m_3+ Tl _(Tl2(m—l)—2T2(m—2))en e )
f"(x) e (m-2) (m—2)"(m-1) ’
v _ T?(m-2)-2T,(m-3))e
) _m—4 T (F(M-2)-2L(m-3)e o

() & (m-2) (m=3)° (m-2)

Substituting appropriate expressions in (39) and simplifying, we have
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e =

n+1l

n

[ ol - oTT, +oTT, +o,T; je: +0(e?). ©0)
5

where

o =(m+1)(m+2)(m+3), o, =2m(2m+3)(m+3),

o, =2m*(2m+3), o, =2m?(m+3), (61)
w, =m*(m+1)° (m+2)(m+3).

The expression (60) establishes the asymptotic error constant for the fifth-order of convergence for the new

iterative method defined by (39). This completes the proof.

The new one-point k-order method requires (k+1) function evaluations and has the order of convergence k. To
determine the efficiency index of the new method, definition 3 shall be used. Hence, the efficiency index of the
new iterative method given by (7)

El (k+1,k)="“k. 2

4 Application of the new one-point k-order iterative method

The proposed one-point k-order method given by (7) is employed to solve nonlinear equation with multiple roots.
The difference between the multiple root ¢ and the approximation X, for test function with initial guess X, is

displayed in table. Furthermore, the computational order of convergence approximations are displayed in table
and we observe that this perfectly coincides with the theoretical result. In addition, the difference between the

multiplicity M and the approximation M is also displayed in table. The numerical computations listed in the table
was performed on an algebraic system called Maple and the errors displayed is of absolute value.

We will demonstrate the convergence of the new one-point k-order method for the following nonlinear equation
6
f(x)=[e +x-2], (63)

having multiplicity M =6 and the exact value of the multiple roots of (63) is ¢ =0.442854. ... In Table 1 the
errors obtained by the new method described, is based on the initial value X, = 272. We observe that the new
one-point k-order method is converging to the expected order.

Table 1 Errors occurring in the estimates of the root of (63) by the method described

method % —a X, —a %, — %, — ¢ Im -1, coc
(18) 0.159 0.131 0.108 0.090 : 0.9928
23) 0.983¢-2  0.292e-4 0.260e-9 0.206e-19 0.950e-9 2.0000
28) 0.740e-3  0.446e-10  0.979%-32 0.103e-96 0.179e-31 3.0000
32) 0.18le-4  0.124e20  0.279e-85  0.702e-344 0.509e-85 4.0000
(39) 0.41le-6 025534  0.23le-175  0.143e-880  0.422e-175 4.9996

5 Remarks and conclusion

A new one-point k-order iterative method for solving nonlinear equations with multiple roots has been introduced.
Empirically, we have found that the new k-order iterative method contains product of k function and (k+1) function
evaluations. We observe that the computational order of convergence approximations perfectly coincides with the
theoretical result. The drawback of the proposed method is that we need to evaluate higher order derivatives of a
given function, hence further improvement is necessary. Finally, we conjecture that the new scheme (7) can be
constructed to produce any higher order of convergence.
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