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Abstract  

In this paper we study the oscillation and asymptotic behavior of the third order neutral differential equation with “maxima” of 
the form  

     ,  0,=)(max)())(()()()( 0
]),([

ttsxtqtxtptxta
tt

 




  

where   is the quotient of odd positive integers. Some examples are given to illustrate the main results. 

2010 Mathematics Subject Classification : 34C10, 34K11 

Keywords and Phrases: Oscillation; asymptotic behavior; third order; half-linear neutral differential equation with 

“maxima”. 

Introduction 

In this paper, we study the oscillation and asymptotic behavior of the third order neutral differential equation with “maxima” of 
the form   

     ,  0,=)(max)())(()()()( 0
]),([

ttsxtqtxtptxta
tt

 




  (1.1) 

 where   is the quotient of odd positive integers, subject to the following conditions:   

(H1) ),( ),( ),( ),( ttqtpta   and )),([)( 0  tCt ;  

(H2)  0>)(ta , and 


=
)(

1
1/

0

dt
tat 

; 

(H3) 0)( 1,<)(0  tqptp  and )(tq  is not identically zero on any ray of ) ,[)(  xttq  for any 0ttx  ;  

(H4)    = 0,>)( ,)( 0 ttt  with tt ))((  and  =)(lim=)(lim tt tt  .  

 Set ))(()()(=)( txtptxtz  . By a solution of equation (1.1), we mean a continuous function 

0 )),,([)( tTTCtx xx  , which has the properties )) ,([))()(( )), ,([)( 12  xx TCtztaTCtz 
 and satisfies 

equation (1.1) on ) ,[ xT . We consider only those solutions )(tx  of equation (1.1) which satisfy 

0>}|:)({| Tttxsup   for all 0tT  . We assume that equation (1.1) possesses such a solution. A solution of equation 

(1.1) is called oscillatory if it has infinitely many zeros on ),[ xT  and called nonoscillatory otherwise. 

In recent years there has been great attention denoted to the oscillatory and asymptotic behavior of third order neutral 
differential equations without maxima, see [1, 7, 8, 9, 13, 14], and the references contained therein. However few results are 
available on the oscillatory behavior of third order differential equation with “maxima”, see [2, 3, 4, 5, 6]. 

Motivated by these observations, in this paper, we present several sufficient conditions for the oscillatory behavior of 
solutions of equation (1.1). The results obtained in this paper extend that of in [1, 8, 12, 13, 14] for the equation without 
maxima. 

In Section 2, we present preliminary lemmas which will be used to prove that main results. Section 3 deals with oscillation 
results and in Section 4, we provide some examples to illustrate the main results. 

mailto:3ayyapmath@gmail.com
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Preliminary Lemmas 

In this section we present some useful lemmas, which will be used to prove the main results.  

Lemma 2.1  Let )[0,, ba . Then   

 1,  ,)(
2

1
1








 baba  (2.1) 

 and   

 1.<0 ,)(   baba  (2.2) 

Proof. The proof can be found in [13].  

Lemma 2.2  Let f  and ) ),,([ 0 R tCg  and ) ),,([ 0 R tC  satisfies  =)(lim tt   and tt )(  

for all ),[ 0  tt ; further suppose that there exists ) ),,([ 1



  RtCh  where )}({min= ),
0

[1 tt tt  , such that 

))(()(=)( thtgtf   holds for all ),[ 0  tt . Suppose that )(lim tft   exists and 1>)(lim  tinfgt . Then 

0>)(lim tsupht   implies 0>)(lim tft  .  

Proof. The proof can be found in [6].  

Lemma 2.3  Let )(tx  be a positive solution of equation (1.1), then the corresponding function )(tz  satisfies one of 

the following two cases:   

(I)   0<))()((0,>)(0,>)(0,>)( tztatztztz  ;  

(II)   0<))()((0,>)(0,<)(0,>)( tztatztztz  ,  

for all Tt  , where T  is sufficiently large.  

Proof. The proof can be found in [2], and hence omitted.  

Lemma 2.4  Let )(tx  be a negative solution of equation (1.1), then the corresponding function )(tz  satisfies one of 

the following two cases:   

(I)   0>))()((0,<)(0,<)(0,<)( tztatztztz  ;  

(II)   0>))()((0,<)(0,>)(0,<)( tztatztztz  ,  

for all Tt  , where T  is sufficiently large.  

The proof of Lemma 2.4 is analogous to that of Lemma 2.3.  

Lemma 2.5  The function )(tx  is a negative solution of equation (1.1) if and only if )(tx  is a positive solution of the 

equation   

   0.=)(min)())()((
]),([

sxtqtzta
tt





   (2.3) 

Proof. The assertion can be verified easily and hence omitted.  

Lemma 2.6  Let )(tx  be positive function defined for all 0tt  . Then   

  .))(()(max)(max)(max
]),([])),(([]),([

sxsxsxsx
tttttt













  (2.4) 

Proof. The proof can be found in [11].  

Lemma 2.7  Let )(tx  be a positive solution of equation (1.1), and let the corresponding function )(tz  satisfy Case (II) 

of Lemma 2.3. If   
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=)(
))((

1
1

0

dsdtdvvQ
ua ust




 (2.5) 

 where   

 ))}(( ),({min=)( tqtqtQ   (2.6) 

 then 0=)(lim=)(lim tztx tt  .  

Proof. Let )(tx  be a positive solution of equation (1.1). We may only prove the case when 1 , since the case when 

1<0   is similar. From equation (1.1) and Case(II) of Lemma 2.3, we obtain  

  0.)(max))(()(max)(
])))(())((([

))()((
)]()),(([

0
]),([

0

0 


 sxtqpsxtq
tzt

ptzta
tttt










 




 

which follows from (2.1) and (2.6),   =  and Lemma 2.6 that   

     0.)(max
2

)(
)))(())((())()((

]),([
1

0

0 


sz
tQ

tzta
p

tzta
tt









 


 (2.7) 

 Since )(tz  is positive and decreasing, we obtain  

     0.))((
2

)(
)))(())((())()((

1

0

0 


tz
tQ

tzta
p

tzta 










 

Integrating the last inequality from t  to  , we obtain  

 .))(()(
2

1
)))(())((())()((

1

0

0 dsszsQtzta
p

tzta
t

















  

Since tt )( , and 
))()(( tzta   is decreasing, we see that  

 .)))(())((())()((   tztatzta   

Thus  

 .))(()(

12

1
)))(())(((

0

01

dsszsQ
p

tzta
t





 





















  

Inview of Case(II) of Lemma 2.3, we have 0=)(lim  Ltzt . Assume 0>L , then 
  Ltz ))(( . Then, we have  

 .)(
))((

1

12

1
))((

1

1

0

01






 



 






































 




dssQ
tap

Ltz
t

 

Integrating the last inequality from t  to  , and then integrating the resulting inequality from 1t  to  , we obtain  
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ust
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1
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)(
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1

12

1
))((

1







































 




 

which contradicts (2.5). Thus 0=)(lim tzt  . Since )(lim)(lim tztx tt    implies 0=)(lim txt  . This 

completes the proof.  

Lemma 2.8  Assume that )(tz  satisfies Case (I) of Lemma 2.3 for 1tt  . Then   

   ),,()()( 11

1/ tttzatz    (2.8) 

 and   

   ),()()()( 12

1/ tttztatz    (2.9) 

 where ds
sa

tt
t

t )(

1
=),(

1/
1

11 
   and duds

ua
tt

s

t

t

t )(

1
=),(

1/
11

12 
  .  

Proof. The proof can be found in [13].  

Oscillation Results 

In this section, we present sufficient conditions for the oscillatory behavior of solutions of equation (1.1). Throughout this 
section, without loss of generality we can deal only with the positive solution of equation (1.1) since the proof for the negative 
case is similar.  

Theorem 3.1  Let 1 . If condition (2.5) holds, and assume that there exists a positive nondecreasing differentiable 

function )(t  for 12 ttt   such that  

,=
))()),(((

1

)),((

1
 

))((

))((

1)(

1

2

)()(
lim

110

0

11

1

11
2


































 ds
sts

p

tss

ssQs
sup

t

tt








 






 

(3.1) 

 then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Proof. Let )(tx  be a positive solution of equation (1.1). Without loss of generality assume that 0>))(( 0,>)( txtx  , 

and 0>))(( tx   for all 01 ttt  . Then the corresponding function )(tz  satisfies Case (I) and Case (II) of Lemma 2.3 

for all 1tt  . 

Case(I). From the proof of Lemma 2.7, we have (2.7). Since )(tz  is positive and increasing, we have from (2.7) that   

     0.)()()))(())((())()((
0

0  tztQtzta
p

tzta 


 


 (3.2) 

 Define   

 .  ,
)(

))()((
)(=)( 1tt

tz

tzta
ttw 






  (3.3) 

 Then 0,>)(tw  and  

 )(
)(

))()(()(

)(

)))()(((
)(

)(

))()((
)(=)(

1
tz

tz

tztat

tz

tzta
t

tz

tzta
ttw 
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         ).(
)(

),(

)(

)))()(((
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)(

)(
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tz

tzta
ttw

t

t













 







  (3.4) 

 Similarly, define another function v  by   

 .  ,
))((

)))(())(((
)(=)( 1tt

tz

tzta
ttv 












 (3.5) 

 Then 0>)(tv , and  

     

)())((
))((

)))(())((()(

))((

))))(())((((
)(

))((

)))(())(((
)(=)('

1
ttz

tz

tztat

tz

tzta
t

tz

tzta
ttv 
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))((

))))(())((((
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)(

)),((
)(

)(

)(
1

1

1/

11

tz

tzta
ttvt

t

tt
tv

t

t




























 (3.6) 

 From (3.4) and (3.6), we obtain  

   

)(

)))(())((())()(()(

)()( 0

0

0

0

tz

tzta
p

tztat

tv
p

tw

















 )(
)(

),(
)(

)(

)(
   

1
1

1/

11 tw
t

tt
tw

t

t








 




  

                 














)()(
)(

)),((
)(

)(

)(
   

1
1

1/

11

0

0 tvt
t

tt
tv

t

tp
















 (3.7) 

where we have used )))()(((  tzta  is negative and )(tz  is increasing. Since )(tz  is increasing from (2.7) and (??), 

we obtain  

)(
)(

),(
)(

)(

)(

2

)()(
)()(

1
1

1/

11

1

0

0 tw
t

tt
tw

t

ttQt
tv

p
tw 























.)()(
)(

)),((
)(

)(

)(
1

1

1/

11

0

0















tvt
t

tt
tv

t

tp
















 

     (3.8) 

 Now using (3.8) and the inequality   

 0,>  ,
1)(

1

1

1/1 A
A

B
AuBu












 






  (3.9) 

 we have  

















 )),()((

))((

1)(

1

2

)()(
)()(
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1
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ttt

ttQt
tv

p
tw








 .

))()),(()((

))((

1)( 11

1

1

0

0













 tttt

tp











(3.10) 

 Integrating (3.10) from )( 122 ttt   to t , we get  

     

),()(
))()),(((

1

)),((

1

))((

))((

1)(

1

2

)(
)( 2

0

0
2

110

0

11

1

11
2

tv
p

twds
sts

p

tss

ssQ
s

t

t 
















































  

which contradicts (3.1). 

Case(II). From condition (2.5) and the proof of Lemma 2.7, we see that lim t  0=)(tx . This completes the proof of 

the theorem.  

By Lemma 2.1, similar to the proof of Theorem 3.1, we have the following theorem.  
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Theorem 3.2  Let 1<0  . If condition (2.5) holds, and assume that there exists a positive nondecreasing 

differentiable function )(t  for 12 ttt   such that  

   

,=
))()),(((

1

)),((

1

))((

))((

1)(

1
)()(lim

110

0

11

1

1
2


































 ds
sts

p

tss

s
sQssup

t

tt








 




  (3.11) 

 then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Theorem 3.3  Let 1 . If condition (2.5) holds, and assume that there exists a positive nondecreasing differentiable 

function )(t  for 12 ttt   such that   

 ,=
)()),((

))),(((

),(

)),((

)(4

))((

2

)()(
lim

11

1

12

0

0

11

1

12

2

1
2
































 ds
sts

tsp

ts

ts

s

ssQs
sup

t

tt 









 


 (3.12) 

 then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Proof. Let )(tx  be a positive solution of equation (1.1). Without loss of generality assume that 0>))(( 0,>)( txtx 

, and 0>))(( tx   for all 01 ttt  . Then the corresponding function )(tz  satisfies Case (I) and Case (II) of Lemma 

2.3 for all 1tt  . 

Case(I). From the proof of Lemma 2.7, we have (2.7). From Lemma 2.8, we get (2.8) and (2.9). 

Define the function w  and v  by (3.3) and (3.5), respectively. Proceeding as in the proof of Theorem 3.1, we have (3.4) 

and (3.6). It follows from (2.8) and (3.3), we get   

 .  ,

)(

),(
)( 1

2

1
1

1

1

2

1
1

ttw

t

tt
tw 















 (3.13) 

 Using (3.13) in (3.4), we obtain   

 ).(),(
)(

)),((
)(

)(

)(

)(

)))()(()((
)( 2

11

1

2 twtt
t

tt
tw

t

t

tz

tztat
tw n 







 



 







  (3.14) 

 Similarly from (2.9) and (3.5), we get   

 .  ),(

)(

))),(((
)( 1

2

1
1

1

2

1
1

tttv

t

tt
tv 















 (3.15) 

 Using (3.15) in (3.6), we have   

 ).(
)(

)()),(())),(((
)(

)(
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))((

))))(())((()((
)( 211

1

12 tv
t

ttttt
tv
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tv











 



 










 (3.16) 

 From (3.14) and (3.16), we obtain  

   

)(

)))(())((())()((

)()()( 0

0

0

0
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tzta

ttv
p

tw
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 (3.17)

 



I S S N  2 3 4 7 - 1 9 2 1  
  V o l u m e  1 3  N u m b e r  3  

J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7225 | P a g e                                                                        
A p r i l ,  2 0 1 7                      h t t p s : / / c i r w o r l d . c o m /  
 
 

 where we have used )( ,)( tztt   is increasing and )))()(((  tzta  is negative. Since )(tz  is positive and 

increasing, we have from (2.7) and (3.17), we obtain   
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 where we have used the inequality 0>  ,
4

2
2 A

A

B
AuBu  . Integrating the above inequality from )( 122 ttt   to t , 

we obtain  

 ),()(
)()),((
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which contradicts (3.12). 

Case(II). The proof is similar to that of Case (II) of Theorem 3.1. The proof is now complete.  

From (2.2), similar to that of proof of Theorem 3.3, we obtain the following results.  

Theorem 3.4  Let 1<0  . If condition (2.5) holds, and assume that there exists a positive, nondecreasing 

differentiable function )(t  for 12 ttt   such that   
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 (3.18) 

 then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Remark 3.1 From Theorem 3.1 to 3.4, we can get several oscillation criteria for equation (1.1) with different choices of the 

function  .  

Next, we establish some Philos type oscillation results for equation (1.1). 

Definition 5.3.1[10] 

Consider the sets }>:),{(= 00 tstst D  and }:),{(= 0tstst D . Assume that ),( RDCH   satisfies the 

following conditions:   

(A1)  ;),( 0,>),(; 0,=),( 00 D ststHttttH   

(A2) H  has a non-positive continuous partial derivative with respect to the second variable in 0D .  

Then the function H  has the property P . 

Theorem 3.5  Let 1 . Assume condition (2.5) holds. Further assume that ),( RDCH   has the property P  

and there exists a function ))(0,),,([ 0

1  tC  for all sufficiently large 01 tt  , there is a 12 tt   such that   

 0

1

),( ,
)(

)),()(,(
=),(

)(

)(
),( D
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 (3.19) 
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 where  
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)},({0,max=),( sthsth  . Then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Proof. Let )(tx  be a positive solution of equation (1.1). Then the corresponding function )(tz  satisfies Case(I) and 

Case(II) of Lemma 2.3 for 1tt  . 

Case(I). Define w  and v  as in the proof of Theorem 3.1. Then we obtain (3.8). Replace t  by s  and then multiply both 

sides of (??) by ),( stH , integrate with respect to s  from )( 122 ttt   to t , we have  
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 Then, we obtain  
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 using the inequality (3.9) in the last inequality, we obtain  
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 which contradicts (3.20). 

Case (II). The proof is similar to that of Theorem 3.1. The proof is now complete.  

From Theorem 3.2, similar to that proof of Theorem 3.5, we derive the following theorem.  

Theorem 3.6  Let 1<0  . Assume that condition (2.5) holds. Moreover assume that ),( RDCH   has the 

property P , and there exists a function ))(0,),,([ 0

1  tC  for all sufficiently large 01 tt  , there is a 12 tt   such 

that (3.19) holds, and   
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)},({0,max=),( sthsth  . Then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

 From (3.17) in Theorem 3.3, similar to that proof of Theorem 3.5, we obtain the following results.  

Theorem 3.7  Let 1 . Assume that condition (2.5) holds. Further, assume that ),( RDCH   has the property 

P , and there exists a function ))(0,),,([ 0

1  tC , for all sufficiently large 01 tt  , there is a 12 > tt  such that   
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)},({0,max=),( sthsth  . Then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

 By Theorem 3.5, similar to the proof of Theorem 3.5, we establish the following criteria.  

Theorem 3.8  Let 1<0  . Assume that condition (2.5) holds. Further, assume that ),( RDCH   has the 

property P , and there exists a function ))(0,),,([ 0

1  tC , for all sufficiently large 01 tt  , there is a 12 > tt  such 

that (3.22) holds and   
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)},({0,max=),( sthsth  . Then every solution of equation (1.1) is either oscillatory or tends to zero as t .  

Remark 3.2 From Theorem 3.5-3.8, we can obtain several oscillation criteria for equation (1.1) with different choices of 

function   and H .  
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Examples 

In this section, we will present three examples to illustrate the main results.  

Example 4.1  Consider the third order half-linear neutral differential equation with “maxima”   

    1,  0,=)(max)/2)()(( 3
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0  tsx
t
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tt


 (4.1) 
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for t  sufficiently large. It is easy to see that condition (2.5) holds. Set 
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>

p
 . Hence by Theorem 3.1, every solution of equation (4.1) is either oscillatory or tends to zero as 

t  when 
3

3
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>

p
 .  

Example 4.2  Consider the third order neutral differential equation with “maxima”   

    1,  0,=)(max)/2)(2)(( 3
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provided 
12

)2(15
>

3

0

64 p
 . Hence by Theorem 3.3, every solution of equation (4.2) is either oscillatory or tends to zero as 

t .  

Example 4.3  Consider the third order half-linear neutral differential equation with “maxima”   

    1,  0,=)(max)/2)()(( 1/3

]/2,[
14/9

1/3

0

1/9  tsx
t

txptxt
tt


 (4.3) 
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 where 0> . Here 1/3= /2,=)(=)( 0,>=)( ,=)( 0

1/9  tttptptta , 
14/9

=)(
t

tq


, and 
2

1
=0 . Then 
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if )2(1> 1/3

0

5/3 p . Hence by Theorem 3.2, every solution of equation (4.3) is either oscillatory or tends to zero as 

t .   We conclude this paper with the following remark.  

Remark 4.1 In this paper, we have established some new oscillation theorems for the equation (1.1) for the case 

 <)(0 0ptp . It would be interesting to investigate equation (1.1) under the case when 1<)( tp , 

 =)(lim tpt  or )(tp  is an oscillatory function. Further it is interesting to find different method to remove the 

condition   = .  
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