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ABSTRACT 
As a consequence of Cohen’s structure Theorem for complete local rings that every finite commutative ring R  of 

characteristic 
np  contains a unique special primary subring 0R  satisfying ./)(/ 00 pRRRJR   Cohen called 0R  

the coefficient subring of R . In this paper we will study the case when the ring is a transcendental extension local 

artinian duo ring R; we proved that even in this case R  will has a commutative coefficient subring.  
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1  Introduction 

It is well known that Wedderburn-Mal’tsev Principal Theorem is essential to know the structure of a given ring, many 

scientists tried to improve it. I .S. Cohen [7] proved that any commutative local notherian ring R that is adicRJ )(  

complete have a subring 0R  such that )(=)(),(= 000 RJRJRRJRR  . On the contrary, Asumaya [5] 

introduced the concept of an inertial sub algebra of algebra over a Hensel ring. The concept of an inertial sub algebra 
is analogous to that of a coefficient subring Y. Alkhamees and S. Singh have generalized the result to the existence 

of coefficient subring of a locally finite algebraAR , where R  is a commutative chain ring such 

that )(/),(=)( AJAAJRRJ   countably generated separable algebraic field extension. A. Azarang [3] 

discussed similar concept of coefficient subring which is maximal subring and he showed that the existence of 
maximal subrings in some commutative noetherian ring. Also, A. Pavelescu [14] proved that maximal commutative 
subgrings of Artinian semisimple rings are direct products of local rings. As we know that there are many important 

rings that are not algebraic extension of its prime subring. Actually the existence and structure of 0R  for finite 

commutative local ring R  was known to Krull as early as 1924 [11] , .20p  . For finite commutative local ring it turns 

out that 0R  is a Galois ring. Clark [6] proved that a coefficient subring of finite ringp  R  is a direct sum of full 

matrix rings over Galois rings. Finally Corbas [8] manages to characterize coefficient subring of a finite ring as a 
direct sum of full matrix rings over Galois rings.Y. Alkhamees and S. Singh [1] have generalized the results on the 

existence of coefficient subrings of finite local rings to locally finite algebraR  A , where R   is commutative 

chain ring such that ),(=)( AJRRJ   )(/ AJA  countably generated separable algebraic field extension. By 

Cohenâ€™s structure theorem, R  is a complete domain as a finite integral extension of a complete local regular 

domain 0R , and if R  has the similar features as its field of residue, then 0R  is a recognized series of power ring 

over a field [7]. J. Ã–inert, J. Richter, and S.D. Silvestrov [13] proved that if R  is a commutative domain of 

characteristic zero. Then its Ore extension ],;[ RidxR  is a simple ring if and only if R  is  -simple and a 

maximal commutative subring of ],;[ RidxR . Moreover, In [13] they considered centralizers of single elements in 

certain Ore extensions, with a non-invertible endomorphism, of the ring of polynomials in one variable over a field, 
and showed that they are commutative and finitely generated as an algebra. 

The researches above were focused on studying the case when the ring is finite or even algebraic extension over its 
subring. Though, there are many important non-commutative rings that are not algebraic extension of its prime 
subring. So in this research, the focus will be on the case when a ring is any transcendental extension of its prime 

subring. Let R  be an artinian local duo ring such that R  is a field(algebraic and transcendental extension).Some 

propositions have been given to reach our main theorem which asserts that R  has a coefficient subring 0R , which 

is either a field or a transcendental extension of a generalized Galois subring 0R  which is a coefficient subring of the 
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ring of all algebraic elements in R  over the prime subring. 

2  Preliminaries 

All rings considered in the research have 0.1  Let R   be any ring . Then the smallest subring P   of R   

containing the identity 01   such that for any integer n  , if 1n  is a unit in R  , then ,1)( 1 Pn 
 is called the 

prime subring of R  .The prime subring of a field F   is the prime subfield of F . )(),( RCRJ  denote the 

Jacobson radical and center of R  respectively. Let R  be a commutative local ring and ).(/= RJRR  For any 

],[)( xRxf   let )(xf  denote its natural image in ][xR . R  is called a Hensel ring , if it satisfies the following 

condition :  Let ][)( xRxf    be any monic polynomial . If )()(=)( 00 xhxgxf  for some relatively prime monic 

polynomials ][)(),( 00 xRxhxg  , then there exist monic polynomials ),(xg  ][)( xRxh    such that 

=)(),()(=)( xgxhxgxf  )(0 xg  =)(, xh  )(0 xh  .  By Hensel lemma any complete local commutative ring is a 

Hensel ring , in particular any commutative local artinian ring is a Hensel ring. A ring R  is called chain ring, if it is a 

local, both sided artinian, principal ideal ring. A commutative chain ring R  is called a special primary ring. A finite 

special ring S  such that pSSJ =)(  , where ))(/(= SJScharp  is a Galois ring .A ring R  in which each one-

sided ideals is two sided is called a duo ring. Let R  be a local ring , such that )(/ RJR  is a field . Then a monic 

polynomial ][=)(
0=

xRxaxf i

i

i

r

   is said to be partially irreducible [separable] polynomial over ,R  if )(xf  is 

irreducible [separable] modulo )(RJ , in the sense that for )(/= RJRR , =)(xf  ][
0=

xRxa i

i

i

r

  is irreducible 

[separable] over .R  If )(xf  partially irreducible polynomial over ,R  then it is easy to see that )(xf  

])[( xRJ  is a maximal ideal of ][xR . Let R  be a commutative , local ring with )(RJ  nilpotent , and let 0P  be 

its prime subring . Let ][)( xRxf   be a partially irreducible separable polynomial over R  , such that for some 

Ra  , )()( axxf   )(xg  mod(  ]).)[( xRJ Then there exist ,1 Ra   ],[)(1 xRxg   such that aa 1  

mod(  )()()),( 1 xgxgRJ   mod(  ]),)[( xRJ and )(=)( 1axxf   ).(1 xg   

Definition 1 Let R  be a ring .Then R  is called a generalized Galois ring if i
i

RR

=  , where all iR are 

Galois rings of the same characteristic and for any ,    there exists r  such that .rRRR     

It is easy to see that if i
i

RR

=  is a generalized Galois ring, then R  is a local, artinian principle ideal ring.  

Definition 2 Let R  be a local ring such that R  is a field and T  a commutative local subring of R , 

.)(=)( TRJTJ   Then   i  An element a  in R  is said to be a lift algebraic element over T  if there exists a 

partially irreducible polynomial )(xf  over T  such that 0=)(af ; )(xf  is called a minimal polynomial of a over 

T . If deg  rxf =)( , then a  is said to be of degree r  over .T     ii  A lift algebraic element a  in R  over T  is 

said to be separable over T  if its minimal polynomial over T  is separable.  

It is well known that for a commutative local ring T  with )(TJ  nilpotent, and 
'T  a local subring of T  such that 

)(=)( TJTTJ ''  , if Ta   separable over   )(/)(= TJTJTT ''   and )(xf  a monic polynomial over 
'T  

such that )(xf  the minimal polynomial of ,a  then there exist a unique element ab  such that 0=)(bf . Let 

R  be a commutative artinian local ring with R  an absolutely algebraic field, and let ),( T  be a special primary 
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subring of R . Suppose that a  is a separable element in R  over   )(/)(= RJRJTT   and )(xf  a partially 

irreducible polynomial over T  such that 0.=)(af  Then there exist a unique lift algebraic element Ra'   over 

T  such that 0=)( 'af  and aa' = . Then ][ 'aT  is determined by the field ][aT  in the sense that it does not 

depend up on the choice of .a  

Let R  be an artinian local ring such that R  is an absolutely algebraic field. Suppose that ),(1 xf  ][)(2 xPxf   are 

partially irreducible polynomials over P  such that ).(=)( 21 xfxf Let Ra  such that 0.=)(=)( 12 afaf  Then a  

has a lift algebraic element Ra 1  over P  such that 0=)( 11 af . So a lifting subring ][ 1aP  of ][aP  is determined by 

the polynomial )(1 xf  in the sense that it does not depend up on the choice of ][)( xPxfi  , 1,2.=i  

Let R  be a commutative local ring such that R  is an absolutely algebraic field, )(RJ  a nilpotent ideal. 

 i  If char 0=R , T  a subfield of R  and Rb  a lift algebraic element over P . Then ][bT  is a subfield of R; 

 ii  If char 
npR = , T  a Galois subring of R  and Rb  a lift algebraic element over P . Then ][bT  is a Galois subring 

of R. 

3   Coefficient subrings 

In this section we will fucose on the ranscendental extensions of certain rings and tried to find a coefficient subring of 
such rings. 

Definition 3 Let T  be a subring of a ring R . Then 

 i  Ra  is said to be an algebraic element over T  if it is satisfies a regular polynomial over T . 

 ii  Ra  is is said to be a transcendental element over T  if it is not algebraic element over T .  

It is easy to see that if R  is an artinian local ring such that R  is a field, Ra  is an algebraic element over P , 

then there exists a monic polynomial ][)( xPxf   such that 0=)(af . 

Lemma 4 Let R be a local ring with )(RJ  a nil ideal such that R is a field. Then Ra  is a transcendental 

element over RP  if and only if a is a transcendental element over .P R   

The lifting of an algebraic element over a residue field for a certain ring is a root of a lifting of the irreducible 
polynomial of that element, the uniqueness of the lifting element in a Hensel ring is the key point to show the 
existence of a coefficient subring, however a lifting of transcendental element is not a root for any polynomial, in the 

following proposition we will use the fact that for a transcendental element a , ][)(,)( aPafafa   is an 

algebraic element over P  and hence we can use Hensel lemma. 

Proposition 5 Let R  be a local ring such that for some  RRR =,  is a minimal ideal of R, RR /  is a 

commutative ring of characteristic 
np , RpRRJ =)(  and 0.=RpR   

Let )(\ RJRa  such that for some 0h  in .=, haahR  Then ).(RCa  

Proof: Let }=|{= yaayRyS  . Let RrSz  , . Then zrarazzarazr === . Hence RS = . Let 

)(RJx .Then sprx = , saparax = . At the same time Rraar   and 0=p  , therefore 

prapar = . Hence xaax = . Let Rb  be a unit. Then sbaab  ==  for some Rs , taabb  =1
 

for some Rt . Hence atataaabba )(=)(=)( 1  
. Thus ]][[=],[= 1 aPabbaPT 

 , where 
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t = . Observe that >)(,< afp  in ][aP  is a maximal ideal, so 
>)(,<

][

afp

aP
 is a field. 

Case 1. a  is lift algebraic element over P . Let )(xf  be a minimal polynomial of a  over P . This means 

)(xf  is monic, )(xf  is irreducible modulo )(PJ  and 0=)(af  is a root. As abb 1
 is also a root of )(xf  and 

it equals a  modulo )(TJ , therefore abba 1= 
. Hence baab = . 

case 2. a  is not lift algebraic. Suppose 0 . As P  is special primary ring, 0)( ag  for any 

][)(0 xPxg  . Thus we have natural mapping TyxP ]][[:  with  =)(,=)( yax  with 0=2y . It is 

monic on ][xP . ][
)(

aP
RJT

T



, which is a PID, )(][][ RJTaPapP   and 

][][ aPapP

T


 is a 

natural image of ][aP , which shows that )(=][][ RJTaPapP  . As )(=)( TJTannT  . Thus 

)(RJT

T
T


  , which is not simple. Similarly, ][=][=)(][ apPTaPRJaP  . Let ][)( xPxf   be 

any monic irreducible polynomial irreducible modulo p . Then >)(,< xfp  is a maximal ideal of ][xP . Now  

 
>)(,<

][

>),(,<

],[

xfp

xF

yxfp

yxP
 ,  

 

which is a field, hence >),(,< yxfp  is a maximal ideal of ],[ yxP . Under   its image is 

>),(,=< afpM . As 0=2y  , 
>)(,<

],[

xfp

yxP
 is a chain ring of composition length 2, then 

>)(<

>)(,<

xf

xfp
 is 

nilpotent. Hence 
>)(<

],[

xf

yxP
 is a Hensel ring with maximal ideal 

>)(<

>),(,<

xf

yxfp
. By using  , we get 

>)(<
=

af

T
T  is a Hensel ring with maximal ideal 

>)(<

>),(,<

af

afp 
 As abba 1, 

 both are roots of same 

irreducible polynomial, so they are equal modulo >)(< af . Hence ))()()((== 1 ahagafabba   
. 

Then )(=)(],[=)(][)()( apwagapPRJaPagaf   for some ][)( aPaw   as )(af  is not a zero 

divisor modulo ][apP , Then )()(=))()((1 awapfahaf . If ][)()(1 apPahaf  , then )(af  is a unit 

in P , which is a contradiction. Hence )()(1 agaf  is not a zero divisor in ][aP . Thus 0))()((1  agaf . 

As R  is simple, RRagaf  =))()((1 . This shows that pRRpRR   0, . This gives a 

contradiction. Hence 0= .  

The following example shows that the above result will not be true if pRR . 

Example 6 Let ],[=,= 2 yxSRZS p
  such that pyxxypyxxy  =,= . Then as 0=2p , we have 

11=  mkmkkm xmkpyxyyx . Thus , if p  divides m  or k , then 
mkkm xyyx = , ],[),( yxpSyxf   is regular. 

0==)( 2pyxxyp   , implies that pyxpxy = , and hence pgfpfg = , for any Rgf , . Now Rp   being 

isomorphic to 
Rp

R




 is noetherian. So R  is noetherian.  

Let G  be the set of all regular elements of R . Let Rgf ,  with 0g . Then  
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 pcgffg =  for some Rc  .  

 Suppose Gf  , and g  is also regular. Then  

 gvfupgcgfgpcggfgfgg =,==  ,  

where pcfgvRgu  =,= 2
 is regular. Suppose that Rpg  . Then gpg =  for some Gg  .  

 )(==== cgfggcggfcgpggfgpcggfgfg  .  

At the same time 0= 2  gpfgfg . Therefore 0)(  cgfg . Hence Gcgf  . This proves that R  satisfiesÂ… 

Ore condition on the right. Hence we have R , the right localization of R  at G . Then 0=)( 2pR  and any element of R  

outside pR  is invertible. Thus R  is a local ring and pR  is its minimal ideal. Here R  is non-commutative, 
pR

R
 is of 

characteristic pRRpIRpRp /),(=,  is commutative and we can assume pI= . 

It is clear that if in the above proposition we assume that RR /  is a field then the proposition will be also true. 

Proposition 7  Let R be a local ring such that for some ,R   RR =  is a minimal ideal of R, 

RR /  a commutative ring of characteristic p n  and 0=,=)( RpRRpRRJ   . Suppose that 

)(\, RJRba  . Then there exists Rh   such that  

 .)(=)( ahbhba   

Proof : Let aa  =  for some Ra  . Suppose such an h  exist. Then 

)(====,= aahtatatataahhabaabth   . If aa   is a unit, we can take 

))((= aabaabh  . Suppose aa   is a non-unit. Then  

  aaaa =0,=)(  .  

By Proposition 5, )(RCa , therefore, we may take 0=h . 

Definition 8 A subring [subfield ] T  of a ring R  is called a coefficient subring [subfield] if 

    RRJRJTT =)/(=   ei. ., )(= RJTR   and   qTRJTTJ ==)(  , where charq =  R . 

Definition 9 Let R  be a local ring with )(RJ  a nil ideal. Then R  is called an absolutely algebraic ring if every 

element in R  is algebraic over the prime subring P  of R , otherwise R  is called a transcendental extension.  

Let R  be a local ring with )(RJ  a nil ideal such that R  is a field. Let K  be the set of all algebraic elements in R  

over .P  it is clear that Kabba  ,  for any algebraic elements Rba ,  over .P  Hence K  is an absolutely 

algebraic ring. As )(RJ  is a nil ideal, KRJ )( . Since )(/= RJKK  is an absolutely algebraic subfield of .R  

Then K  is a local ring with )(=)( RJKJ  a nil ideal. 

Theorem 10 [2] Let R be an artinian local duo ring such that char 0=R  or 
np  and R  be an absolutely 

algebraic field. Then R has a coefficient subring. 

Moreover any coefficient subring of R is a generalized Galois ring and any two coefficient subrings of R  are 
isomorphic.  

Let R  be an artinian local duo ring with 2.=)(Rd  Then we have the following proposition which we will need it 

later. 
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Proposition 11 Let R  be a local duo ring with 2=)(Rd  and S   a commutative subring of R , let, Ryxb ,,  be 

three units elements such that ,, Sxb   Sy  such that bhyhybyxxy )(=)(,=   for some Rh  . If 0h  

then either x  or ).(RCb   

Proof : Here yxxybxxb =,= . As 2=)(Rd , clearly, ,=)( RpRRJ   where )
)(

(=
RJ

R
chp . Now 

Rybby  , therefore Rttybby  ,= . Thus byby 1= ,where hyy =1  for some Rh  . Now 

xbybxybyxbxyxbybxy 111 ===== , hence hxxhxyxy  =,= 11 . Thus, if 0h , then )(2 RCx . 

Suppose 0=h . Then so hbbhybby =,= . In this case )(RCb . 

Remark 12 Let R  be a local duo ring with )(RJ  a nilpotent ideal, and P  its prime subring. Let Rba ,  be 

algebraic elements over P . Then there exists a regular polynomial ][)( xPxf   such that 0=)(af , hence 

0=)(af . )(xf  is a non-zero polynomial over the fiÂ…eld P . Thus we can fiÂ…nd a monic polynomial of 

smallest degree of a  say )(xg  over P  such that 0=)(ag . Now ba   is algebraic over P . Let 

][)( xPxh   be a monic polynomial such that 0=)( bah  . Then 0=)(),()( sbahRJbah   for some 

0>s . Hence ba   is algebraic over P . Similarly, ab  is algebraic over P . Hence H  the set of all those 

elements of R  that are algebraic over P  is a subring of R . Now )()( HJRJH  . Let )(/ HJHa , then 

a  is a unit in R  and 1a
 is algebraic over P , which gives that 

1a  is algebraic over P . This proves that H  is a 

local ring with )(=)( RJHHJ  . Let L  be the set of all lift algebraic elements in R . Clearly HL . Let 

Lba , . Then ][=],[ cPbaP  for some Pc  which is lift algebraic over P . Now ][cP  is a Â…field or a 

Galois ring. As ][][ cPaP  , so ][][ cPaP  . Similarly ][][ cPbP  . Then ][= LPK  is a fiÂ…eld or a 

generalized Galois ring such that )(= HJKH  , and ][=
1= ii

aPK 


, with ][][ 1 ii aPaP . Let R  be 

a transcendental element over P . We want find for some zRJz  ),(  commutes with every ia , if 

0=,=)( RpRRpRRJ    , then by Proposition 6, there exists )(RJhi   such that  

 iiii ahha )(=)(   .  

Suppose that 1 nn hh . Then as 11],[][   nnn haPaP   commutes with na . Then 0=han , where 

nn hhh 1= , and hence ).(RCan   Thus, if for any n , there exists an nm >  such that 1 mm hh , then 

)(RCK  , in this case we can choose 0=h . Otherwise, there exists an n  such that nm hh =  for every 

nm > . Then nhh = . Thus we can take   such that   commutes with every ia . We get a commutative subring 

][K . We can localize it at its regular elements and get 1K , as K  is a union of an ascending chain of subrings 

each of which is generated by an element over P . Suppose that we have a transcendental element   which is 

algebraically independent from   over P . To get analogous commutative subring ][1 K , we aim to find an 

element, say   commuting with all ,ia . 

 Now, if 0=,=)( RpRRpRRJ   then by Proposition 7, there exists )(RJh  such that  

  )(=)( hh  .  

Let )(= h  . Then   =  and as in above remark there is )(RJh  such that h  commutes 

with every ia . Now, for 2=)(Rd  we can use Proposition 11 and get, if 0h  then either   or )(RCai   for 
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all .i  Therefore ][1 K  is a commutative subring of R . 

Theorem 13 Let R be a transcendental extension local duo ring with 0=charR , 2=)(Rd  and R  is a field. 

Then R  has a coefficient subfield.  

Proof:  Let K  be the subring of all algebraic elements in R  over its prime subring P . We can find a subfield 

][=
1=

i
i

aPH


  of K  with each ia  an algebraic element over Q=P  such that 

 

 ).(= RJHK   

Suppose that R  is a transcendental element over .P  Then there exists )(RJh  such that ][ hH   is a 

commutative subring of R . As   is transcendental over H , h  is also transcendental over .H  So we can 

find ,][ iiH   such that each i  is transcendental and iiHR ][=  , so iiH ][  is an integral domain. Since R  

is a local ring, R  contains the inverses of all non-zero elements in iiH ][ . So R  contains the quotient field 

iiH )(  of iiH ][ . Now 

 )()(= RJHR ii   

Thus iiH )(  is a coefficient subfield of R . 

Theorem 14 Let R be a transcendental extension artinian local duo ring with char 0=R  and R  is a field. Then 

R  has a coefficient subfield. 

Proof : We will prove the result by induction on )(Rd . Let 2=)(Rd . Then by Theorem 13, R  has a coefficient 

subfield. Suppose that for 1)( mRd , 3m , R  has a coefficient subfield. Let ,=)( mRd  RRR' /= , 

where R  is a minimal right  ideal of R . Let K  be the subring of all algebraic elements in R  over P  and suppose 

that ,)(= iiKR   for some transcendental elements i in R  over .P  As R  is an artinian local duo ring, 
'R  is 

an artinian local duo ring with 1=)( mRd '
. So 

'R  has a coefficient subfield, say RT / , where T  is a subring 

of R  containing some i

'

i   . Since RT /  is a field, RTJ =)(  and hence  

  RRJRTRR  //=/   

 .)/(/= RRJRT    

So  

 ).(= RJTR   

Thus  

 .=,=  TRTR  

Therefore  TT =  is a minimal ideal of T  and hence T  is an artinian local duo ring such that 0=)(2 TJ . So 

2=)(Td . By Proposition 13, T  has a coefficient subfield, say F . Now  

 )(= RJTR   

 )()(= RJTJF   
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 ).(= RJF   

Hence F  is a coefficient subfield of .R  

Proposition 15 Let R be a transcendental extension local duo ring with char 
npR = , 2=)(Rd  and R  a 

field. Then R  has a coefficient subring. 

Proof: Let K  be the subring of all algebraic elements in R  over P , we can find a generalized Galois ring 

][=
1=

0 i
i

aPK


  such that ).(= 0 RJKK  Suppose that .,)(= iiKR   for some transcendental element i  in 

R  over .P  So there exists an element )(RJhi   such that iii hK ][0   is a commutative subring of R . Now 

0K  is a special primary ring. Since R  is an artinian local ring, the non-zero divisor elements in iii hK ][0   are 

units in R . R  contains the total qoutient ring of ,][0 iii hK   say ,)][(= 00 Piii hKR  where 

.][= 0 iii hpK P  Now 000 =)(=)( pRRJRRJ   and ).(= 0 RJRR   Thus 0R  is a coefficient subring 

of .R   

Theorem 16 (The main Theorem) Let R be a transcendental extension artinian local duo ring with char 

npR =  and R  is a field. Then R  has a coefficient subring.  

Proof: We will prove the result by induction on )(Rd . Let 2=)(Rd . Then by Proposition 13, R  has a 

coefficient subring. Suppose that for 1,=)( mRd  3,m  R  has a coefficient subring. Let mRd =)( . Let 

NRR' /= , where N  is a minimal right ideal of R . Then RN =  for some R . Let K  be the subring of all 

algebraic elements in R  over P  and suppose that ,)(= iiKR   for some transcendental elements .Ri   Now 

'R  is an artinian local duo ring with char  ,=
'n' pR  where nn'   and 1.=)( mRd '

 Hence 
'R  has a 

coefficient subring, say ./NT  Therefore ).(= RJTR  As ),/(=)/( NTpNTJ Since R  is a minimal ideal, 

TR  =  and .=  TR So  TT =  is a minimal ideal of RTT =, is a field. Thus T  is a local ring with 

)(=)( RJTTJ   a nilpotent ideal. Let   )(/)(= TJTJPP   and consider an element PTTJa \)(   

algebraic over .P  Then there exists a lift algebraic element )(TJaa'   in T  over P such that ][ 'aP  is a 

Galois subring of R . If )]([\)( TJaPTTJb   is an algebraic element over P , then there exist an element 

)(TJbb'   in T  such that ],[= '' baPL  is a Galois subring of T . As ),(=)( RJKJ  

 .)( iiKT   

Since i  is a transcendental element over P , )(TJ'

i   is a transcendental element over P . As K  is an 

absolutely algebraic field,  

 ,))(()]([=
1=

i

'

ij
j

TJTJaPT 











  

for each )(, TJaj j   is an algebraic element over P . Now ][ 1aP  contains a lift algebraic element 1b  such that 

.= 11 ab  Suppose for some ,n   <1 n , we found a lift algebraic elements ,,,1 nbb   jj ab   such that 

][][ 1 jj bPbP  for 1.1  nj  Put ].[= nn bPT  Then ).())/((==)]([ TJTJTTTJaP nnn   Since  

 )],([)]([ 1 TJaPTJaP nn    
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then as seen above there exists Tcn 1  such that ],[ 1nn cbP  is a Galois subring of T , 

).(=)( 11 TJaTJc nn    So ][=],[ 11  nnn bPcbP  for some lift algebraic element Tbn 1  over P . Put 

].[= 11  nn bPT  Then  

 ,=)]([ 11   nn TTJaP  

and .1 nn TT  Hence by induction, we get ascending chain  
1=nnT  of Galois subrings of T  such that  

 )],([= TJaPT nn   

for every n . Let .=
1=

0 n
n

TT


  Then 0T  is a generalized Galois subring of T  and there exists Thi   such that 

ii

'

i hT ][0   is a commutative subring of T . Thus T  contains the ring of quotients 0R  of ii

'

i hT ][0   with 

respect to ii

'

i hpT ][= 0 P . Now ).(==)(,)]([= 00000 TJRpRRJhTR ii

'

i  P  ).(= 0 TJRT  Now 

).(=)(),(= 000 RJRRJRJRR   Thus 0R  is a coefficient subring of R .  

Theorem 17 Let R be a transcendental extension artinian local duo ring with char 
npR =  and R  is a field. 

Then any coefficient subring of R is a transcendental extension of a generalized Galois subring. Moreover any two 
coefficient subrings of R are isomorphic. 

Proof: Let T  be coefficient subring of R . Then )(= RJTR  , pTTRJTJ =)(=)(   and hence RT   

is a transcendental field extension of an absolutely algebraic field. So T   has a finite composition length and all one 

sided ideals are of the form niTpi ,0  . Then T  is an artinion duo ring and hence it has a coefficient subring 

0T  which is a transcendental extension of a generalized Galois subring. We can easly see that 0= TT .a 

transcendental extension of a generalized Galois subring in .R . Moreover, let us suppose that  
PiiKT ][=   and 

  'i

'

i

'' KT
P

][=   are two coefficient subrings of ,R we can choose 
'

i  such that 
'

ii  =  transcendental 

elememts and 
'KK ,  are generalized Galois subrings of R .. Then it is clear that 

'KK   and from [2] ,  we get 

.'KK   Let 
'KK :  be an isomorphism. So we get an isomorphism i

'

i

'

ii

' KK ][][:    that extends 

,  such that   ,= '

ii

'   for all i . Let .][= iipK P  Then   '

i

'

i

'

ii pKpK P=][=][   and 
'  extends to 

the isomorphism     .][][: 'i

'

ii

' KiK
PP

   This proves the result.  
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