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ABSTRACT 

This paper deals with a new generalization of the Weibull distribution. This distribution is called exponentiated 
exponentiated exponential-Weibull (EEE-W) distribution. Various structural properties of the new probabilistic model are 
considered, such as hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, 
Shannon entropy and Rényi entropy. The maximum likelihood estimates of its unknown parameters are obtained. Finally, 
areal data set is analyzed and it observed that the present distribution can provide a better fit than some other known 
distributions. 
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INTRODUCTION  

The statistic literature is filed with hundred of continuous univariat distributions; see Johnson et. al., [1, 2]. Recent 
developments focus on new techniques for building meaningful distributions, including the two piece approach introduced 
by Hansen [3], the perturbation approach of Azzalini and Capitanio [4] and the generator approach pioneered by Eugene 
et. al., [5]. Many subsequent articles apply these techniques to introduce a skew in to well-known symmetric distributions 
such as the Student t; see Aas and Haff [6]. Numerous classical distributions have been extensively used over the bast 
decades for modeling data in several areas such as engineering and actuarial. However in many applied areas there is a 
clear need for extended forms of these distributions. Some attempts have been made to define new families of probability 
distribution. One such example is a abroad family of univariate distributions generated from the Weibull distribution 
introduced by Gurvich et. al., [7]. 

The Weibull distribution is a very popular model and it has been extensively used over the past decades for modeling data 
in reliability engineering and bio-logical studies. It is generally adequate for modeling monotone hazard rates. The hazard 
rate function of the Weibull distribution can only be increasing, decreasing or constant. For many years, researchers have 
been developing various extensions forms of the Weibull distribution. For some extended forms of the Weibull distribution 
(see, for instance, Bebbington et. al., [8], Zhang and Xie [9], Xie et. al., [10], Carrasco et. al., [11], Sarhan and Zaindin [12] 
and Almalki and Yuan [13]. Also, Xie and Lai [14] proposed a four-parameter additive Weibull (AW) distribution based on 
combining the failure rates of tow Weibull distributions: one has a decreasing failure rate and the other one has an 
increasing failure rate. 

In the last years, several ways of generating new probability distributions were developed and discussed. Eugene et. al., 
[5] proposed a general class of distributions based on the logit of a beta random variable by employing two parameters 
whose role is to introduce Skewness and to vary tail weights. An extension of the beta-generated method was proposed in 
Cordiro and de Castro [15] by using the Kumaraswamy distribution instead of beta distribution. Following Eugene et al [5], 
who defined the Beta Normal (BN) distribution. Nadaraga and Kotz [16] introduce the beta Gumbel distribution (BGa). 
Nadaraga and Gupta [17] defined the Beta Fréchet (BF) distribution. Nadaraga and Kotz [18] proposed the beta 
exponential (BE) distribution.   

Recently, Alzaatreh et. al., [19] developed a new method to generate family of distributions and called it the  family of 
distributions. This new class of distributions is defined as:  
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Following Alzaatreh et. al., [20], who defined above family, Alzaatreh et. al., [19] defined the Weibull-Pareto distribution by 

taking ( )r t   to be the Weibull distribution and   ( )f x    to be the Pareto distribution and Alzaatreh et. al., [21] introduced 

the gamma-normal distribution by taking   ( )r t  to be the gamma distribution and ( )f x    to be the normal distribution. 

Alzaghal et. al., [22] defined a new family of distributions called exponentiated  T X  distribution by define the upper limit 

in Equation (1) to be log(1 ( ))cF x  .  

Definition: (See Alzaatreh et al. [19]) : 

Let ( )r t
 
  be the p. d. f. of the random variable [ , ]T a b   , for a b       and let  [ ( )]W F x   be a 

function of the cumulative distribution function (c. d. f.) of the random variable  X  such that [ ( )]W F x    satisfies the 

following conditions: 

(i) [ ( )] [ , ]W F x a b   , 

(ii) [ ( )]W F x  is differentiable and monotonically non-decreasing, and  

(iii)
 

[ ( )]W F x a  as X     and  [ ( )]W F x b  as X   . 

Then according to the above definition, Alzaatreh et. al., [19] defined  T X  family of distributions by 
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Let  ( )r t  be the probability density function (p. d. f.) on a nonnegative continuous random variable  t  defined on 

[0, )   , and let  ( )F x   denote the c. d. f. of random variable X. The c. d. f. of Exponentiated T X  class of 

distributions for a random variable  x   is defined by, see Alzaghal et. al., [22] 
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In this new class, the distribution of random variable t is the generator. The new family of distributions generated from 
equation (3) is called “Exponentiated   distributions”.We will defined the exponentiated exponentiated exponential–X 
(EEE–X) distribution from equation (3) by taking   to be EE distribution with p. d. f. defined as 

1( ) (1 )t tr t e e       .                                         (7)  

Then the p. d. f. of the EEE –X family is given by : 

1 1 1( ) ( ) ( )(1 ( )) ) (1 ( )) , 0c c cg x c x F x F x F x x                         (8) 

The rest of the article is organized as follows. We introduce the EEE-W distribution in Section 2. A range of mathematical 
properties are considered in Sections 3., quan-tile function, random number generating, skewness, Kurtosis, moment 
generating function and moments. Two popular entropies are investigated in section 4, namely Shannon entropy and 
Rényi entropy and we get some numerical values for each one. Estimation by the method of maximum likelihood is 
presented in Section 5. Finally, Application of the distribution to a real data set is provided in Section 6. 
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Figure 1. Plots of EEE-W density function for some values of the parameters 

 

2. THE EEE-WEIBULL DISTRIBUTION: 

If X~Weibull distribution with p. d. f. . 1 ( )( ) xf x x e
        , 0x   . Then, from Equation (8), the p. d. f. of 

EEE-W distribution defined as 

     
1 ( ) ( ) 1 ( ) 1( ) ( )(1 ) (1 (1 (1 ) ) )x x c x cg x c x e e e

                      

( ) 1(1 (1 ) )x ce
                                                           (9) 

From (5) we obtain the c. d. f. of EEE-W distribution as: 
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From Eqs. (9) and (10) we can define the hazard function of EEE-W distribution as follow: 
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where, 

                 ( ) 1 ( ) 1( ) (1 (1 (1 ) ) ) (1 (1 ) )x c x cx e e
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                     Figure 2. Plots of EEE-W hazard rate function for some specific values of the parameters 

Figures 1 and 2 provide some plots of the EEE-W density and hazard rate curves for selected values of parameters. From 
these figures it is immediate that the   p. d. f. ca be reversed –J, decreasing, right-skewed and symmetric and the hazard 
rate function can be decreasing, increasing and bathtub shaped. Hence, the EEE-W distribution can be very useful in 
fitting different data sets. 

3. STATISTICAL PROPERTIES OF EEE-W. 

In this section, we obtain some statistical properties of the new model, including quantile function, random number 
generating, Skewness, Kurtosis, moment generating function and moments. 

3.1. Quantile function and random number generating. 

For a non-negative continuous random variable X that follows the EEE-W distribution, the quantile function qx  is given by 
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In particular, the distribution median is 
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The random number generation as X of EEE-W is defined by the following relation 
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One can use (13) to generate random numbers when the parameters   ,  ,  ,  and c are known 

3.2. Skewness and kurtosis based on quantiles. 

Skewness measures the degree of the long tail and Kurtosis is a measure of the 

degree of tail heaviness. Based on quantile function  ( )Q   , Galton [23] and Moors [24] defined the Skewness and 

Kurtosis, respectively, as 
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Therefore, Galton's Skewness and Moors' Kurtosis of the quantile function defined by (12) can be get easily. Figure 3 
illustrated the graphical representation of the Galton Skewness and Moors Kurtosis as a function of    

 

Figure 3. Plots of Galton Skewness  and Kurtosis for the EEE-W as a function of  . 

3.3. The moment generating function. 

The moment generating function (m.g.f.) of EEE-W distribution can be given as follow 
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By using the following series expansion 
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 Hence, the m.g.f. defined as 
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3.4. The moments. 

The moments of EEE-W distribution can be given as follow 
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By using Eqs. (15), (16) and (17), we have 
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Remark: 

The mean and the variance of EEE-W are reported in Table 1 for some values of , , ,c     and   . It is observed that, 

mean and variance decreasing as the values of the parameters  ,   and    increasing. When the values of c and    

are increase, the mean and variance increase. 

                                   Table 1: Mean and variance for some arbitrary parameter values. 

Parameters 1, 1    1, 1    

c Mean Variance 

0.1 0.153461 0.211635 

0.5 1.08677 0.710132 

1.5 1.28037 1.15458 

2 1.5 1.25 

  1, 1c    1, 1    

0.1 0.153461 0.211635 

0.5 0.613706 0.710132 

1.5 1.28037 1.15458 

1.9 1.45972 1.23397 

  1, 1c    1, 1    

0.4 2.5 6.25 

0.6 1.66667 2.77778 

0.8 1.25 1.5625 

1.2 0.833333 0.694444 


 

1, 1c    1, 1    

0.3 3.33333 11.1111 

0.6 1.66667 2.77778 

0.9 1.11111 1.23457 

1.2 0.833333 0.694444 


 1, 1c    1, 1    

0.4 3.32335 108.955 

0.8 1.133 2.03965 

1.2 0.940656 0.619742 

1.5 0.902745 0.37569 

 

4. ENTROPIES. 

Entropy is measure of the randomness of systems and it is widely used in areas like physics, molecular imaging of tumors 
and sparse kernel density estimation. Two popular entropy measures are the Shannon entropy (Shannon [25]) and Rényi 
entropy (Rényi [26]) 
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respectively, where 0    and 1  . 

4.1. Shannon entropy. 

The Shannon entropy for the ET–X  family defined by Alzaghal et. al., [22] as 

1 1/ 1
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Then, from Equation (21) the Shannon entropy of EEE-W distribution is defined by 
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and 

      log( ) (1) (1 ) ( 1)T             , 

are the mean and Shannon entropy for the Weibull distribution, respectively. 

Remark. 

Some numerical values for the Shannon entropy are displayed at Table 2. It can be observed that this entropy decreasing 

with increasing ,     and      and can have negative values.                        

                                           Table 2: Shannon entropy for some arbitrary parameter values. 

Parameters 1, 1    2, 1    

C  Shannon entropy 

2  0.613706 

2.5  0.670934 

3.5  0.734462 

5  0.780748 

  1, 3c    0.4, 1    

1.5  0.815923 

2  0.833236 

3  0.850365 

5  0.863935 

  2, 1c    2, 1    

2  0.0872251 

3  0.201573 

4  0.398779 

5  0.547716 


 

2, 3c    1, 1    

3  0.392962 

4  0.10528 

5  0.117864 
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7  0.454336 


 1, 2c    1, 3    

2  0.542872 

3  0.967659 

4  1.265 

5  1.49394 

 

4.2. Rényi entropy. 

Let ~X    EEE-W ( , , , , )c      , then the corresponding Rényi entropy is obtained as: 
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Remark. 

Some numerical values for the Renyi entropy are displayed at Table 3. It can be observed that this entropy decreasing 

with increasing     and     and can have negative values. 

                     Table 3: Rényi entropy for some arbitrary parameter values.  

Parameters 0.2, 3    0.4, 1    

C
 

 Rényi entropy 

1  0.249183 

1.1  0.374287 

1.2  0.484313 

1.3  0.582012 

  1, 3c    0.4 1 = =  

0.01  2.51181 

0.02  1.83229 

0.03  1.44028 

0.05  1.23397 

  1, 0.05c    0.4 1 = =  

1.1  0.0473772 

1.2  0.0396342 

1.4  0.1937850 

1.6  0.3273160 


 

1, 0.05c    1.8 1 = =  

0.2  0.248048 

0.4  0.445099 

0.6  0.850564 

0.8  1.13825 
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 1, 0.05c    1.8 0.8 = =  

1.1  1.0999 

1.3  1.01836 

1.5  0.937665 

1.7  0.861333 

 

5. MAXIMUM LIKELIHOOD ESTIMATION. 

 Consider the random variable X  follows Weibull distribution and let ( , ,c   , , )    be the parameter Vector.  

The log-likelihood ( )   is given by 
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On taking the partial derivatives of the log-likelihood in Equation (24) with respect to , , ,c     and  and equating the 

derivatives to zero, we have 
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(29) 

Solving these equations numerically using the statistical software Mathimatica package yields the maximum likelihood 

estimators (MLEs) ˆ ˆ ˆˆ ˆ ˆ( , , , , )c      of ( , , , , )c      

6. REAL DATA APPLICATION. 

Here, we illustrate the applicability of EEE-W distribution by considering the  

following dataset. We fitted the following distributions to data set: Weibull distribution, Gamma distribution, modified 
Weibull distribution and transmuted Weibull distribution: 

• Weibull distribution  (W ( , )   ): 

1 ( )( ) , , , 0xg x x e x
        , 

• Gamma distribution (Ga ( , )k   ): 

11
( ) , , , 0

[ ]

x
k

k
g x x e x k

k

 


 


, 

• Modified Weibull (MW ( , , )   ): 

1( ) ( ) , , , , 0x xg x x e x
            , 

• Transmuted Weibull (TW ( , , )    ): 

1
( ) ( )

( ) (1 2 ), , , 0, | | 1
x xx

g x e e x
 

 




    
 


  

     
 

. 

For illustrative purposes, we estimate the unknown parameters of each distribution by the maximum-likelihood method, 
and with these obtained estimates; we obtain the values of Akaike Information Criterion (AIC), and Hannan-Quinn 
Information Criterion (HQIC). The following dataset acts the breaking stress of carbon fibers of 50 mm in length (Nichols 
and Padgett [27]) and listed in Table 4. 

Additionally, to compare the models, we used four other criterions: 

• Kolmogorov-Smirnov test statistics (K-S) - small value is good. 

• The P-value from the chi-square goodness-of-fit test-large value is good. 

• Negative log-likelihood-small value is good. 

• Cramer-von Mises 
*( )W  goodness-of-fit statistic-small value is good. 

• Anderson-Darling 
*( )A  goodness-of-fit statistic-small value is good. 

The results for the dataset are presented in Tables 5, 6, 7 and 8. From these results indicate that the EEE-W distribution 
has the smallest values of the AIC, HQIC, K-S ,  ,   and the largest value of p-value are obtained for the EEE-W 
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distribution. Therefore, we conclude that the EEE-W distribution provides the best fit among the compared distributions. 
Table 9 gives some descriptive statistics for dataset and it is noted that the dataset has negative Kurtosis. 

Table 4: Breaking stress of carbon fibers data. 

3.70 2.12 2.95 4.70 1.25 3.22 1.69 3.27 2.87 1.47 3.11 

3.65 2.74 3.15 2.97 2.03 4.38 3.39 3.28 3.09 1.87 3.15 

4.90 4.42 2.73 1.08 3.39 1.89 1.84 2.81 4.20 3.33 2.55 

3.31 1.57 2.41 2.50 2.56 2.96 2.88 0.39 3.68 2.48 0.85 

1.61 3.31 2.67 3.19 3.60 1.80 2.35 2.82 2.05 3.65 3.75 

2.43 2.79 2.85 2.93 3.22 3.11 2.53 2.55 2.59 2.03 1.61 

 

Table 5: The MLEs of the parameters for some models fitted to the Breaking stress of carbon fibers 
data. 

Distribution Estimates 

( , )W    0.345 2.000       

( , )G a k   13.384 0.200       

( , , )M W     251.1 10  0.063 2.543     

( , , )T W     1.899 2.355 0.983     

( , , , , )E E EW C      0.986 0.819 1.630 0.273 3.884 

 

Table 6: The values of AIC and HQIC statistics for some models fitted to Breaking stress of carbon 
fibers data. 

 

 

 

 

Table 7: The values of K-S, p-value and -Log L statistics for some models fitted to Breaking stress of 
carbon fibers data. 

Distribution K-S p-value  log L 

W 0.226512 0.00228941 98.2083 

Ga 0.141662 0.14139700 98.6540 

MW 0.177923 0.03063720 90.7509 

TW 0.151172 0.09792410 89.8759 

EEEW 0.0810598 0.77867900 85.9468 

 

Distribution AIC HQIC 

( , )W    200.417 202.147 

( , , )EW     203.213 205.809 

( , )G a k   201.308 203.039 

( , , )M W     187.502 190.098 

 

 

 

( , , )T W     185.752 188.348 

( , , , , )E E EW C      181.849 186.22 



I S S N  2 3 4 7 - 1 9 2 1  
  V o l u m e  1 3  N u m b e r  3  

J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

7217 | P a g e                                                                        

A p r i l ,  2 0 1 7                                             h t t p s : / / c i r w o r l d . c o m /  

 

Table 8: The values of 
*W  and 

*A   statistics for some models fitted to Breaking stress of carbon fibers data. 

 

 

 

 

 

 

 

Table 9: Descriptive statistics of the EEE-W distribution for the Breaking stress of carbon fibers 
data 

Mean Median SD MD-mean MD-median 

2.75955 2.835 0.891455 0.683223 0.678939 

Skewness Kurtosis S. Entropy Min. Max. 

-0.13046 0.17421 0.891455 1.25 4.90 

                   

MD = Mean deviation, S = Shannon 
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