Oscillation Results for First Order Nonlinear Neutral Difference Equation with "Maxima"

S.Rajan¹ and K.Malathi²

malathiilan@gmail.com

ABSTRACT

In this paper we consider the first order nonlinear neutral difference equation with maxima of the form

$$\Delta \left(\, x_n \, + \, p x_{n-k} \, \right) \, + \, q_n \max_{\left[\left[n - m, n \right] \right]} \, x_s^{\, \alpha} \, = 0 \; , \; \; n \; \; \in \; \; N_0$$

and established some sufficient conditions for the oscillation of all solutions of the above equation . Examples are provided to illustrate the main results .

2010 AMS Subject Classification: 39A10

Keywords and Phrases: First order; oscillation; neutral difference equation with "maxima".

1 INTRODUCTION

Consider the first order nonlinear neutral difference equation of the form

$$\Delta$$
 (x_n + px_{n-k}) + $q_n \max_{[n-m,n]} x_s^{\alpha} = 0$, $n \in N_0$

(1.1)

where Δ is the forward difference operator defined by Δ $x_n = x_{n+1} - x_n$ and $N_0 = \{ n_0, n_0 + 1, n_0 + 2, \dots \}$, subject to the following conditions :

- $\{ C_1 \}$ is a positive real sequence;
- (C_2) k and ℓ are positive integers and $0 \le p < \infty$;
- (C_3) α is a ratio of odd positive integers.

Let $\theta = \max\{k, \ell\}$. By a solution of equation (1.1) we mean a real sequence $\{x_n\}$ defined for all $n \ge n_0 - \theta$ and satisfying equation (1.1) for all $n \ge n_0$. A solution $\{x_n\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise.

In recent years there is a great interest in studying the oscillatory behaviour of first order nonlinear neutral type difference equations without "maxima", see for example [1,2,3,5,7] and the references cited therein. In [5,7], the authors studied the oscillatory behaviour of solutions of equation (1.1) when α = 1 and without "maxima". Motivated by these observation, in this paper we obtain some sufficient conditions for the oscillation of all solutions of equation (1.1) when α < 1, α > 1 and α = 1.

In Section 2, we establish some sufficient conditions for the oscillation of all solutions of equation (1.1) and in Section 3, we present some examples to illustrate the main results.

2 Main Results

To prove our main results we need the following lemmas.

Lemma 2.1. If $A \ge 0$, $B \ge 0$ and $0 < \alpha \le 1$, then

$$A^{\alpha} + B^{\alpha} \ge (A + B)^{\alpha}. \tag{2.1}$$

Lemma 2.2. If $A \ge 0$, $B \ge 0$ and $\alpha > 1$, then

$$A^{\alpha} + B^{\alpha} \ge [1/(2^{\alpha-1})](A + B)^{\alpha}.$$

2.2)

For the proof of Lemmas 2.1 and 2.2, see [4].

¹ Department of Mathematics, Erode Arts and Science College, Erode – 638009, Tamil Nadu, India.

² Department of Mathematics ,Kongu Arts and Science College , Erode – 638107 , Tamil Nadu , India .

Lemma 2.3. If $0 < \alpha < 1$, ℓ is a positive integer and $\{q_n\}$ is a positive real sequence with $\sum_{n=n_0}^{\infty} q_n = \infty$, then every

solution of equation

$$\Delta x_n + q_n x_{n-\ell}^{\alpha} = 0 , \qquad ($$

2.3)

is oscillatory.

Lemma 2.4. If $\alpha = 1$ and

$$\lim_{n \to \infty} \inf \sum_{s=n-\ell}^{n-1} q_s > [\ell/(\ell+1)]^{\ell+1},$$

2.4)

then every solution of equation (2.3) is oscillatory.

Lemma 2.5. Let $\alpha > 1$. If there exists a $\lambda > (1/\ell) \log \alpha$ such that

$$\lim_{n\to\infty}\inf\left[q_n\exp\left(-e^{\lambda n}\right)\right] > 0,$$

2.5)

then every solution of equation (2.3) is oscillatory.

For the proof of Lemmas 2.3 and 2.5, see [6], and Lemma 2.4, see [3].

Lemma 2.6. The sequence $\{x_n\}$ is an eventually negative solution of equation (1.1) if and only if $\{-x_n\}$ is an eventually positive solution of equation

$$\Delta \left(x_n + p x_{n-k} \right) + q_n \max_{[n-m,n]} x_s^{\alpha} = 0, n \in \mathbb{N}_0.$$

The assertion of Lemma 2.6 can be verified easily.

Before stating the next theorem, let us define

$$Q_n \, = \, min \, \{ \, q_n \, , \, q_{n-k} \, \} \, \, \text{for} \, \, n \, \, \in \, \, N_0 \, . \tag{2.6} \,)$$

Theorem 2.1. Let $0 < \alpha \le 1$. If the first order neutral difference inequality

$$\Delta w_n + [1/(1+p^{\alpha})^{\alpha}] Q_n \max_{[n-m,n]} w_{s+k}^{\alpha} \le 0,$$
 (

2.7)

has no positive solution, then every solution of equation (1.1) is oscillatory.

Proof. Let $\{x_n\}$ be a nonoscillatory solution of equation (1.1). Without loss of generality we may assume that $x_n > 0$ and $x_{n-k} > 0$ for all $n \ge n_1 \ge n_0 + \theta$. Then $z_n = x_n + px_{n-k} > 0$ for all $n \ge n_1$.

From the equation (1.1), we have

$$\Delta z_n + q_n \max_{[n-m,n]} x_s^{\alpha} = 0, \qquad ($$

2.8)

and

$$p^{\alpha} \Delta z_{n-k} + p^{\alpha} q_{n-k} \max_{[n-k-m,n-k]} x_{s}^{\alpha} = 0.$$
 (

2.9)

Combining (2.8) and (2.9), and then using (2.6) we get

$$\Delta \left(z_{n} + p^{\alpha} z_{n-k} \right) + Q_{n} \left(\max_{[n-m,n]} x_{s}^{\alpha} + p^{\alpha} \max_{[n-k-m,n-k]} x_{s}^{\alpha} \right) \leq 0.$$

2.10)

Applying Lemma 2.1 in inequality (2.10), we obtain

$$\Delta (z_n + p^{\alpha} z_{n-k}) + Q_n \max_{[n-m,n]} (x_s + px_{s-k})^{\alpha} \le 0$$

Or

$$\Delta \left(z_{n} + p^{\alpha} z_{n-k} \right) + Q_{n} \max_{[n-m,n]} z_{s}^{\alpha} \leq 0.$$

2.11)

Let $w_n = z_n + p^{\alpha} z_{n-k}$. Then $w_n > 0$ and using the decreasing nature of z_n , we obtain

$$W_n \leq (1 + p^{\alpha}) z_{n-k}$$

Or

$$(w_{n+k})/(1+p^{\alpha}) \leq z_n.$$
 (

2.12)

Substituting (2.12) in (2.11), we get that $\{w_n\}$ is a positive solution of the inequality

$$\Delta \, w_n \, + \, [\, 1 \, / \, (\, 1 + p^{\alpha}\,)^{\alpha}\,] \, Q_n \, \max_{[n-m,n]} \, w_{\,s+k}^{\, \alpha} \, \leq \, 0 \; ,$$

which is a contradiction . The proof is now complete.

Theorem 2.2. Let $\alpha > 1$. If the first order neutral difference inequality

$$\Delta w_n + [1/(1+p^{\alpha})^{\alpha}] 2^{1-\alpha} Q_n \max_{[n-m,n]} w_{s+k}^{\alpha} \leq 0,$$
 (

2.13)

has no positive solution, then every solution of equation (1.1) is oscillatory.

Proof . Let $\{x_n\}$ be a nonoscillatory solution of equation (1.1). From the proof of Theorem 2.1, we have (2.10). Now applying Lemma 2.2 to (2.10), we obtain

$$\Delta (z_n + p^{\alpha} z_{n-k}) + 2^{1-\alpha} Q_n \max_{[n-m,n]} z_s^{\alpha} \le 0.$$
 (

2.14)

Let $w_n = z_n + p^{\alpha} z_{n-k}$. Then $w_n > 0$ and using the decreasing nature of z_n , we obtain

$$W_n \leq (1 + p^{\alpha}) z_{n-k}$$

Or

$$(w_{n+k})/(1+p^{\alpha}) \le z_n$$
.

2.15)

Substituting (2.15) in (2.14), we get that $\{w_n\}$ is a positive solution of the inequality

$$\Delta w_n + [1/(1+p^{\alpha})^{\alpha}] 2^{1-\alpha} Q_n \max_{[n-m,n]} w_{s+k}^{\alpha} \le 0$$

which is a contradiction . The proof is now complete .

Corollary 2.1. Let m > k and 0 < α < 1 in equation (1.1). If

$$\sum_{n=n_0}^{\infty} Q_n = \infty , \qquad ($$

2.16)

then every solution of equation (1.1) is oscillatory.

Proof. From Lemma 2.3 we see that the condition (2.16) implies that the inequality (2.7) has no positive solution and hence the proof follows from Theorem 2.1.

Corollary 2.2. Let m > k and $\alpha = 1$ in equation (1.1). If

$$\lim_{n \to \infty} \inf \sum_{s=n-m+k}^{n-1} Q_s > (1+p)[(m-k)/(m-k-1)]^{\ell-k+1}$$

2.17)

then every solution of equation (1.1) is oscillatory.

Proof . From Lemma 2.4 we see that the condition (2.17) implies that the inequality (2.7) has no positive solution and hence the proof follows from Theorem 2.1.

Corollary 2.3. Let m > k and $\alpha > 1$ in equation (1.1). If there exists a $\lambda > 0$ such that $\lambda > [1/(m-k)]\log \alpha$ and

$$\lim_{n\to\infty}\inf\left[Q_n\exp\left(-e^{\lambda n}\right)\right]>0, \qquad \qquad (2.18)$$

then every solution of equation (1.1) is oscillatory.

Proof. From Lemma 2.5 we see that the condition (2.18) implies that the inequality (2.13) has no positive solution and hence the proof follows from Theorem 2.2.

3 Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the neutral difference equation

$$\Delta (x_n + 2x_{n-2}) + 6 \max_{[n-4,n]} x_s^{1/3} = 0, n \ge 1.$$
 (3.1)

Here p=2, $q_n=6$, k=2, m=4, $\alpha=1/3$. It is easy to see that all conditions of Corollary 2.1 are satisfied. Hence every solution of equation (3.1) is oscillatory. In fact $\{x_n\}=[(-1)^{3n}]$ is one such solution of equation (3.1).

Example 3.2. Consider the neutral difference equation

$$\Delta (x_n + 2x_{n-2}) + [(6n-5)/(n-4)] \max_{[n-4,n]} x_s = 0, n \ge 5.$$
 (3.2)

Here p=2, $q_n=(6n-5)/(n-4)$, k=2, m=4, $\alpha=1$. It is easy to see that all conditions of Corollary 2.2 are satisfied. Hence every solution of equation (3.2) is oscillatory. In fact $\{x_n\}=[n(-1)^n]$ is one such solution of equation (3.2).

Example 3.3 . Consider the neutral difference equation

$$\Delta (x_n + 3x_{n-2}) + [1 + (1/n)] e^{e^{2n}} \max_{[n-4,n]} x_s^3 = 0, n \ge 1.$$
 (3.3)

Here p=3, $q_n=[1+(1/n)]e^{\frac{2n}{n}}$, k=2, m=4, $\alpha=3$. Choose $\lambda=2$, then it is easy to see that all conditions of Corollary 2.3 are satisfied. Hence every solution of equation (3.3) is oscillatory.

References

- [1] R.P. Agarwal, M. Bohner, S.R. Grace and D.O. Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
- [2] J. R. Graef, E. Thandapani and S. Elizabeth, Oscillation of first order nonlinear neutral difference equations, Indian J. Pure Appl. Math., 36 (9) (2005), 503 512.
- [3] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Claredan Press, Oxford, 1991.
- [4] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Second Edition Cambridge Uni. Press, Cambridge, 1998.
- [5] B . S . L alli , B . G . Zhang and J . Z . Li , On the Oscillation of solutions and existence of positive solutions of neutral difference equations , J . Math . Anal . Appl . , 158 (1991) , 213 233 .
- [6] X.H. Tang and Y.J. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math., 32 (4) (2001), 275 280.
- [7] J. S. Yu and Z. C. Wang, Asymptotic behavior and oscillation in neutral Delay difference equations, Funkcialaj Ekvacioj, 37 (1994), 241 248.

Author's Biography

K.Malathi was born in 1978 in Tamil nadu , India. She received her B.Sc. degree from Avinashilingam Deemed University, Coimbatore , India and her M.Sc. degree

in pure Mathematics from Bharathiar University , Coimbatore ,India . She is now a PhD scholar in Difference Equations . Her research interest include Difference Equations and Graph Theo