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ABSTRACT 

In this paper we consider the first order nonlinear neutral difference equation with maxima of the form 

  ∆ ( xn  +  pxn-k )  +  qn
],[[

max
nmn

 x


s  = 0 ,  n     N0 

and  established some sufficient conditions for the oscillation of all solutions of the above equation . Examples are 
provided to illustrate the main results . 
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1 INTRODUCTION 

Consider the first order nonlinear neutral difference equation of the form 

  ∆ ( xn  +  pxn-k )  +  qn
],[

max
nmn

 x


s  = 0 ,  n    N0  ,                                                                                   

(1.1) 

where  ∆  is the forward difference operator defined by  ∆ xn = xn+1 – xn   and N0  =  { n0 , n0 + 1 , n0 + 2 , …… } , subject to 
the following conditions : 

 ( C1 )       { qn }  is a positive real sequence ; 

 ( C2 )       k  and  ℓ  are positive integers and  0 ≤ p < ∞ ; 

 ( C3 )       α  is a ratio of odd positive integers . 

Let  θ = max { k , ℓ } . By a solution of equation ( 1.1 ) we mean a real sequence  { xn } defined for all   n  ≥  n0 – θ   and 
satisfying equation( 1.1 )  for all  n  ≥  n0 . A solution  { xn }  is said to be oscillatory if it is neither eventually positive nor 
eventually negative and nonoscillatory otherwise. 

 In recent years there is a great interest in studying the oscillatory behaviour of first order nonlinear neutral type difference 
equations without  “ maxima “ , see for example [ 1 , 2 , 3 , 5 , 7 ]  and the references cited therein.  In  [ 5 , 7 ] , the 
authors studied the oscillatory behaviour of solutions of equation ( 1.1) when  α = 1  and without “ maxima “. Motivated by 
these observation , in this paper we obtain some sufficient conditions for the oscillation of all solutions of equation ( 1.1 ) 
when  α < 1 , α > 1and  α = 1. 

In Section 2 , we establish some sufficient conditions for the oscillation of all solutions of equation ( 1.1) and in Section 3 , 
we present some examples to illustrate the main results.  

2  Main Results 

To prove our main results we need the following lemmas. 

Lemma 2.1 . If  A  ≥ 0 , B  ≥  0  and  0  <  α  ≤  1 , then 

A
α
  +  B

α
  ≥  ( A + B )

α 
 .                                                                                                             ( 

2.1 ) 

Lemma 2.2 . If  A  ≥  0 , B  ≥  0  and  α > 1 , then 

                                 A
α
  +  B

α
  ≥  [ 1 / ( 2

α-1
 ) ] ( A  +  B )

α
 .                                                                                                  ( 

2.2 ) 

     For the proof of  Lemmas  2.1 and  2.2 , see [ 4 ]. 
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Lemma 2.3 . If  0 < α < 1 , ℓ is a positive integer and  { qn }  is a positive real sequence with 


 0nn

nq  = ∞ , then every 

solution of equation 

  ∆xn  + qn x


n  = 0 ,                                                                                                                                 ( 

2.3 ) 

is  oscillatory. 

Lemma 2.4 . If  α = 1  and 

  
n

lim inf 




1n

ns

sq


>  [  ℓ / ( ℓ + 1 ) ] 
ℓ+1

 ,                                                                                                        ( 

2.4 ) 

then every solution of equation  ( 2.3 )  is oscillatory. 

Lemma 2.5 . Let  α > 1 . If there exists a   λ > ( 1 / ℓ ) log α  such that 

   
n

lim inf [ qn exp ( - e
λn

 ) ]   >   0 ,                                                                                                 ( 

2.5 ) 

then every solution of equation ( 2.3 ) is oscillatory. 

 For the proof of  Lemmas 2.3 and  2.5 , see [ 6 ] , and  Lemma 2.4 , see [ 3 ] . 

Lemma 2.6 . The sequence  { xn }  is an eventually negative solution of equation ( 1.1 )  if  and only if  { - xn }  is an 

eventually positive solution of equation 

  ∆ ( xn + pxn-k ) + qn
],[

max
nmn

 x


s  = 0 ,  n    N0 . 

 The assertion of  Lemma 2.6  can be verified easily. 

Before stating the next theorem , let us define  

 Qn  =  min { qn , qn-k }  for  n     N0 .                                                                                                                       ( 
2.6 ) 

Theorem 2.1 . Let  0  <  α  ≤  1 . If the first order neutral difference inequality 

 ∆ wn  +  [ 1 / ( 1 + p
α
 )

α
 ] Qn

],[
max

nmn
 w


ks   ≤  0 ,                                                                                                        ( 

2.7 ) 

has no positive solution , then every solution of equation  ( 1.1 )  is oscillatory . 

Proof . Let  { xn }  be a nonoscillatory solution of equation  ( 1.1 ) . Without loss of generality we may assume that  xn  >  

0  and  xn-k   >  0 for all  n  ≥  n1  ≥  n0 + θ . Then    zn = xn + pxn-k  >  0  for all  n  ≥  n1 . 

From the equation  ( 1.1 )  , we have 

  ∆ zn  +  qn
],[

max
nmn

 x


s   =  0 ,                                                                                                                       ( 

2.8 ) 

and 

 p
α
 ∆ zn-k  +  p

α
qn-k

],[
max

knmkn 
  x



s  = 0 .                                                                                                                    ( 

2.9 ) 

Combining  ( 2.8 )  and  ( 2.9 ) , and then using  ( 2.6 )  we get 

 ∆ ( zn  +  p
α
zn-k )  +  Qn ( 

],[
max

nmn
 x



s   +  p
α

],[
max

knmkn 
 x



s  )   ≤   0 .                                                                       ( 

2.10 ) 

Applying  Lemma  2.1  in inequality  ( 2.10 ) , we obtain 
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  ( zn  +  p zn-k )  +  Qn 
],[

max
nmn

 ( xs + pxs-k )
    0 

Or 

   ( zn + p zn-k )  +  Qn 
],[

max
nmn

 z

s     0 .                                                                                                  ( 

2.11 ) 

Let  wn = zn + p zn-k . Then  wn  > 0  and  using the decreasing nature of  zn , we obtain 

  Wn     ( 1 + p 
) zn-k 

Or 

  ( wn+k ) / ( 1 + p )    zn .                                                                                                                         ( 
2.12 ) 

Substituting  ( 2.12 )  in  ( 2.11 ) , we get that  { wn }  is a positive solution of the inequality 

  wn  +  [ 1 / ( 1 + p ) ] Qn 
],[

max
nmn

 w


ks      0 , 

which is a contradiction . The proof is now complete. 

Theorem 2.2 . Let   > 1 . If the first order neutral difference inequality 

     wn  +  [ 1 / ( 1 + p ) ] 2
1-  Qn 

],[
max

nmn
 w


ks      0 ,                                                             ( 

2.13 ) 

has no positive solution , then every solution of equation  ( 1.1 ) is oscillatory .  

Proof . Let  { xn }  be a nonoscillatory solution of equation  ( 1.1 ) . From the proof of Theorem  2.1 , we have  ( 2.10 ) . 

Now applying  Lemma  2.2  to  ( 2.10 ) , we obtain 

   ( zn + p zn-k )  +  2
1-  Qn 

],[
max

nmn
 z


s     0 .                                                                                        ( 

2.14 ) 

Let  wn = zn + p zn-k . Then  wn  >  0  and using the decreasing nature of  zn , we obtain 

        Wn    ( 1 + p 
) zn-k  

Or 

   ( wn+k ) / ( 1 + p )    zn .                                                                                                         ( 
2.15 ) 

Substituting  ( 2.15 )  in  ( 2.14 ) , we get that  { wn }  is a positive solution of the inequality 

   wn  +  [ 1 / ( 1 + p ) ] 2
1-  Qn 

],[
max

nmn
 w


ks      0 ,            

which is a contradiction . The proof is now complete . 

Corollary  2.1 . Let  m  >  k  and  0  <    <  1  in equation  ( 1.1 ) . If  

    


 0nn

nQ  =   ,                                                                                                           ( 

2.16 ) 

then every solution of equation  ( 1.1 )  is oscillatory . 

Proof . From  Lemma  2.3  we see that the condition  ( 2.16 )  implies that the inequality  ( 2.7 )  has no positive solution 

and hence the proof follows from  Theorem  2.1 . 

Corollary  2.2 . Let  m  >  k  and     =  1  in equation  ( 1.1 ) . If  

 
n

lim  inf  




1n

kmns

sQ  >  ( 1 + p ) [ ( m - k ) / ( m - k - + 1) ]
 1 k

                                                                   ( 

2.17 ) 
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then every solution of equation  ( 1.1 )  is oscillatory . 

Proof . From  Lemma  2.4  we see that the condition  ( 2.17 )  implies that the inequality  ( 2.7 )  has no positive solution 

and hence the proof follows from  Theorem  2.1 . 

Corollary  2.3 . Let  m  >  k  and    >  1  in equation  ( 1.1 ) . If there exists a    >  0  such that    >  [ 1 / ( m - k ) ] log 

  and  

  
n

lim  inf [ Qn exp ( - en
 ) ]  >  0 ,                                                                                                        ( 2.18 

) 

then every solution of equation  ( 1.1 )  is oscillatory. 

Proof . From  Lemma  2.5  we see that the condition  ( 2.18 )  implies that the inequality  ( 2.13 )  has no positive solution 

and hence the proof follows from  Theorem  2.2 . 

3 Examples 

In this section , we present some examples to illustrate the main results .  

Example  3.1 . Consider the neutral difference equation 

   ( xn  +  2xn-2 )  +  6 
],4[

max
nn

  x
3/1

s   =  0 ,  n    1 .                                                                            ( 3.1 ) 

Here  p = 2 , qn = 6 , k = 2 , m = 4 ,  = 1 / 3 . It is easy to see that all conditions of  Corollary  2.1  are satisfied . Hence 
every solution of equation  ( 3.1 )  is oscillatory . In fact  { xn }  =  [ ( -1 )

3n
 ]  is one such solution of equation  ( 3.1 ) .  

Example  3.2 . Consider the neutral difference equation 

  ( xn  +  2xn-2 )  +  [ ( 6n - 5 ) / ( n - 4 ) ] 
],4[

max
nn

  xs  =  0 ,  n    5 .                                                               ( 3.2 ) 

Here  p = 2 , qn = ( 6n - 5 ) / ( n - 4 ) , k = 2 , m = 4 ,  = 1 . It is easy to see that all conditions of  Corollary  2.2  are 
satisfied . Hence every solution of  equation  ( 3.2 )  is oscillatory . In fact  { xn }  =  [ n ( -1 )

n
 ]  is one such solution of 

equation  ( 3.2 ) .  

Example  3.3 . Consider the neutral difference equation 

  ( xn  +  3xn-2 )  +  [  1 + ( 1 / n) ]  e
e

n2

],4[
max

nn
  x

3
s   =  0 ,  n    1 .                                                             ( 3.3 ) 

Here  p = 3 , qn = [ 1 + ( 1 / n) ] e
e

n2

 , k = 2 , m = 4 ,  = 3 . Choose    =  2 , then  it is easy to see that all conditions of  
Corollary  2.3  are satisfied . Hence every solution of equation  ( 3.3 )  is oscillatory .  
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