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ABSTRACT

We prove an existence and uniqueness of regular solution to the Einstein-Maxwell-Boltzmann-Scalar Field system with
pseudo-tensor of pressure and the cosmological constant globaly in time. We clarify the choice of the function spaces and
we establish step by step all the essential energy estimations leading to the global existence theorem.
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1. INTRODUCTION

The basic equation of general relativity are the Einstein equation coupled to some other partial differential equation
describing the matter content of space-time. There are many choices of matter model which are of physical interest. Solving
the Einstein equations means determining both the gravitational field, subjet to the Einstein equation, and its sources, subjet
to other type of equations. If we consider the case of charged patrticles, we must take into account the Maxwell equation
which are the basic equation of Electromagnetism and determine the electromagnetic field F created by the fast-moving
charged particles in the system. We are interested in this work in global dynamics of magnetized relativistic kinetic matter
with cosmological constant in the presence of a massive scalar field and pseudo-tensor of pressure on a Bianchi type |
space-time with a locally rotationnal symmetric (L.R.S). We consider the case where the electromagnetic field F is

generated, through the Maxwell equation by the Maxwell current defined by the distribution function f of the colliding
particles, a charge density €, and a future pointing unit vector U, tangent at any point to the temporal axis. The particles
are statistically desccribed in terms of their distribution function, denoted by f, which is a non-negative real valued
function of both the position and the momentum of particles and which is subject to the Boltzmann equation.

We then consider the Einstein-Maxwell-Boltzmann system with the cosmological constant and pseudo-tensor of pressure in
the presence of a massive scalar field. The source term of the Einstein equation then takes the form

872'(Tiﬂ +7,, +Ta2ﬁ, + Haﬁ,), where (T;ﬂ) is the energy-momentum tensor associated to f; (7,,) is the Maxwell

tensor associated to the electromagnetic F; (Tazﬂ) is the tensor associated to a massive scalar field ¢ and ( Haﬂ) is the
pseudo-tensor of the pressure.

Many authors obtained a global existence theorem of the Einstein equation coupled to various kind of equations. N.
Noutchegueme and D. Dongo obtained in [1] a global existence theorem of the Einstein-Boltzmann system in the Bianchi

type | space-time, but the solution was not regular; N. Noutchegueme and R. Ayissi in [5] have obtained the same

non-regular solution; N. Noutchegueme and R. Ayissi in [6] the Einstein-Maxwell-Boltzmann equation with the

cosmological constant; but they did not take account of the scalar field and the pseudo-tensor of pressure. The originality of
the present work is based on the fact that we consider the whole system that will be certainly of a great interest in order to
model some natural phenomena and to confirm the actual observation concerning our universe.

The paper is organized as follows. In section 2, we introduce our system on a Bianchi type | space-time; in section 3, we
present the functional space and the principal result of the regular Boltzmann equation. In section 4, we study the Einstein
equation; in section 5, we prove a local in time existence theorem for our coupled system; in section 6, we prove that the
solution obtained in section 5 in global.

2. EQUATIONS AND PRELIMINARY RESULTS

® Unless otherwise specifed, Greek indices, «, ﬁ, ¥,..., range from O to 3 and Latin indices, i, j, k,..., from 1to 3. We
adopt the Einstein summation convention
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a,b“=>7a,b".

We consider the collisional evolution of a kind of fast moving massive and charged particules in the time-oriented Bianchi
type | space-time with L.R.S, the metric then takes the form

g = —dt® +a%(t)dx* +b*(t)(dy? + dz?), 1)

Where the metric potentials a > 0,b>0 are two continuously differentiable unknown functions of time t{ alone and
subjet to the Einstein equations.

® The system reads

1
Raﬂ—ERgaﬂMgaﬂ=87z(T;ﬂ+raﬁ+Tjﬂ+Haﬂ) @
V. F?=4m" (3)
VaFﬁy+VﬂFm+Vy aﬂ:O 4)
L, f =Q(f,f) ()

Where: (2) is the Einstein system for the unknown metric tensor ¢ = (gaﬂ) Raﬁ, is the Ricci tensor, contracted of the
curvature tensor, R = g“ﬁRaﬂ is the scalar curvature; (T;ﬁ) is the energy-momentum tensor associated to f, (Z'aﬂ)

is the Maxwell tensor associated to the electromagnetic field F; (Tazﬂ) is the tensor associated to a massive scalar field ¢
which is an unknown function of the time t; (3) and (4) are the two sets of Maxwell equations written in covariant form,
for the electomagnetic field F = (F?, Fij) which is the unknown. F s a closed antisymmetric 2-form depending only

on the time t, F% and Fij are respectively its electric and magnetic parts.

T;ﬁ., 7,5 and Tazﬁ are defined by:

— 1
f(t, p)p, p,l9|2 dr

T =l P, ©®)
=Yg FHE 4EF -
Taﬁ__zgaﬂ w TP p (67

T2 =V V6 —g, [Viev b+ mi] 7
ap - a B Zgaﬁ A 0 ( )

where in (6), (7) as in (3) and (4), T s the distribution function which measures the probability of the presence of
1
particules in the plasma, m ;> 0 is a given constant called the mass of a unknown scalar field ¢ Notice that E m§¢2

represents the potential associated to the scalar field ¢ and V stands for the covariant derivative. In (2), Haﬂ is the

pseudo-tensor of pressure and is defined by:

H,, =0, where vV, 0 =-u”, g¢'0, =0 ®

with, U = (u”)=(1,0,0,0) a unit future pointing time-like vector, tangent to the axis at any point. (5) is the Boltzmann

equation, where L , is the Lie derivative of f  with respect to the vectors field X (F) = (pa, P (F)) and Q(f, )
the collision operator we introduce later.

The massive particules have a rest mass M > 0, normalized to the unity, we denote by T(R4) the tangent bundle of
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R* with coordinates ( X“, p*), where p=(p”)=(p° p ) stands for the momentum of each particule and

p=(p'),i=1,2,3. In fact, the charged particules move on the mass hyperbolode P(R*) =T (R*), whose
equation is px(p) . gx(p, p) =0y p* pﬂ = —1 or equivalently, using expression (1) of @ .

= J1+a?(p')? +b?((p?) +(p%)?) ©)

where the choice po > (0 symbolizes the fact that, naturally, the particles eject towards the future. Due the fact that we are

searching an homogeneous space-time, we then have f :R* < P(R*) > R"; (t’ p) > f(t p) f is the principal

unknown of the Boltzmann equation. We define a scalar product on R® by setting for p = (p) and q =

(@), p.a=a’p'q’ +b*(pa’ + p°a’), we then have [p| =a%(p')* +b*((p%) +(P°)?)

In the presence of the electromagnetic field F , the trajectoires S +> (X (S), p“(S)) of the charged particles are no

longer the geodesics of space-time (R4, g), but the solutions of the differential system

dX d a a a @
&P ,%—P P*=-I"", p*p"+ep”F; (10)

where € = e(t) >0 denotes the charge density of particles. The charged particles also create a current J = (Jﬂ)
called the Maxwell current that we take in form

Jﬁ:_[io p” f ab%d p—eu”. (11)
p

According to Lichnerowicz and Chernikov, we consider a scheme in which at a given position (Xi), only two particules
collide without destroying each other, the sum of their momenta being preserved

pP+q=p+q. (12)
where P,( stand for momenta before the shock and p' ) q' the momenta after the shock. The collision operator Q is then

defined, using functions f and g on R® and the above notations, by Q =Q" —Q~ where
Q' (f.9)=[ o, |.f(P)9(@)B(ab,p,a,p,q)de (13)

Q (f.9)=[o,].f(PY(@B(@b,p.q p,q)do. (19)

|detg|2dq
q°

collision kernel or the cross-section of the collisions, on which we require the boundedness and Lipschitz continuity

In which @, and B is a non-negative continuous real valued function of all its arguments, called the

assumptions as in [2] (12) expresses, using (9), the conservation of the quantity

£, = 1+ [o]] + 1+[a] @s)

called the elementary energy of the unit rest mass particles. Since f = f(t, p), using (9) and (10), the Boltzmann
equation (5) takes the form

7089 |Page
March 2017 www.cirworld.com



/ ISSN 2347-1921
: ‘ Volume 13 Number 01
L- Journal of Advances in Mathematics

of P of _ 1

—+———=—0Q(f, ). 16

A e Q(f, f) (16)
Next, let us introduce the subgroup A of ®3 defined, as in [3] by:

e 0 0
N,,=|0 cos@ -sind| &==1,0eR. werequire that the initial datum f, = f(O;[_J) verify
0 singd cosé
f.(t,Np)=f,(t,p), YNeA
It is proved in [3] that if f0 is invariant under A then so will be the solution f of the Boltzmann equation satisfying

f(0,p)= fo(p).

Now the well-known identity VaVﬂFaﬁ =0 imposes, given (4) that

V,37=0 a7
So (3) also implies that
J°=0. (18)
As a consequence (see [4]) , we have
Ji= J.Rsio p'f ab’dp—eu' =0,i=1,2,3; (19)
p

By (18), expression (11) of J #"in which we set ﬂ =0 then allows to compute e and gives

et) = L3#f ab?d p, (19)
which shows that a,b and f determine €.
Now, using all what precedes, one has
I:Oi_a‘obo2 Ei F _F(O)_ FOi —rci -
= Fi=F0)=¢;,F'(0)=E" i j=123 (20)

ab?

Next, to derive the equation for the scalar field ¢, we use the conservation laws:
lap af 2.ap8 afy —
V, TP+ +T> +H*)=0 (1)
A direct calculation using (6), (7), (8), and the relation VaTl’aﬂ =0 due to J.EHLERS, gives:
B —ES A B — 1B 208 — 7P 2
V " =FV F“ V HY =u",V T =V g(* ¢—m;¢) (22)
where *g = Vava is the d’Alembertian or the wave operator. (21) and (22) give, using the Maxwell equation (3):
VEi(*, p—mig)+4r-S J* +u” =0 (23)
(23) reduces, using (18), (19) and since Vi¢ =0 to:

VoV Vip—mig)+u’ =0 (24)

7090 |Page
March 2017 www.cirworld.com



/ ISSN 2347-1921
: ‘ Volume 13 Number 01
L- Journal of Advances in Mathematics

Next, it is easily seen, that: V V%@ = —43—3H ¢ and Vo =g"V ¢= —¢. (24) gives then:

¢(¢+ 3H ¢+ m§¢j +1=0 (25)
where

H=_9%

, with kij = —%atgij. (26)

2
H is called the Hubble variable. To study this non-linear second order equation in ¢, we set i = §(¢j , we choose to

look for a non-decreasing and non constant scalar field ¢, which means ¢ > 0;

¢=2p (27)

For i, €R, thereexists T >0 suchthat Vt e [O,T],

1
w(t)= -y, (28)
2
A direct calculation shows that the components of the tensor,

Tjﬁ, Tazﬁ, Haﬁ, 7, defined by (6), (6'),(7) and (8) are given, by

()0 (P70l -

_ 1
Too = [Tt P)P’lgledp, TS = | p 29)

_ 1
f(t, 2002)\2|alz  _ o
Tzlz :Tals :J'R3 ( p)(922)0 (p ) |g| d P, Tlll =0, I# ] (29)
2_1'2122 2 _ 2_1 242\ i i —
Too _E(¢) +Em0¢ T =0, Tj _Egii 2y —my¢©),1,1=1,2,3 (30)
C t0+T ..
Hoo = ——5+[° ab(t)dt,CeR_, Hy =0, H; =0, i,j=123. (31)
ab o
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_1 1v2 Do 4 22%2 32%2
E[(%E) (F) +(bE”) ( ) +(aE”) (ab) }
Priave | (Pis Pa3y2
J{(E) +(ab) +( 5 )}

_1 12b04 2182 22&2 232&2
= B @E Y s e (R |

1| @2, (Prsy2 a(/’zs
+E{(T) +( . ) -(=37) }

= 3 (E () - BEEY Y + O ()|

1| @uy2  Pisye %2
+E{(?) (a)+( . )}

‘%[(a()b(’El)Z(%)Z+<b5E2>2<@>2—(béE%Z(ﬁf}
a a

l (P22 | (Pizve | Pasy2

+2[ oy (22 + By |
=) gy, 0= CABEE +000)

1

-1
T3 = F(aénglE3 + (/)12(?23)’ T3 =—% (_a§b3E2E3 + (plZ(pl3)

a2

The system can be written in the form:

2
ab |b
Z_J{E] —A=87|Toy + 7o + Ty + Hyo

2
-a’ 29 {EJ —A =87Z[T111+111+T121]

ab

— A |=8x[T), +7,,+ T}
ab [zz 22 22]

b &
—+—+
b a

U i

b2 o
:Zobg FO(0),F, =F,(0)=¢,, i=123

0

2 i 2k
[_zriojpj+(_a0b§Ei+ ab’g p(pk.)J jaf _Q(f, )

op’ P

(32)

(33)

(34)

(35)

(36)
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P=~2y (38)

o 2
v =—-6Hy —myay 2y -1 (39)
: 1 _T1 T2 _T2 1 2 _
with: Toy = Ta5y Ty + 75 = Ty + 733, T s+ 7,5+ T+ H, 5, =0 for a= B
pI’OOfZ Simply write Einstein equation (2) for ¢ = £ =0 to obtain (33), for & = ff = I to obtain (34) and (35). (28) in
(27) to obtain (39). Now for a# f: T;ﬁ+2'aﬂ +Ta2ﬁ+ Haﬁ =0, we add the problem of constraints
T +7us+ T +H,; =0 it a#f and Th+7,+T5+H, =Th+7,+T5+H;, | since the Einstein
tensor S,,=0 if a=f; S,,= Saqs it is proved in [2] that T:ﬁ =0 if a;tﬂ,Tzlz =T313, since H; =0, so
T, 4T =0 it a# B and 1, +T) =13+ T+
e The constraint equations
Lemma 1. 1°) Einstein equation (33), called the Hamiltonian constraint, is satisfied all over the domain of the
solutions a and b of (34)-(35), if and only if, the initial data
a,, ao, by, bo, fy, E', ¢0,l//0,g0ij satisfy the condition:
o N2
ao bo bo
+— | =A+p, (40)

a0 bO 0

2

where

po =87 [ o (P)y1+a3(p)* +b3[(p*)” + (p*)*Jashid p

1
+ (a0 + (OB + (0D
i 1
+4n_(ﬁ)z + (%)2 +(<g_?)2}8{% Mg }

8zl - C 1 (Ta. bt C<0
+”_—@+J‘O o (Db, (t)dt |, C<0.

2°) The remaining Einstein equations
0 0 _ 10, 0,120, 140 _ 1 2
S +Agy =8x(T " +7; +T7"+H), S; + Agy; =8x(T; +7; +T; +Hy). (41)

are identically satisfied by any solutions a and b of (33)-(35) if the initiale data d,, bo, Ei ' Pijr verify

E'g; =0 (42)
3 . .
D ooy —abE'E) =0,i = | (43)
k=1
0% —pf —albt|[(E?)? —(E®)?]=0 (44)
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proof: See [6]

Remark 1: in what follows, we suppose that the initial data @, é.o, by, bo, fo, E', ¢0,l//0,(0ij verify the

constraint (40) and (42)-(44). One must also remark that if the cosmological constant A is positive and if dy, bo,
fo, E' ¢07W0’¢ij are given, then it suffices to deduce @o >0 and bo > 0.

3.FUNCTION SPACES AND LOCAL SOLUTION OF THE BOLTZMANN EQUATION

We define now the function spaces in which we are searching the solution of the system, We also state some useful energy
estimations.

Définition 1: et T >0, | eN and d €R be given. We define

a) H{(R% = %J ‘R* SR, (1+‘E))d+‘ﬁ‘8€u e ’(RY), |,3| < |}, H} (R®) will be endowed with the norm

ol 5, = mexospa| CL#[B)" 05,
ueC(0,TJCR?)),
H!(,T,R:
b) d( p) {(1 ‘ )d+‘ﬁ‘aﬂu(t )ELZ(R ) |ﬂ|<| 0<t<T

The norm we consider for

(1+‘

Hy(O,T,R) is ||u||HI oS = MaXospat SUPcir 3y

o HY,(OTR)= {UGH O.T,R), |u] r}, for >0,

HyOTRS)
b

Endowed with the induced distance by the norm |||| is a complete metric subspace of

3
HY 0T, R

H,(0,T,R3).

Remark 2: we choose as in [2], | =3 and d>g and we then have Hg(Rs)DHg(R3)°Cﬁ(R3).:
Proposition 2: Let d e:lgﬁoo{ be areal number, it f, f, e H3(R®), then

iOQ( f, f,)e H2(R®) andwehave C=C(T)>0 such that

Lot 1)
p

<0l gl g

H3R?)

Moreover

iOQ( f1, fl)_ioQ( fz,fz)
p p

£2C(” f1||Hg’(R3)+|| f2"H3(R3))” f—f ”H HGON

H3 R?)

proof: see [2]
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. . ) 0]
Theorem 1: Let a,, ao, by, bo, f,, E',¢0,://0,goij satistify the conditions (40), (42)-(44). Let [a,b} be

. a b .
fixed such that |—| < C, and B <C,, C, aconstant . Then the Boltzmann equation
a

U
of D ab g po, o |
2T 0; P! +(—ab E +TK)IR3f(t,p)dp Py

1
= Lot 1)
PP
has in Hg’(O,T,R%) a local unique and bounded * -weakly solution f such that f(0) = f,.

proof: similar to the one in [2]
4. LOCAL EXISTENCE OF SOLUTION TO EINSTEIN SYSTEM

We consider the Einstein system (33)-(35) and the sources terms as

pP= 87[[1-010 + Too +T020 + Hoo]; P = %87[ T111+711+T121]
(46)

1 0 PR+2P, 0_P-P
P, = 8afTh+7, +TA| R=12 R=T2"1
b p p
Next, following N.Noutchegueme and D.Dongo in [1], we make the change of variables as indicated below
rk 2142 2 i i
H:—t—,z: 5 azb 551 S = 2b 2,2+:—19 1trk———+29. (47)
3 2a°+b“+a‘b a“+2b trk b a b
we also set
[ Yo, Q i
Q= , =22, +—(1+R),Z, €|-1,1} 48
7 , 1+ Rz, e[-1.] 48)
0
q is the deceleration parameter and 2 is the normalized energy density, which can be written see [6]
[l A
Q=1-% - . 48'
" 3H? 4%

Using the new notations, we have the folowing immediate consequences of the above definitions, i=1,2:

22
86]01[ 26]01[ \/S(l— ) \/m, (49)

[ [
0<PR+2P,<p-8H,,0<R<1,Q>0andforA>0,0<q<2. (50)

p°(s.z Vs(1-8)(A-2)+ Z[(1-5)(p")* +25((p*)* + (p*)°)] (51)

J s(1- )(1— )
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5
16i7z2 J» f(t, p)(p)
S(%—i)(l—s)'a—z)2 p°(s,2)

F(s.z,f.0y)=

+7r(l—sz (1-z) (1) ((a b2E 1) +¢223)

2
S {1y ag ] + @B o+ (s

2(21// - m§¢2) (52)

Proposition 3. Let A>0 and bo < 0, then Einstein systems (33)-(35) have no global solution on [0,—!—00[.

Proof. see [6]

Now the system (33)-(35), using the values (51) and(52) can be combined, see [1], to give:

a_2||b| ab| p 1 A
—=—||—=| ——|-=+=(P-2P, )+ — 53
a 3||b ab62(1 2)3 a
E:E a_b_ E _£_1P1+£. (54)
b 3lab |b 6 2 3
Also notice that
a b
—=H@-2%), —=H({1+ZX)) (55)
a b
PI‘OpOSitiOh 4: The Einstein system of equation (53) and (54) can be written as a system of first orderin H,S, z ,Z+
as follows:
d_H:_§(1+Zi)H2_w+é (56)
dt 2 6 2
ds
—=6s(1-s)Z, H 57
™ (1-5s) (57)
dz
=2z(1-z)(1+%, —3sx,)H (58)
0, _ _3-s)Hs + Az 2)+ A2, (59)
dt 2 6H 2H
pI’OOfZ a) We prove that system (53) and (54) implie system (56)-(59), just by derivating (47), using (53), (54), (55), (48)
and (48).

b) Conversely, we prove that (56)-(59) implie (53)-(54). Let (H ) S, Z, Z+) be a solution of system (56)-(59) , we have,
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2

derivating a and (55), E(E) e and i(E) = H(1—22+)—2H Y. before to express (55) then
a dt’'a” a |a dt ‘a

2

- . |a
—=H(1-2%X,)-2H X, +| — | . Now, using (56) and (59), and the fact that, by direct compulation
a

1+qg=2— 0 —4b—H+3+ > (p+P +2P,)
'2
1|b b
2—q=—2-—|—| +4—-— +P +2P
HZ|b| " bH 6H2('0 2)
one obtains:
8= gl halhamr 2 Y piopyiens | 2] 2 op)+ 2
a b b 6 6 a 3 3

Now, using (47), we obtain by direct computation (53). The expression (54) can be obtained by a similar computation. +
Lemma 2: the Hubble variable satisfies the following condition:

CL_T - _%(3H +1 L’ —A+4ng" (Tul +Ti12)+47[(T010 +T020 + Hoo)+87noo) (60)
where Lij = kij + gin

, ki; defined by (26).

proof: wehave H = —%g”kij , which implies

dH _ 1, dgi . dk,. 1( dg™ dg?  ,,dk dk
—=—(k; —+g" —1)=-Z| k,—~—+2k +glt L4 2g** =22
dt 3( Ut ) i 2t J dt g dt

1 TV T2 O.TL T2 = T
‘_§(R+H +f+f+2b222 2b222+alzl 2b22 —127(Tyy + 740 + Ty + Hyo) —3A

d—H——%(RJr(trk) Ay (TE+T,

- 2) 127 (T +T2 + Hoo) —87700 —3A) 61)

Where R =Q" R;;- Using the Hamiltonian constraint, we have:

R+ (trk)? = kyk" + 2A +167(Ty + Top + Hog + 7oo)- (62)
Replacing (62) in (61), we then have
OL_'? = —% (kK" — A+ 479" (T} +T2) + 47(T +TE + Hog + 2774, ) (63)

Introduce the traceless tensor associated to kij : Lij = kij + gij H. By a direct calculation, we get
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k;k” =3H?+ 1L, (64)
Using (64) in(63), we obtain

aH _ _%(SH 24 LU - A+ 4y (T +T0) + 4r (T + T + H00)+8m00)

That gives (60). +

Lemma 3: Let A>0 be given, and suppose H(0) >0; then H is uniformly bounded and we have:

H E|:Hé:\/§, H(O)}. (65)

dH
proof: Recall that o is given by (60), but since

I—ij L' >0, gijrij =Too ~ O’Tolo >0,,Hy >0, Tozo >0,y >0
then (60) yield:
d—Hgl(-3H2+A+4ﬂmg¢2) (66)
da 3
Using (60) and (61), we get
—6H? +2A+8my¢p* = —L; L’ —167(Tg, + 700+ Hoo) + R—1670

But it is proved (see [7] ) that R< 0. Then

—3H?+A<0 (67)

Now, we then obtain

which implies

H 2\/§or H S—\/E.
3 3

By hypothesis, (66) and (67), H >0 and dd—l;l <0 then

\ESH <H(0).+

Remark 3: Domain of the variables H,s,z,Z..

One easily observes that the variables H ,S,Z,Z+ will be taken on the subset D of R4 defined by:

(H,s,2,2,) eR*suchthatH, <H <H,

D:{ (68)
0<s<1;0<z<1;-1<3, <1}
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In what follows, we assume A >0 and bo >0, fe Hgvr(O,T,Rg) is also fixed. We are looking for a solution
(H,s,z,Z,) of (56)-(59), on the interval | = [to'to +T],T >0, which satisfies at the initial instant t =1, the

conditon (H,s,z,Z,)(t,) = (Hto , Sto , Zto ,Z+t0), where Hto , Sto , Zto ’z“o are real numbers conveniently fixed, in

fact we must return to definitions of H,S,Z,2+, and choose those data according to ato, bto’ ato , bto (and

¢t0 , l//to , E' , goij) and, furthermore subject to Hamiltonian constraint (40).
Definition 2: If X is areal number such that X € ]0,1[, we set
LX) =inf (x,1—Xx).
Remark 4: since H,>0, we assume that @0 > 0. So the initial data @,, 0,, @o, Dowill be taken such that

a0>0, b0>0, bo >0 and éo > 0.

We now prove the local existence theorem of solutions to system (56), (57), (58) and (59) with the initial datum

(H,s,z,Z,)(,) = (Hto’sto ’ Zto’z“o) €b.

Proposition 5: Let 6>0,t, >0 be given, then any solution (H,S,z,Z,) of system (56), (57), (58) and (59) on
[t,,t, +T] verifies the following inequalities for all t € [0, 5]

1 < 1 nsHo(T+5)<7e6HO(T+§)

< e < 69
H -0 H() : 9
1 < 1 6HO(T+5)S7Oe6H0(T+§) 70)

Bls(t, +1) ~ Bls(t,))
1 < 1 10Ho(T+0) OelOHO(T+§) 1)

Bzt +1) Bzt +1)

where
Y _(i-l- 1 + 1 j (72)
" \H, B(s) Bz)

Proof see [1] +

In what follows, C > 0 is a constant. We will apply the standard theory on the first order differential systems. With a view to
succeed. We will study the function Z defined using the r.h.s of system (56), (57), (58) and (59) by

Z(t,H,;5,2,2,)=(2,,2,,2;,Z,)(t,H,5,2,2 ). (73)

We recall that Z is defined on D defined by (68). We must prove that Z is a continuous function of t, locally
Lipschitzianin X =(H,s,2,Z,) € R* with the norm

X1, = [H+[sf +[2] +[. ]

Z is obviously a continuous function of t on one hand, on the other hand, 22 and 23 are polynomial functionin H,S,z

and Z+, so locally Lipschitzian.
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Concerning now Z1 and Z4, we need some energy estimations

lemma 4: Let S,,5,,2,,2, €]0,1[, f eH;, (t,,t,+5,R®), Hy, H, e]Hf,HO[.Then one has for 1=1,2:

| _Cls=si+fz-z] 1
pzp) ) ﬂ@W@W@)W‘

11 [ ClsesfHazl] 1
Puzp) o @%’»ﬂagmmmm‘“@%ﬂ
Cls, —s,|+|z, -2 ]X 1

1 1
- 3
ﬂE

|1 1

(74)

(5,)8(2)5(2,) ‘po(sz’zz’pl

Cle+|f ®lis. 5|+ |z ~2,))
P 11 1’f7 ) _Pi 21 2'f’ ) = 4 4 6 4 !
U R O e TS VT v T eRy T
R(s.z, f,g,p) < w (75)
B (s)B°(2)
|Pi(51’21r f.,w) _ P (s, 2y, f’¢’l’[/)|ﬁ C[1+||f(t)|mH1_ H2|+|31_52|+|Z1 _Zz|)
H, H, T HHLB)B(s,)8(2) 8 (2,)

are given by (51) and (52) .

Where p°,P

Proof: see [6]+
Using lemma 4, we can write
||Z(H1’3112112+1) - Z(Hz 1S, 122’2+2)”1 < N”(Hl’Sl’Zl’erl) - (Hz 152122’2+2)||1- (76)
where
_ clL+[f ®))
H,H,5%(s,) 8 (s,) 8°(2) 8*(2,)

Proposition 6: Let f e Hj'r(to,t0 +T,R®), T >0, then system (56), (57), (58) and (59) with the initial datum

(77)

(Hto’sto’zto’z+to) at t=t, verifying (68) has a unique soluton (H,S,z,X,) on [t),t;+T] such that
(H,5,2,2)0) = (H, .5, .2, .., )

Proof: Let f eHJ, (t,t,+T,R%), T >0 and (H°s%2°2%) €D, be given. Now consider the neighborhood

0 0 0
w of (H%s%2%2%) defined by W:]Hf,HO[X}%,SZ—Fl{X}ZZ : +1{ ]—11[ If we take

(H,s,,2,,2,,) and (H,,s,,2,,2,,) €W, then
1 1 1 2 1 2 .
~ < <, <", i=12 (78)
Ho HY B(s) BG6s) Bz) p@)

Using (76)-(78), we get
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||Z(H1’Sl'zl’2+l) - Z(HZ 752 ’ZZ’E+2)||1 < NO”(Hl'Sl’Zl’Zﬂ) - (HZ'SZ ’22 'Z+2)||
where

N, = cr 79)

0 2870y p107,0y
(HY B°(7)8°(2°)
Consequently, the function Z defined by (73) is locally Lipschitzian and uniformly bounded, so by the standard theory on

the first order differential system, we conclude that system "(56)-(59)" has a unique solution (H,S,2,2,) on [t,,t,+T]
which verifiesat t =t,: (H,s,z,Z,)(t,) = (Hto St 2y, ,Z+t0).+

Theorem 2: tet r >0,d >g, fe HI (t,t,+T,R%), E'€R, ¢,v, R, ¢; €R, T >0 be given, Let

a, > O,bto >0,by,, @iy, A>0 verify the constraint of remark 4 such that the whole system satisfying the constraints

system " (40)-(44)". Then the Cauchy problem for Einstein system (33)-(35) with the cosmological constant has a unique

(ab)(t,) = (a b, )
(@b)(t,) = (3y,.by,)

Proof: using the change of variables (47), the system (33)-(35) is equivalent to the system "(56)-(59)", applying
proposition 6, the system "(56)-(59)", has a unique solution (H,S,Z,Z+) on ['to,t0 +T] if the initial datum

solution (&,b) on [t,,t, +T], such that

(Hto’sto’zto’2+to) verifies (68). Taking at t =1,, the initial data Hto’sto Z, ,X,, , such that (47) hold, we realize

’ tO’ +'[O1
that (H, ,s, ,z, ,X., )€ D, Consequently, system (56)-(59), has of course, a unique solution (H,S,Z,%_) on

ty Oty Lty <t +
[ty,t, + T] with the initial data HtO , StO , Zt0,2+t0 at t=t,. Relations (49) solved in a’ and b? then give the unique
solution (&,b) of system (33)-(35).

Corollary 1: For the solution (a,b) to system (33)-(35) on [to AN +T], t,eR, T =0, the map t+>Db(t) is

_ _ _ a b
increasing and there exists C ;> 0 such that |—|< C; and ™ <C,.
a

Proof: we have following (55): L H(1-2%)), % =H(@1+Z,)=20,b>0, then
a

g = [H[(1-22.)| < 2H,. % = [H|(1+2,) < 2H,. +

Remark5: we then deduce from corollary 1 that: a(t) < aoeKot, b(t) < boeKot, 1 < ieKot, %(t) < bie"o‘_
a

0
5. LOCAL EXISTENCE OF SOLUTION FOR THE COUPLED SYSTEM

we are searching in the case A >0, the local solution to the system.

ab
The coupled system, reduces to the following system, in which a, b, az,bz,—,E, defined by formulas (47) and (48)
a

are solved in H,S,z2,2, :
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dH , B+2P, A
W_"(l +22)H T+ > (8.1)
? =6s(1-s)2,H (S2)
dz
2 2 2:(1-2)(1+3, - 353, )H (S.3)
9. _ 30 soyns + P o Ps an) A
ot 2(l ZOHE, + o =, 2)+3H =, +1 H (S.4)
—- =2y (S5)
dd‘;’ = —6Hy —mip2y -1 (S.6)
df 1
a——Q(f f,p) (8.7)
©)
dp* _ 2y Al 21 -
o = 2H@-2mh)p' -abiE Lsfd p i
B 2\/§(p2¢12 + ps(/’ls)Ls fdp (S8)
(1-S)W1-z4/s(1-8)(1-2) + 2Z[(1-s)(p*)* +25((p?)? + (p*)*)] |
dp?
" = 2H(1+22)p? —a,b’E j fd p
2J2(p'gy + P°py) [ T P 59
\/5(1 2)y/s(1-8)(1-2) + Z[(1-5)(p*)* + 25((p*)? +(P*)")]
dp3 _ )
" = 2H(1+32)p° —abEj fd p )
B 2\/_(p Pzt P ¢32)_[R3 fd p (5.10)
Js(1-2)4/s(1-8)(1-2) + Z[(1-5)(p")? + 25((P2)* + (p*)?)]
Foi = aobozin Fij =g, i, ] =123
ab ’
(80)
LetussetX=(H,s,z,2 ¢, p, T, b), X(0) =X, and X(t,)= Xto'
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E=R*xH}R*)xR*xR®,d >E endowed with the norm

IX[lc = [H[+[s|+ 2+ =, [+ | £] +[¢]+ v+ |p (81)

R

0 0 o Q0
We will show thatthe map h(X) =| Z1,Z2,23,Z4,h;,h,,hy;,h,,h., N, | defined by the r.h.s of system (S) defined by

(80) is continuous of t and localy Lipschitzian in X € E endowed with the norm (81).
L . . . 1 -
We also need this time to compute the differencesin f andthoseinsandzin —Q(f, f, p). we must prove
that there exists some 0 >0 such that system (S) has a unique solution X defined on 1, =[0,0] and taking at
t =0, the initial datum X0 deduce from the initial data ao,bo,ao, bo, using formulas (47).Let us recall that the initial

data a,,b,,80,b0,d,,17,, T, bo' Ei,(oij are subject to the constraints (40)-(41)-(42)-(44).
The following energy estimations shall be useful in what is to follow.

Lemma5: Let §,,5,,2,,Z, € 0;1], a,b defined by (49) and g defined by (1) be given. Then one has:

Cﬂsl—sz|+|zl—zz|]
3 3

B(s)8%(s,) °(2,) % (2,)

‘abz(sl, z,)—ab’(s,, zz)‘ <

g5, 2) - abg (s, 2| < — Sl

B(8)B(s,)B(2) B (2,)

g5, 2) - abrg (s, )< — i a2

B(8) () B@)B(2)

Cﬂsl—sz|+|zl—zz|]

B(s)BG)A)A,)

‘az (51' 21) o az (Szf Zz)‘ <

Cﬂsl—sz|+|zl—zz|]

B(s)B(,)B(z)B(2,)

b%(s,,2,) ~b*(s,,2,)| <
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S, R 3K
‘B(Sl’zl, P,d, P,q)—B(s,,2,,p, 4 P,q) < — 01 CU51_52|+|21_22|](82)

B (2)B(s,) B2 (s)(2,)

Proof: Apart from (82) , the five first inequalities are just direct computation. Now for (82), recall that we require the
boundedness and Lipschitz continuity assumption on B. We then obtain (82) by direct computation. +

Proposition 7: Let E)j = (pij)eR3, f, f e H2(R?), $i:Z; 6]0;1[ for j=1,2 be given. Then

C|If
H( po(sl Z)_ po(sl . ))Q(fl’ f)(s,,2,) < ” 1” U |+|Z 2|] (83)
v 2 ,3 (Sz)ﬂ(zl)ﬁz(z )
e QU s 2) -0, ! )(sz,zz)* cht 1l -t 0
P52 Fs)P ()
ﬁ(@(f, £)(s,2) - Q(f, f)(sz,zz))1 Ll -5 +a -2 )
v B’ (Sl)ﬂ (s,)° (Zl)ﬂ (z, )
Habzg“(sl’zl)qol pl J'f do p— bzg"(Sz, ;)P4 pz J'f do pl<
H P°(s,, 2, Py) P°(S;.2,, P,)
C[1+|| f1||(” f = £, +]s, = s +|z. = 2, + | P, = P, J
5 5 . (86)
ﬂz(sl)ﬁz(sz)ﬁ4(21)ﬂ2(22)
1 - 1 _
(—_Q( fl' fl)(sllzl' pl)_—_Q( fz’ fz)(sz’zz’ pz) <
P°(s1. 21, Py) P°(S,:2,, P,)

Cﬁ“” ful+[ f] +| f1||2 +| fz”{” fy = £, +[s, =S| |z~ 2| +| p,

pj

P .
Proof: see [6] Concerning the differences in P and ﬁl’ i =1,2, we have the following result which is a direct

87

B(s)(3,)8°(2,)%(2,)

consequence of the Lemma 5.
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Proposition 8: Let s,,5,,2,,2, € 01, f,, f, € H3(R®), H,, H, € [H®, Hy |, 4. 4,71, €R e given:
thenfor i =1,2

we have:
|(32f¢1W1) (Szzf¢2‘//2]
Mszl_f2||+|¢1_¢2|+|‘//1_’//2|+|s1_52|+|21_Zz|] (88)
| 32f¢1‘//1)P| f¢2W2|
‘ Hl H2 |
MsUHl_H2|+|31_32|+|21_22|+”f1_f2||+|¢1_¢2|+|‘//1_'//2|] (89)
Where

__ ca+ti+f.h
LOBEIBN () (2)BN(2,)

+m|¢, + 4| (90)

_ CE+[f+] .
P OHHL BN ()Y, B°(2) 8 (2,)

+Mi|d + 6| (1)

proof: Considering the fact that f, f, € HS(R?’), S,, Z, E]O;l[, H, E]Hlo, HO[, @y, €R, for 1=1,2 vyield

to:
R(suz, fidhovs)- P.(sz,zz, fouthtrs)=
2
f,
167zn9 6’ dp+ 640, | .——— (p")(f,— f,)dp+
‘[3 0( 2,,$,) '[ s,) (f-f)p
1676 t 1 f,dp+K,(V,-V,)+
R psn) Pz))
Ki(Wl_W2)+|l//1_l//2|+m§|¢1_¢2”¢1+¢2|
where
5 5
2 2
SR e
52 (L-s) VT s2(1-s)?
1-s.)?%(1-z.)? s (1-s.)(1-2)?
V|:( I)Z-g J , Wi = L |Z)2( J ’Klz_”((aobozEl)z"'%zs)
= 2{(-1)“(a,h2E? f +(asbE?) + 0 + (1))
7105 | Page

March 2017 www.cirworld.com



/ ISSN 2347-1921
: ! Volume 13 Number 01
L- Journal of Advances in Mathematics

Inequalities (74) yield to:
1 1 | Cls, —s, |+, —2 2|]
3
E

o2 8) ooz p)” B (52) B(2) B(z,) ‘p‘

Using the lemma 4, we can see that

Rz B 1) — R (S22 Touhro )| <
Clflls, =5/ +|z. 2] C”f follls, s+ |Z Zz”
ﬂA(Sl)ﬂg(Sz)ﬂ%(Zl)ﬁg(Zz) B (s, ),3(21),3 (2,)
C||f2|m51_32|+|21_22|]+CU51_52|+|21_22|]+
Feapape PP

|W1 _‘//2|+ m§|¢1 _¢2”¢1 +¢2|1

one has
Pi(sl’zl’ f1!¢11‘//1) P| S5,y £2,0,, ‘//z|
Hl H2 |
H11H2 (Hzpi(slvzlv f11¢1:‘/’1)_ H1Pi(52’221 fz:¢2aV/2)*
= HlH [(HZ_Hl)Pi(Sl’Zl' f1’¢1"//1)+H( (S 2, 1.4, l/fl) (S 25, f,. 8, ‘//2))
HH, B ()A (8,87 (2)F(2,)
U31_32|+|21_22|+”f1_f2||+|¢1_¢2|+|‘//1_'//2|]+
S PRV
1 [ o+t ) B ~ B
SHle_ﬁ“(sl)ﬂ“(s,z)w(zl)ﬂ‘*(zz)+1““°|"’1+¢’2|) [H. = H|+[s, =5, +]2 2]
1 [ casg+lth o 11— £ —
| Fe e apiay o o]
o L | COURIRD Ly e, = H s = -2, ]+
HH, | £ (s)B°(5,)8°(2)5°(2,) |
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1 [ CL+| ]+

HH, | B4(s)(s,)8°(2)8'(2,) Ll -l (16— ol 1 g+l vl

this prove the proposition 7. +

Lemma 6: Let ¢, 7, €R be given, then there exists the positive constants M and M, such that

A< Mg v <M. ©2)

where M§ = MS(HO,T,%,%) and Mf = MZ(HO'T’¢O’WO)'

proof: Recallthat H € ]Hlo, HO[, we deduce from equations (38) and (39), that there exists C = C(H,) such
that:

‘q’ﬁ < 2y, +miT maxgt, ¢ (M)De  t < [0,5] 3

Integration (93) over [0, 5[, oe [O,T[, we have:

|G| <[]+ (L+T )y 20w, + m2T maxig2, ¢ (T) e’

Finaly, we obtain ”l//” <M? and ||¢|| <M?2.+

Lemma7: Let ¢y, .4,,¥, €R, H€]O,H,], then

= NlU‘/’l - '//2| + |¢1 - ¢2|] (94)

h(H,s,2,%,,4,v, T, p)-h(H,8,2.2,, 6.y, T, p)

Where

2 0
N, = 6H, +ToMs F1 e oo (95)

Jve

Proof: we have, taking account of equations (38) and (39)

h(H,s,2,Z,,4.v, T, P)-h(H,5,2.2,.4,,,, T, b)‘
S‘\/ 2y, =+ 2‘/’2‘+6H|‘//1_‘//2|+m§v2W1|¢1_¢2|+m§¢2‘\/ 2y, _\/2‘//2‘

2+2m? - [
S( o|¢2|)‘/’1 ‘//2|+6H|1//1—l//2|+m§ 2‘/’1|¢1_¢2|
\/21//1 +\/2'//2

using H €]0,H,], (27) and (95), we are able to write

‘“(H,s,z,z+,¢l,wl, f,0)~h(H,5,2,%,, .1, F, ) < Ny[lws —w,| +]dh ] +
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Lemma 8: Let X, and X, e DxRxRxH3(R*)xR?, then
[h(X) =h(X,)]; <

[Hy = Hy|+[s, = ;| +]2, — 75| +[Z,. — .

N - - (96)
8= G b -val+ by
Where
meM2 +1
N:6HO+°?;O++m§ 2M +
1 s A R A A L e
C(1+ ) 1+ +1+my|d + (97)
Hle[ P CIF@F,) h

Proof: Using the function h, we obtain:

h(H,,s,,2,Z 5,6, v, 11, bl)_h(HZ’SZ’ 2,250 ¥, 1y, bz)

E

< ”Z(Hl’sl’zl’z:ﬂ) _Z(H213212212+2)”

abzgii(sl’ 2,)Pi plk J'fld_p_ abzgii (S, 2,) i p|2< J.fzd_p
P’ (51,21, Py) P°(s2.2,. )

+

3
i=1

+ (;Q( fl' fl)(sl’ Zy, bl) -

p°(sy. 2, py) P°(S;.2,, P,)

L QA £)602,0P)

2

1
+§ |Pi(511z11 f.d,v1) =R (s,.2,, f2'¢2'l//2)|
=]

+|Z =) ||P1(52122! f2'¢2"//2)|

+2| H2
+1 Pl(sl’zl’ f1:¢11'//1)_ Pl(sz’zz’ f2’¢2’W2)|I2+1_2|
3 Hl HZ ‘
—l—l PZ(Sl'Zl' f1'¢17'//1)_ P2(52'22’ f2'¢2"//2)|lz+1+1|
3 H, H,

+|2+1_2+2|| PZ(SZ’ZZLlfz’%’%)%Jr h(H,s,2,Z,, 4.1, T, p)-h(H,5,2,2,.4,,w,, T, )
2

Using the inequalities (79), (86), (87), (90), (91) and lemma 7. We obtain the result. +

Proposition 9: There exists a real number 0 >0 such that the differential system (S) defined by (80), with the
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initial datum X, at t=0( adequately fixed as above) has a unique solution X defined over [0,5] and satisfying

X (0) = X,

Proof: tet (H°,s°,2°,5%) € JH, H°[<I0A[x101[x] - 1L, P, €R®, .17, €R, f, € H (R?). Consider H
s, Z,,1=1,2 suchthat:

i ir &

s s%+1 2% 2°+1

H; elH,H], s E]?’ [z €l

2 22['

Also consider f,, f, € B(f,,1) the unit ball in Hg‘(RS) , and bl, bz eR?: &, v, ¥, €R. Then H,,S;, Z,,

and @, y;,1=1,2 satisfy the following inequalities:

1. 2 1 . 2 1 1

p) A ) A HOHD (08)
Yocyp <M ——— <= 4 <ht)<M? |

2 Y Jav, s P57

and we have || f, || < || f0||+1, i =1,2. Consequently, we have in (97), using (98),

N <N (H%s% 2% f° Hy, 8. 2000 20 s Wos To» Por M2, M) (99)

(96) and (99) show that the function h is locally Lipschitzianin X , proposition 9 then follows from the standard theory on
the first order differential systems. +

Theorem 3: Let d >g,r>0, f,eH3 (0,T,R%), 89,1, a0,b0,E', @, ¢, €R, A2 0, satistying (40),

(41), (42), (43), (44) and bo eR? be given. Then there exists a real number 0>0 such that system has a unique
solution (a,b,®, f) on [0, 5]. This solution provides the solution (&, b, Fo Fij’¢, f) to system verifying at the initial

datum (a,,b,, Ei,(pij,¢0, f,) and satisfies:

feH, (0.T.RY.|f]

wsored <l follzes)
=—2E, F=¢

(a,b,F* F; 4, £)(0) = (85,0, E', 0, 5, )
a(0) = a0, b(0) =ho >0

(100)

Proof: The system (33)-(34)-(35)-(37)-(38)-(39) is equivalent to system (S). If we take s 4, Z), H0 , Z+0 as defined in

(101) and bo €R®, we obtain by the proposition 9 the unique solution X of (S) on [0,5] which verifies

X(0) = X,. f is also the solution of the Boltzmann equation given by theorem 1. S,Z, ¢ and i being given by

proposition 9, we use formula (49) which gives a and b as functions of s and z. Consequently, (a,b) is also the unique
solution to system (33)-(35) given by theorem 2.

Adding (36), we clearly obtain that system (2)-(5) has a unique solution (@,b, F%, F 4 f) on [0,5]. The inequality

||f||Hg’(O,T,R3) S||f0||Hg(R3) is prove in [2].+
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6. THE GLOBAL EXISTENCE

We now show that the local solution to Einstein-Maxwell-Boltzmann-scalar field system (2)-(6), whose existence is proved in
Theorem 3, is in fact for the case A =0 a global solution. We will use the similar method as the one used in [1] and [6]

opog
Denote by [O,T[ the maximal existence domain of the solution, denoted here by (@,0, ¢, f) and given by theorem 3, of

the system, with the initial datum as state in theorem 3. We want to prove that T = +o0,

o If T =+o0, then the problem of global existence is solved.

o If not, T <+o0o. Let to E[O,T[, we will show that there exists a strictly positive number 0>0

H [ H L]
independent of t,, such that the system on [to,to +5], with the initial data (a(to ), b(to ), ¢(t0 ), f(to )) at t =t

o o
has a unique solution (@,b,¢, f) on [to,to +5]. Then, by taking tosuchthat 0 <T —t, < E, hence T <t, +§,

ogpogt
we can extend the solution (@,0, ¢, T), which contains strictly [O,T [ ,and this contradicts the maximality of T. In order

to simplify the notations, it will be enough if we could look for a number & suchthat 0 < ¢ <1.

The functional framework

Proposition 10: Let t, €0,T[ and 0<06 <1.Then, anysoluton (H,s,z,Z,,¢,y, f, E)) for the initial value
problem for the system (S) defined by (80) on [t,,t, + J], with the initial data at t =t,:

O

_ [] [] [l [l [ [ [] _
(H,s,2,2,,8,v, T, p)(t,) = (H(t,), s(ty), 2(t,), Z+ (), #(t,), v (1), T (L), P(t,))
U
[] O oot -
where (H,s,z,Z+,0,w, T, p) denotes the solution in [O,T[, satisfies the inequalities:
#SMO; ;SMO; ;SMO; te0,5] (101)
H(t, +t) a(s(t, +1)) a(z(t, +1))

where:

1 1 1 +
_JelOHO (T+1) (102)

Ile = MO(aO1bO’aOl601T) :(H_O+g+ ZO

inwhich Hg, S,, Z, are defined in terms of ao,bo,ao,bo by (47).

Proof: Consider the solution (H,$,Z,2,) of subsystem(S,) —(S,) —(S;) —(S,) of (S) on [0, T[ with the initial
datum (HO,SO,ZO,Z+O) , defined in terms ao,bo,ao,bo ;  Applying proposition 4, where we consider
(H.5,7,2)t)=(H,525) ad (H,s2)t)=(H,525)t)=(H57,5)t) because
t, €0, T[, invoking (69)-(71), and 0 < ¢ <1, we obtain the proposition 9. +

In what follows, M o is the absolute constant defined by (102). We deduce from (47), and the expressions of a,

b in (49) that:

<M, =<M,; a’<Mg; b?<2M¢ (103)
S z
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9
We then deduce from the definition (47) of Z and S, intermsof & and D, using a?> ag > Z > 2, and the inequality

for H in(101):

1 11 1 11
—<7<—— . —_<s= < , —<H<H,
M, 142M;%27 M, 1+2a%%  1+2M;2" M,

On the basis of (101), (102), (103), we now introduce the following functions spaces, for to eO,T[ and 0>0:
t, [0, T[,5>0:

M1

<s<
1+ M2’ p(s(t, +1))

c; =[secllt - oley

,i SMO;tEO,é']} (104)
I\/IO

R, = {H eC([(t,.t, + )R —— < H(t, +t) <H_ ;te 0,5]}

1
MO
F, = 12, €Cltoty +6)i-1< 2. (& +1) <1t 0,51}

One verifies easily that Eti , Fl(io and ino are complete metric subspaces of the Banack space denoted C(t0 'to + 5)

, of the continuous (and hence bounded) functions on the line segment ['[O ,'[0 + 5] , endowed with the norm:

. = supé u@t); ueC(tyty+9) (105)

tety tg+5]

Lemma9: Let f, e Hs”r (0,T,R®), be given, then there exists a positive constant

3 3 . —
Mo =My (H,,8,,2,,T.[E'} @] 1 po),  such that

H_pH <M., (106)
for any solution X of (S) defined by (80) on [0,5].

Proof: wehave p°> a‘ p' ‘, using (103), we deduce that there exists a positive constant MJ = M2 (M, T) such
that:

P
— == M, k=1,23.
p(s:z,p)
since f e Hgyr(O,T,Rs), He b, HO[, |Z+| <1, we deduce for (Sg)—(Sy)—(S;,) that there exists two positive

constants l\/lg = MS(HO), Ms? = Ms?(l’,T,‘Ei‘,‘gDij‘, MO,_pO) such that

<M|p'[+ M3, =123

b

Integrating over [O,I[, te [O,T[, we obtain

t

<

0

ds < ng\p‘(s)\ds+M§T

0

p'(s)

j pi(s)ds

7111 | Page
March 2017 www.cirworld.com



/ ISSN 2347-1921
: ‘ Volume 13 Number 01
L- Journal of Advances in Mathematics

it follows that
5= (o' @+ MET]) M2 |o! (9
By the Gronwall lemma, we obtain 0
o' ®)|<(p' @+ MITE" =M, i=123.
Consequently, using (103) which gives My = Mg (H, Sq,2,,T), we obtain |p < M.+

Global existence we set, for i, j =1,2,3

dp _ P 2 bzpkg”(% -
=T p‘+[—a0b0E e [,fdp
daf 1
- 2ot
dt Q( p) (107)
d_¢= 20
; dt
o =T g2y -1

Lemma 10: Let a,b be fixed, t, 20, (Bto' fto ,¢to , l//to) eR3x Hd3('[0 t,+0; Rs) X(R)Z, then there exists
0>0 such that system (107) has a unique local solution (
b, F.00) €C(((to ty + ) FR Jx HE (to t + 5;R%) x (B([t, t, + SFR)Y and veritying at t =t, the relation (
P at)=(p, . d v )

0 — [ [l — [] ]
proof: we set G(t, p, f,@,v) =| Gu(t, p, T),G2(t, p, T),Hi(t,4, ), H2(t,4,1v) |, defined by the r.h.s of

. . . o101 _ .
(107). Let to >0 bean arbitrary real number. Since the functions » = a, b,a, b, =, B, B, are continous of t, soisthe
a

function CDE By the continuity of » =a,b, i,% at t=t,, there exists 5, >0 such that t e Jt; —3,;t, +3,[
implies that :
()] <[r(ty)|+1. (108)
Now, using the corollary 1 and remark 6, (108) then gives
y ()] < [ato +b + atio + é} e 41 (109)

Next, set

B(fto,l):{f eHg(RS):H g <1}, (110)

and consider the neighborhood W, = b, -5, + 5, [ xR x B( ftO 1) xR? of (tO’BtO : ftO , ¢t0 , l//to) in the space
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RxR®xHJ(t,,t, + 5;R*)xR? and taking (t,_pl, f.d,v), ('[,_pz, f,.0,,v,) eWto. Using the scheme

developed for the proof of lemma 5, lemma 7 and proposition 6, we have:

gl(tiﬁl' f1’¢11'//1)_81(t'_pz' fo oy, < MAQ‘Bl_BZH—l_H f,- f2||)

I o - _
Ga(t, py, f1. 4, v1) —Ga(t, p,, f,.6,,1,)| < qu‘pl_ p2H+”fl_ fz”)

o - 0o -
Hi(t, py, T d,90) —Ha(t, p,, £y, 65, 1,) < M6q¢1_¢2|+|§”1_‘//2|) (111)

[ — [ —
Ha(t, py, f.d,w) —Ha(t, p,, f,.6,,1,)| < M7q¢1_¢2|+|'//1_l//2|)

o - 0 —
G(t, py, f1. 6, w1) =G, p,, f,,8,,1,)| <

MSQ‘El __sz"‘” f,— f2||+|¢1 _¢2|+|V/1 _‘//2|)

where

b? a b 1 1 :
M, = (C +1)(Z+a)(1+6+5+5+6)(1+|| ) +a, bl [E|+ey)

M, =87C,ab?(1+ a-+ 20)(L+ | £, |+ | ] +] £ ); My = ———, (112)
2

M7=2Ht0+m7\/LM5°+m§ 2M%: M, =M, + M.+ M, + M,
i

But by (109) and (112), we deduce from (111) that

o — 0 —
G(t, py, f1.6,v1) =G, p,, 5.8, 95)

< Mém_pl—_pzu+” f,— f2||+|¢1_¢2|+|l//1_‘//2|) (113)

where

M = Mq(a, b st |E'] oy Hi v M3 ME, ) 2 M, (114)

(113) and (114), show that G s lipschitzian in (_p, f,¢, l//) with respect to the norm of the Banach space

R®x Hg(Rs) xR?. The existence of a unique solution ([_J, f,@,y) of system (107) on a interval [to’to +5], 0>0
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such that (_p, f, o, l//)(to) = (B‘o : ftO , ¢to , wto) is then guaranted by the standard theorem on the first order differential

systems. +

proposition 11: Let t, € [O,T[, then there exists a real number & > 0, depending only on the absolute constant

a 5,b,,80,00,T,p, . 4., and I such that system (S ) defined by (83) with the initial datum

[ [ [l U (] H [ ? _
(H(t,),s(ty), z(ty), 2+ (t,), o(t,). w(t,), T (ty), p(t,)) has a unique solution (H,s,z,Z,,4,y, T, p) belonging
o0 (E;; )2 xFh % B x(8(fto ty + SFR)F xHilty by +6; R*)xC(((ty.t, + 5)}R®)

Proof: By the above lemma 10, using Lemma 6 and Lemma 8 which show that t— ¢(t),t > y/(t) and t— p(t) are
uniformly bounded, if we fix (g,E) e(E{;)Z, and we define a=a (5,2), b=b (g,E) by (49). Then subsystem
(S)—-(Ss) - (S)—(S)-(S)-(S,) of (S ) has a  unque solution
(7.0, 1 )eB(fty,t + SER)F < Cl((to o + ) ER® Jx H3 (b 1ty + 55RY) and veritying

— o .0 .0 g
B0 1)) =| bt wto). b £

Now if we substitute f to f in (100) given by theorem 4, we obtain

0
|f (t)||H3(toyt0+5;R3) <|f <r,telt,,t, +5] (115)

b

H3 R
Next by proposition 5 there exists a real number ¢ belonging to ]0,1[ such that if f is given in Hj”r (ty,t, +0; RB),

then subsystem (S,)—(S,)—(S;)—(S,) of (S) has a unique solution (H,S,Z,Z+) on [to 1 +5] satisfying

[ U [ U
inequalities (78) and the condition (H,s,z,2, t,)= {H (t,), S(t), Z(t,), =+ (to)].

Proposition 11 insures that (H,s,2,%, ) e (Et‘; )2 xFy x Fiy .
Setting
Iy = (E;;)2 xH;  (t,,t, + 5;R®)
v =R x iy xI0 x(8([to, to + SFR)Y x8([ty, 1, + 5} R?)

0

(116)

we can now define the map

F:Ft‘;—)yti;(g,i,?)H(H,&,s,z,f,¢,w,_p) (117)

We are going to show that we can find a real number 0>0 independent of to such that, F defined above induces a

contracting map of the complete metric space Ft‘;, which consequently will have a unique fixed point (S,Z, f). We

will then deduce the existence of H Z+,¢,l// and P such that (S ), admits the solution

7114 |Page
March 2017 www.cirworld.com



/ ISSN 2347-1921
lL'J‘ Volume 13 Number 01
'. Journal of Advances in Mathematics
(H,s,2,2,,é,v, f,_p)eyti.lfwe fixin the r h s of (87)—(88)—(89)—(810):(5:5, z=E)e(Efo)2 and if we

take in (,)~(S,) : P =Pi=P(s,2,F)ii=12 where (5,2)e(E] xE5 ) and T eHZ, (t,t +5iRY):

then the new system obtained, still called (S), admits the soluton (H,s,z,2 ,¢,v, f,_p) belonging to ;/t(; as

(] o o 0 0 0 [] @
indicated previously above and taking at t=t, initial datum (H(t,),S(t,), z(t,), Z+ (t,), o(t,), w(t,), T (t,), P(t,)) -
Moreover, (H,S,2,Z,,0,v, f,E)) verifies the following integral system, with t € [0,5], 1=1,2,3:

0 w0 __
H(t, +t) = H(t0)+j:° ‘Zi(H,s,2,%.,¢w, T,p)(0)dr (118)
U t,+t L _
s(t, +t) = s(t0)+jt Z:(H,s,2,%,.¢,w, f,p)(2)dr (119)
[l t,+t L _
2(t, +1) = z(t0)+jt Z3(H,s,2.2,, 6w, f,p)(0)dr (120)
U t,+t L _
. (t,+t)= Z+(t0)+jt Zs(H,s,2,Z, ,¢,w, T,p)(r)dr (121)
[ t, + _
B(to+1) = gt)+ [° (H 5,22, .y, F,p)(r)dr (122)
(] o+t _
w(t,+t) = l//(to)+ft h,(H,s,2,Z,,4,y, f,p)(r)dr (123)
[] t 4t N _
fllo+) = () +[* h(H.52.2 4w, f,p)(0)dr (122)
i D t0+t - = —_
p'(t, +1t) = p(t0)+jt h,(H,s,z,Z,,¢,yw, f,p)(r)dr (125)

Let (H1,2+1,Sl,21, f.é, v, pl) and (H2,2+2,Sz,22, f,, 6w, pz) be two solutions corresponding

respectivily to (Sl, Z, fl) and (Sz, Z,, f2) as obtained above. We write our integral system (118)-(125) for i=1,2
next we take the difference. Taking now the devoted to local existence, we get

(A agﬂn = fyf|+[s -5 +[e-22| +H\‘pl —p|
where L) =C(1+2r+2r*)M;

where L5 = LS(E'|,|@;], 29,05, Ho, T, Mo, 1) = C(1+ agh?; [E'|+ Hy + My + )My,

) (126)

<o (“| f,— 1, +H§1 —Esz +H21 —Ez”w +‘H_p1 —_pz‘ ) (127)

‘_pl __pz‘

T S Y S A e e I R EE

H, -+, <o)

?1_?2‘
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where L2 =12(a,,b,,8,,by, 1, T) = C(H,(1+ H,) + (1+ )M
||2+1_2+2||oo <

ﬂ-ﬂh HHi=H, [, +s =5, +[z = 2], +[Z _2+2”mJ

?1_?2‘

where Li = Lg(ao,bo,ao,bo,r’T)
s, =5, < diéﬂlHl —H,|, +|s. =5, +]z 2., +[= _2+2”w]

Where Lg = Lg(ao,bo,éo,bo,r,T)

=2, < d3[H, ~Hy|, +s, =], +|z~ 2], +[=. 2., ]

where LS = Lg(ao,bo,éo,bo,r,T)
||¢1 - ¢52||0o < a-(;”‘/ﬁ _‘//2”00

where Lg =—

Vo
.=l <a3(ys—wal, +[H ~Ho|, & -4].)
where Lg = I—g(Ho'Wm%!T)

Summing inequalities (126)-(133) and taking first 0 >0 such that

5(L§’+L§+L§+L§+L§+L§+L§+L§)<%

Then simplifying, we obtain
[H=Ho, s =sa, +lz = 2o, +[Zs =2, + [ = 4],

<

s v, +] - £+ )

26(10 + 19+ 13+ L) =5 +[m-7e| )<

2l

because 25(L(1’+Lg+L§+Lj)£25(L2+L3+L§+L3+L§+L‘;+L‘7’+Lg)<%.

?1_?2‘

toi-se] +[u-72] )

i)

From which we deduce

T, T+ [s—se] +[-72] |

It~ s sl +le ), <2

Consequently, if we take

0<o<infil,—F— 1 R
AL +L+LB+L+0+L+L + L)
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Then inequality (136) insures that the map F 1T} — 7, ; ((s,2), f) > (H,,Z“S, Z, f,¢,y/,f)) defined by (117)

induces a contraction (S,Z, f)> (S,z, f) in the complete metric space Fti for any real number O satisfying (137).

This shows that 0 depends only on absolute constants a,,b, ,ao , bo, Do, Vo

fo, ‘Ei‘, ‘gpij‘,T, r, F then has a unique fixed point (S,z, ) el—‘t(; solution of integral system (117)-(124)

[ [ []
such that; (S,z, f)(t,) = s(ty), z(t,), T (t,) |

_ (] {
Now to determine H ,E+, p,¢ and /, consider system (S) in which we substitute f by f, S and Z by S
and Z . Since sis known, relation (57) determines the product 2+H as function of s. Since s and Z+ H are known,
(58) provides H and (57) gives Z+. It remains to determine P, from the three equations (S.8)-(S.9)-(S.10) of system (S)
,Where H ,Z+,S,Z and f are known, we use the fact that,
k k
PP

P, P

the above inequality shows that subsystem (S.8)-(S.9)-(S.10) of system (S) for the single unknown B is globally

< CMOH P, — pZH where M is given by (103), C>0is a constant. Since H ,X, are bounded,

_ - . — [
lipschitzianin P hence, there exists a unique solution P = (p') suchthat P(t,) = p(t,), globalon [to’to + 5].

To determine ¢ and 1/, consider the equations (35 )‘(Se) of system (S) , where H is known and bounded. using

(100) , the subsystem ( 55 )-( S6 ) of system (S) is globally lipschitzian in ¢ and W . hence there exists a unique solution

0 0
(¢,l//) such that (¢,l//)(t0) =| o(t,),w(t,) | globale sur [to'to +5].

Consequently, we obtain the unique solution (H ,S, Z,Z+,¢,l//, f ,_p) of system (S) in 7/{; .t
. S -
Theorem4:Let Vo €R,A20,r>0,d >§, a,,b,,a0 and

boeR, p, eR’, f, e H}, (R®), F¥(0)=E' eR, F;(0) = ¢, €R such that
ao,bo,é.o, bo, ¢0, Yo, fo, Ei, @5 verify the constraints (40), (42), (43) and (44). Then:
1- differential system (S ;) —(S,)—(S5)—(S,) —(S5) —(Sg) —(S;) —(S) —(Sg) —(S;p) has a unique global

solution (H ,$, 2,2, 0y, T, B) defined on [0,+oo[ and verifying
(H,5.2.%,, 8.0, F, X0V = (Ho, 50,20, .0, ¥, Tos Po)

2- the coupled system, in a locally rotationally symmetric Bianchi type 1 space-time, has a unique global regular solution

(a,b,FO‘,Fij, f,9) defined on [0,+OO[ and verifying
= a,,b(0)=h, FO = % £ Fi0) =B F(0)= ¢, ()= 0)=
a(0) = ay, b(0) = by, _W ,F7(0)=FE, ij()_(/’ija (0)=f, and #(0)=4¢,.
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