

On Full k-ideals of a Ternary Semiring

Kishor Pawar

Department of Mathematics, School of Mathematical Sciences, North Maharashtra University, Jalgaon - 425 001, India. kfpawar@nmu.ac .in

Swapnil Wani

University Institute of Chemical Technology, North Maharashtra University, Jalgaon - 425 001, India. swapwani@gmail.com

Abstract

In this paper, we generalize the concept of the full k-ideals of a semiring to ternary semiring and prove that the set of zeroids Z(S), annihilator $A_S(M)$ of a right ternary S-semimodule M, and the Jacobson radical J(S) of a ternary semiring S are all full k-ideals of S. Also we prove that the set $\mathfrak{T}(S)$ of all full k-ideals of a ternary semiring S is a complete lattice which is also modular.

AMS 2000 Subject Classification: 16Y30

Keywords: Ternary Semiring; ideal; full k-ideal; etc.

1. Introduction

The notion of a ternary semiring was first introduced by T. K. Dutta and S. Kar in [1]. They also define the notion of a right ternary semimodule over a ternary semiring and Jacobson radical of a ternary semiring in [2]. In [3], M. K. Sen and M. R. Adhikari, consider full k-ideals of a semiring and they prove that the set of all full k-ideals of a semiring is a complete lattice which is also modular and also they discussed several characterizations of k-ideals of a semiring. The present paper extends some results of [3] to a ternary semirings.

2. Preliminary Definitions

Definition 2.1. [1] A non-empty set S together with a binary operation, called addition and a ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if S is an additive commutative semigroup satisfying the following conditions:

- i. (abc)de = a(bcd)e = ab(cde)(Associative Law)
- ii. (a + b)cd = acd + bcd (Right Distributive Law)
- iii. a(b + c)d = abd + acd (Lateral Distributive Law)
- iv. ab(c+d) = abc + abd (Left Distributive Law) for all a, b, c, d, $e \in T$.

Example 2.2. [1] Let \mathbb{Z}_0^- be the set of all negative integers with zero. Then with the usual binary addition and ternary multiplication, \mathbb{Z}_0^- forms a ternary semiring.

Definition 2.3[1] An additive subsemigroup of a ternary semiring S is called ideal of S if SSI \subseteq I, SIS \subseteq I and ISS \subseteq I. An ideal I of a ternary semiring S is called k-ideal (subtractive) if for $a \in I$, $a + b \in I$, $b \in S$ imply $b \in I$. We denote $I \triangleright S$, a ternary semiring ideal in S.

Definition 2.4 [1] A ternary semiringS is said to be regular if for each element ain Sthere exists an element x in Ssuch that a = axa. If the element x is unique and satisfies x = xax, then S is called an inverse ternary semiring. x is called the inverse of a.

Definition 2.5 A ternary semiringS is called additive inversive if S is an inverse ternary semiring under addition. In an additively inverse ternary semiring the unique inverse x of an element a is usually denoted by a'.

Definition 2.6 [1] An element a in a ternary semiring S is called an idempotent if aaa = a that $isa^3 = a$. And if each element of S is idempotent, then S is called an idempotent ternary semiring.

Definition 2.7[1] An element a in a ternary semiring S is called an additively idempotent if a + a = a. And if each element of S is additively idempotent, then S is called an additively idempotent ternary semiring. The set of all additively idempotent elements of ternary semiringS will be denoted by $I^+(S)$.

Definition 2.8[2] An additive commutative semigroup M with a zero element 0_M is called a right ternary semimodule over a ternary semiring S or simply a right ternary S-semimodule if there exists a mapping $M \times S \times S \to M$ (images to be denoted by ms_1s_2 for all $m \in M$ and $s_1, s_2 \in S$) satisfying the following conditions:

$$\begin{split} \text{(i)} \ (m_1+m_2)s_1s_2 &= m_1s_1s_2 + m_2s_1s_2 \\ \text{(ii)} \ m_1s_1(s_2+s_3) &= m_1s_1s_2 + m_1s_1s_3 \\ \text{(iii)} \ m_1((s_1+s_2)s_3 &= m_1s_1s_3 + m_1s_2s_3 \\ \text{(iv)} \ (m_1s_1s_2)s_3s_4 &= m_1(s_1s_2s_3)s_4 &= m_1s_1(s_2s_3s_4) \\ \text{(v)} \ 0_Ms_1s_2 &= 0_M &= m_1s_10_S &= m_10_Ss_1; \text{ for allm}_1, m_2 \in M \text{ and for alls}_1, s_2, s_3, s_4 \in S. \end{split}$$

Definition 2.9[2] An element s of a ternary semiring S is called a zeroid, if s + a = a + s = a for some a in S. The set of all zeroids of S denoted by Z(S). A ternary semiring S is called zeroic if Z(S) = S. If $Z(S) \neq \phi$ and Z(S) is proper subset of S then S is called non-zeroic.

Definition 2.10 [2] Let M be a right ternary S-semimodule. We $put(0:M) = \{x \in S : msx = 0 \text{ and } mxs = 0 \text{ for all } s \in S\}$. Then we call (0:M) the annihilator of M in S, denoted by $A_S(M)$. The set of zeroids Z(S) of a ternary semiring S is contained in $A_S(M)$.

Definition 2.11 [2] A right ternary S-semimodule $M \neq \{0\}$ is said to be irreducible if for every arbitrary fixed pair $u_1, u_2 \in M$ with $u_1 \neq u_2$ and for any $x \in M$, there exista_i, $b_i, c_j, d_j \in S$ $(1 \le i \le p, 1 \le j \le q; p, q)$ are positive integers) such that

$$x + \sum_{i=1}^{p} u_1 a_i b_i + \sum_{j=1}^{q} u_2 c_j d_j = \sum_{j=1}^{q} u_1 c_j d_j + \sum_{i=1}^{p} u_2 a_i b_i.$$

Definition 2.12 [2] Let S be a ternary semiring and Δ be the set of all irreducible right ternary S-semimodules. Then $J(S) = \bigcup_{M \in \Delta} A_S(M)$ is called the Jacobson radical of S. If Δ is empty then S itself is considered as J(S) i.e. J(S) = S and in this case, we say that S is a radical ternary semiring. A ternary semiringS is said to be Jacobson semisimple (or simply, J-semisimple) if $J(S) = \{0\}$.

3. Full k-ideal

Lemma 3.1 Let S be a ternary semiring, then set of additive idempotent elements I⁺(S) of S is an ideal of S.

Remark 3.2 Clearly, $I^+(S) \subseteq Z(S)$.

Proposition 3.3 [2] Let S be a ternary semiring, then set of zeroids Z(S) of S is a k-ideal of S.

Lemma 3.4 Every k-ideal of a ternary semiring S is an additively inverse ternary subsemiring of S.

Lemma 3.5 [1] Let A be an ideal of a ternary semiringS. Then $\overline{A} = \{a \in S: a + b = c \text{ for some } b, c \in A\}$ is a k-ideal ofS.

Corollary 3.6 [1] Let A be an ideal of a ternary semiringS. Then $\overline{A} = A$ iff A is a k-ideal.

Definition 3.7 A k-ideal I of a ternary semiring S is called full k-ideal if the set of all additive idempotent elements $I^+(S)$ of S is contained in I.

Example 3.8 In a ternary semiring S, every k-ideal I is a full k-ideal. Since 0 is the only additive idempotent element in S which belongs to any k-ideal I of S. So I is full k-ideal of S.

Proposition 3.9 Let S be a ternary semiring, then set of zeroids Z(S) of S is a full k-ideal of S.

Proof: By proposition 3.3 Z(S) is a k-ideal of S and also $I^+(S) \subseteq Z(S)$. Hence Z(S) is a full k-ideal of S.

Lemma 3.10 [1] Let A, B be any two k-ideals of a ternary semiring S, then $A \cap B$ is also a k-ideal of S.

Proposition 3.11 Let A, B be any two full k-ideal of a ternary semiring S, then $A \cap B$ is also a full k-ideal of S.

Proposition 3.12 Every k-ideal of an additively inversive ternary semiring S is an inversive ternary sub-semiring of S.

Lemma 3.13 [2] Let *M* be a right ternary *S*-semimodule. Then $A_S(M)$ is an *k*-ideal of *S*.

Proposition 3.14 Let M be a right ternary S-semimodule. Then $A_S(M)$ is a full k-ideal of S.

Proof: By Lemma 3.13, $A_S(M)$ is a k-ideal of S and also $I^+(S) \subseteq Z(S) \subseteq A_S(M)$. Hence $A_S(M)$ is a full k-ideal of S.

Remark 3.15 [2] The set of zeroids Z(S) of S is contained in the Jacobson radical J(S), since $Z(S) \subseteq A_S(M)$ for all right ternary S-semimodule M. And hence $I^+(S) \subseteq Z(S) \subseteq J(S)$.

Lemma 3.16[2]J(S) is an k-ideal of S.

Proposition 3.17J(S) is a full k-ideal of S.

Proof: By Lemma 3.16, J(S) is a k-ideal of S and also $I^+(S) \subseteq J(S)$. Hence J(S) is a full k-ideal of S.

Lemma 3.18 Let A and B be two full k-ideals of a ternary semiring S. Then $\overline{A+B}$ is a full k-ideal of S such that $A \subseteq \overline{A+B}$ and $B \subseteq \overline{A+B}$.

Proof: Clearly A + B is an ideal of S. From Lemma 3.5, we prove $\overline{A + B}$ is a k-idealand $A + B \subseteq \overline{A + B}$. Since A, B are full k-ideals, $I^+(S) \subseteq A, B$. Hence $I^+(S) \subseteq A + B \subseteq \overline{A + B}$. This implies that $\overline{A + B}$ is a full k-ideal. Now $a = a + a' + a = a + (a' + a) \in A + B$ as $a' + a \in I^+(S) \subseteq B$. Hence $A \subseteq \overline{A + B}$ and similarly $B \subseteq \overline{A + B}$.

Theorem 3.19 Let $\mathfrak{T}(S)$ denotes the set of all full k-ideals of ternary semiring S. Then $\mathfrak{T}(S)$ is a complete lattice which is also modular.

Proof: Clearly $\mathfrak{T}(S)$ is a partially ordered set with respect to usual set inclusion. Let $A, B \subseteq \mathfrak{T}(S)$. Then $A \cap B \subseteq \mathfrak{T}(S)$ and from Lemma 3.18 $\overline{A+B} \subseteq \mathfrak{T}(S)$. Now we define $A \wedge B = A \cap B$ and $A \vee B = \overline{A+B}$. Let $C \subseteq \mathfrak{T}(S)$ such that $A, B \subseteq C$. Then $A+B \subseteq C$ and $\overline{A+B} \subseteq \overline{C}$. But $\overline{C} = C$. Hence $\overline{A+B} \subseteq C$. Now $\overline{A+B}$ is the l.u.b. of A, B. Thus $\mathfrak{T}(S)$ is a lattice. Now $I^+(S)$ is an ideal of S. Hence $I^+(S) \in \mathfrak{T}(S)$ and also $S \in \mathfrak{T}(S)$. Therefore $\mathfrak{T}(S)$ is a complete lattice.

Now consider $A,B,C\in\mathfrak{T}(S)$ such that $A\land B=A\land C$ and $A\lor B=A\lor C$ and $B\subseteq C$. Let $c\in C$. Then $c\in A\lor C=A\lor B=\overline{A+B}$. Hence there exists $a+b\in A+B$ such that $c+a+b=a_1+b_1$ for some $a_1\in A,b_1\in B$. Then $c+a+a'+b=a_1+b_1+a'$. Now $c\in C$, $a+a'\in C$ and $b\in B\subseteq C$. Hence $a_1+b_1+a'\in C$. But $b_1\in C$. Consequently, $a_1+a'\in A\cap C=B\cap C$. Hence $a_1+a'\in B$. So from $c+a+b=a_1+b_1$ we prove that $c+a+a'+b=a_1+a'+b\in B$. But $(a+a')+b\in B$ and B is a k-ideal. Hence $c\in B$ and $c\in C$. This proves that $c\in C$ is a modular lattice.

5. References

5.1. Journal Article

- [1] T. K. Dutta and S. Kar, On Regular Ternary Semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, (2003), 343-355.
- [2] T. K. Dutta and S. Kar, On the Jacobson Radical of a Ternary Semiring, Southeast Asian Bulletin of Mathematics, 28 (1) (2004) 1-13.
- [3] M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internat. J. Math. Math. Sci., 15 (2) (1992), 347-350.

5.2. Book

[4] J. S. Golan, Semiring and their Applications, Kluwer Academic publisher Dordrecht, 1999.

