

On Semi-Essential Subsemimodules in Multiplication Semimodules

Pritam Gujarathi ^{1*} and Kishor Pawar ²

¹ Department of Engineering Sciences,
Ramrao Adik Institute of Technology (RAIT), Nerul, Navi Mumbai – 400 706

pritam.gujarathi@gmail.com

² Department of Mathematics, School of Mathematical Sciences,
North Maharashtra University, Jalgaon – 425 001

kfpawar@nmu.ac.in

ABSTRACT

The Semi essential subsemimodule was defined in [4]. In this paper we generalize some results of semi essential submodule to semi essential subsemimodules in multiplication semimodule.

Indexing terms/Keywords

Semiring; semimodule; essential subsemimodule; semi-essential subsemimodule.

SUBJECT CLASSIFICATION

2010 AMS Classification 2010: 16Y60.

1. INTRODUCTION

In [4]-[7] the author has investigated and studied different classes of essential ideals and essential subsemimodules. The notion of semi-essential subsemimodule was introduced in [6] by Kishor Pawar and Pritam Gujarathi. In this paper we generalize the properties of semi-essential module over multiplication semimodule [1] and also we give conditions when an R-subsemimodule of multiplication subsemimodule becomes semi-essential subsemimodule.

2. PRELIMINARIES

Definition 2.1. [3] A semiring is a set R together with two binary operations called addition (+) and multiplication (\cdot) such that (R,+) is a commutative monoid with identity element 0_R ; (R,\cdot) is a monoid with identity element 1; multiplication distributes over addition from either side and 0 is multiplicative absorbing, that is, $a \cdot 0 = 0 \cdot a = 0$ for each $a \in R$. A semiring R is said to have a unity if there exists $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R = a$ for each $a \in R$.

For e.g.: The set $\mathbb N$ of non-negative integers with the usual operations of addition and multiplication of integers is a semiring with $\mathbb 1_{\mathbb N}$.

Definition 2.2. [3] Let R be a semiring. A left R-semimodule is a commutative monoid (M, +) with additive identity 0_M for which we have a function $R \times M \to M$ defined by $(r, m) \hookrightarrow r$ m and called scalar multiplication which satisfies the following conditions for all r and r' of R and all elements m and m' of M,

1.
$$(r \cdot r')m = r(r' \cdot m)$$

$$2. \quad r \cdot (m + m') = r \cdot m + r \cdot m'$$

3.
$$(r+r')\cdot m = r\cdot m + r'\cdot m$$

4.
$$\mathbf{1}_R \cdot m = m$$
 (If exists)

$$5. \quad r \cdot 0_M = 0_M = 0_R \cdot m.$$

Convention: In this paper all semirings considered will be assumed to be commutative semirings with unity.

Definition 2.3 [2]: Let R be a semiring and M be an R-semimodule. A subsemimodule N of M is called prime if

i) N is proper subsemimodule of M and

Journal of Advances in Mathematics If for any $m \in M, r \in R$, $mr \in N \Rightarrow m \in N \text{ or } r \in A_N(M) = \{a \in R \mid aM \subseteq N\}$. ii)

Definition 2.4 [3]: A nonzero R-subsemimodule N of M is called semi-essential if $N \cap P \neq 0$ for each nonzero prime R-subsemimodule P of M.

3. SEMI-ESSENTIAL SUBSEMIMODULES IN MULTIPLICATION SEMIMODULES

In this section, we give a condition under which an R-subsemimodule N of a faithful multiplication R-semimodule M becomes semi essential.

Definition 3.1.[3] An R-semimodule M is called a multiplication semimodule where N is a subsemimodule of M, then there exists an ideal I of R such that

$$N = IM$$
. $I = (N : M) = \{r \in R / rm \subseteq N\}$

Proposition 3.2[6]: A nonzero R-subsemimodule N of M is semi-essential if and only if for each nonzero prime Rsubsemimodule P of M there exists $x \in P$ and there exists $r \in R$ such that $0 \neq rx \in N$.

Proposition 3.3[6]: Let M be an R-subsemimodules and let N_1 and N_2 be R-subsemimodules of M such that N_1 is an R-subsemimodules of N_2 . If N_1 is a semi-essential R-subsemimodule of M, then N_2 is a semi-essential Rsubsemimodule of M.

Corollary 3.4 [6]: Let N_1 and N_2 are R-subsemimodules of M. If $N_1 \cap N_2$ is a semi-essential R-subsemimodule of M, then N_1 and N_2 are semi-essential.

Proposition 3.5[6]: Let N_1 and N_2 are R-subsemimodules of M such that N_1 is essential and N_2 is semi-essential. Then $N_1 \cap N_2$ is a semi-essential R-subsemimodule of M.

Lemma 3.6 [6]: Let N be an R-subsemimodule of M and let P be a prime subsemimodule of M. If $(N \cap P: x) = ann(M)$, for each $x \in M$ and $x \notin N \cap P$, then $N \cap P$ is a prime R-subsemimodule of M.

Theorem 3.7 [8] If M is finitely generated multiplication semimodule over a semiring R, P is a strong k-ideal of R containing ann(M), then PM is a prime subsemimodule of M.

Theorem 3.8. Let M be a faithful multiplication R-semimodule and N is an R-subsemimodule of M such that N = IM for some ideal I of R. If N is semi essential if and only if I is semi essential with $I \cap P = 0$, where P is strong prime k-ideal of R containing ann(M).

Proof Since M is faithful multiplication R-semimodule then $(I \cap P)M = 0$ Implies $IM \cap PM = 0$.

PM is prime R-subsemimodule of M and N=IM is semiessential R subsemimodule of M therefore PM=0. Implies P = 0. Hence I is semiessential ideal of R.

Conversely, Let $N \cap P = 0$, where P is non zero prime R-subsemimodule of M. Since M is multiplication semimodule there exists a strong prime k-ideal P' of R such that P = P'M. Hence $N \cap P = IM \cap P'M = (I \cap P')M = 0$. But Mis faithful implies $I \cap P' = 0$. Since I is semi essential ideal of R, then P' = 0. Therefore P = 0 implies N is semiessential R subsemimodule of M.

Theorem 3.9: Let M be a faithful multiplication R-semimodule Then N is a semiessential R-subsemimodule of M if and only if (N:x) is a semi-essential ideal of R for each $x \in M$

Proof: Suppose that N is semi essential. By above Theorem 2.7 M is faithful multiplication of R semimodule then (N:M) is semi essential k-ideal of R. But $(N:M) \subseteq (N:x)$. Therefore for each $x \in M$, $N = (N:M)M \subseteq (N:x)M$. Implies (N:x)M is semi essential R-subsemimodule of M

And consequently (N : x) is a semiessential k-ideal of R.

Conversely assume that (N:x) is semi-essential k-ideal of R for each $x \in M$. Let P be a nonzero prime R-submodule of M and let $0 \neq y \in P$. Thus (N : y) is semi essential. Since M is multiplication then P = P'M, where P is a strong k-prime ideal of R. Hence $(N:y) \cap P' \neq 0$. By assumption M is faithful, So $(N:x)M \cap P'M \neq 0$ Thus $N \cap P \neq 0$.

Proposition 3.10: Let M be a faithful multiplication R-semimodule and let N be nonzero prime R-subsemimodule of M. If N is not minimal prime, then N is semiessential.

Proof: Since M is multiplication and N is prime, then there exists a strong prime k-ideal P' of R such that $ann(M) \subseteq P'$ such that N = P'M. Let P be nonzero prime R-subsemimodule of M such that $N \cap P = 0$. Since N is not minimal prime there exists a minimal prime R-subsemimodule L of M such that $L \subseteq N$. Thus there exists a strong minimal prime ideal P'' of R such that $ann(M) \subseteq P''$ and $L = P''M \neq M$. Rest of the proof is same as in ring.

REFERENCES

- Ali S. Mijbass and Nada K. Abdullah, Semi-Essential Submodules and Semi-Uniform Modules, Journal of Kirkuk University-Scientific Studies, Vol. 4, No.1, 48-58, (2009).
- Yesilot and Kursat On Prime Subsemimodules Semimodules. Hakan of International Journal of Algebra, Vol. 4, no. 1, 53 – 60, (2010).
- 3. J.S. Golan, Semirings and their Applications, Kluwer Academic Publishers, (1992).
- 4. K. F. Pawar and R. P. Deore, On Essential Ideal and Radical Class, Int. J. of Pure and Appl. Math. Sci. Vol. 5(1), 1-5, (2012).
- 5. Kishor Pawar, A Note on Essential Subsemimodule, New Trends in Mathematical Sciences, Vol. 1(2), 18-21, (2013).
- Kishor Pawar and Pritam Gujarathi, On Semi-Essential Subsemimodules, Journal of Advances in Mathematics Vol. 12, No. 1, pp. 5805-5807, (2015).
- 7. Kishor Pawar, On Weak Essential Ideals of Semiring, Communications in Mathematics and Applications, Vol. 6(1), 17-20, (2015).
- 8. S. Ebrahimi Atani and M. Shajari Kohan, A Note on _nitely generated multiplication semimodules over commutative semirings, International Journal of Algebra, Vol. 4, no. 8, 389-396, (2010).
- 9. S. Ebrahimi Atani and S. Khojasteh G. Ghaleh, On Multiplication Semimodules, International Mathematical Forum, 1, no. 24, 1175-1180, (2006).
- 10. Dutta, T.K. and Das, M.L. On Strongly Prime Semiring, Bull. Malays Math. Sci. Soc, 30(2), 135-141, (2007).