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ABSTRACT 

The Semi essential subsemimodule was defined in [4]. In this paper we generalize some results of semi essential 
submodule to semi essential subsemimodules in multiplication semimodule.  
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1. INTRODUCTION  

In [4]-[7] the author has investigated and studied different classes of essential ideals and essential subsemimodules. The 
notion of semi-essential subsemimodule was introduced in [6] by Kishor Pawar and Pritam Gujarathi. In this paper we 
generalize the properties of semi-essential module over multiplication semimodule [1] and also we give conditions when 
an R-subsemimodule of multiplication subsemimodule becomes semi-essential subsemimodule. 

2. PRELIMINARIES 

Definition 2.1. [3] A semiring is a set  together with two binary operations called addition  and multiplication  

such that is a commutative monoid with identity element ; is a monoid with identity element ; 

multiplication distributes over addition from either side and  is multiplicative absorbing, that is, for 

each . A semiring  is said to have a unity if there exists such that for 

each . 

For e.g.: The set  of non-negative integers with the usual operations of addition and multiplication of integers is a 

semiring with .  

Definition 2.2. [3]  Let  be a semiring. A left -semimodule is a commutative monoid  with additive identity 

 for which we have a function  defined by m and called scalar multiplication which 

satisfies the following conditions for all  and  of  and all elements  and  of , 

1.  

2.  

3.  

4.  (If exists) 

5. . 

Convention: In this paper all semirings considered will be assumed to be commutative semirings with unity. 

Definition 2.3 [2]: Let  be a semiring and  be an -semimodule. A subsemimodule  of  is called prime if  

i)  is proper subsemimodule of  and  
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ii) If for any . 

Definition 2.4 [3]: A nonzero -subsemimodule  of  is called semi-essential if  for each nonzero 

prime -subsemimodule  of . 

3. SEMI-ESSENTIAL SUBSEMIMODULES IN MULTIPLICATION SEMIMODULES 

In this section, we give a condition under which an -subsemimodule  of a faithful multiplication R-semimodule M 

becomes semi essential. 

Definition 3.1.[3] An -semimodule  is called a multiplication semimodule where  is a subsemimodule of , then 

there exists an ideal  of  such that 

 

Proposition 3.2[6]:  A nonzero -subsemimodule  of  is semi-essential if and only if for each nonzero prime -

subsemimodule  of  there exists  and there exists  such that  

 Proposition 3.3[6]: Let  be an -subsemimodules and let  and  be -subsemimodules of  such that  

is an -subsemimodules of . If  is a semi-essential -subsemimodule of , then  is a semi-essential -

subsemimodule of .  

Corollary 3.4 [6]:  Let  and  are -subsemimodules of . If  is a semi-essential -subsemimodule 

of , then  and  are semi-essential. 

Proposition 3.5[6]: Let  and  are -subsemimodules of  such that  is essential and  is semi-essential. 

Then   is a semi-essential -subsemimodule of . 

Lemma 3.6 [6]: Let  be an -subsemimodule of  and let  be a prime subsemimodule of . 

If , for each  and , then  is a prime -subsemimodule of . 

Theorem 3.7 [8] If is finitely generated multiplication semimodule over a semiring ,  is a strong -ideal of  

containing , then  is a prime subsemimodule of . 

Theorem 3.8. Let  be a faithful multiplication -semimodule and  is an -subsemimodule of  such that 

for some ideal  of . If  is semi essential if and only if  is semi essential with , where  is strong 

prime -ideal of  containing . 

Proof Since  is faithful multiplication -semimodule then  Implies  

 is prime -subsemimodule of  and  is semiessential  subsemimodule of  therefore . 

Implies . Hence  is semiessential ideal of . 

Conversely, Let , where  is non zero prime -subsemimodule of . Since is multiplication semimodule 

there exists a strong prime -ideal  of  such that . Hence  But  

is faithful implies . Since  is semi essential ideal of , then . Therefore  implies  is 

semiessential  subsemimodule of . 

Theorem 3.9: Let  be a faithful multiplication -semimodule Then  is a semiessential -subsemimodule of  if 

and only if  is a semi-essential ideal of  for each  

Proof: Suppose that  is semi essential. By above Theorem 2.7  is faithful multiplication of  semimodule then 

 is semi essential -ideal of . But . Therefore for each . 

Implies  is semi essential -subsemimodule of  

 And consequently  is a semiessential -ideal of . 
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Conversely assume that  is semi essential -ideal of  for each . Let  be a nonzero prime -submodule 

of  and let . Thus  is semi essential. Since M is multiplication then , where  is a strong 

-prime ideal of . Hence . By assumption  is faithful, So  

Thus . 

Proposition 3.10: Let  be a faithful multiplication -semimodule and let  be nonzero prime -subsemimodule of 

. If  is not minimal prime, then  is semiessential. 

Proof: Since  is multiplication and  is prime, then there exists a strong prime -ideal  of  such that 

 such that .Let  be nonzero prime -subsemimodule of  such that . Since  is 

not minimal prime there exists a minimal prime -subsemimodule  of  such that .Thus there exists a strong 

minimal prime ideal of  such that    and . Rest of the proof is same as in ring. 
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