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Abstract

This article is concerned with the robust Hw control problem of a class of switched nonlinear systems with norm-bounded
time-varying uncertainties. The system considered in this class is composed of two parts: a uncertain linear switched part
and a nonlinear part, which is also switched systems. Under the circumstances, that the Hw control problem of all
subsystems are not all solvable, the switched feedback control law and the switching law are designed using the average
dwell-time method. The corresponding closed-loop switched system is exponentially stable and achieves a weighted L2
-gain.
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INTRODUCTION

Switched systems is a special class of hybrid dynamical systems that is composed of a family of continuous or discrete time
subsystems and a rule orchestrating the switching between the subsystems. In recent years, there has been increasing
interest in the stability analysis and design methodology of switched systems due to their significance both in theory and
applications. Such control systems appear in the modeling of chemical processes, transportation systems, computer
controlled systems and power systems, etc.

This motivated a large and growing body of research work on a diverse array of issues, including the modeling,
optimization, stability analysis, and control, among which the stability issues have been a major focus in studying switched
systems (e.g.,[1-15]and the references therein). Among the stability properties, the uniform asymptotic stability is a desirable
property which can be guaranteed by a common Lyapunov function[1-5]. But a common Lyapunov function may not exist or
is too difficult to find. In this case, the multiple Lyapunov function method [6-8], the single Lyapunov function method[9, 10],
and the average dwell-time method[11-13] are developed to study asymptotic stability problem of switched systems under a
certain switching law. All these methods and several other methods such as programming method, convex combination
method and so on are summarized in the books[14,15].

Due to the uncertainties and nonlinearity are two common phenomenons in practice, the HOO control problem for

uncertain nonlinear systems is obviously more important and challenging. At present, the research works analyzing the Hoo

control problem are mainly about switched linear systems[16,18]. [16] investigated the disturbance attenuation properties for
a class of switched linear systems by using the average dwell-time method incorporated with a piecewise Lyapunov function,

and a weighted L2 -gain property is achieved. The stability and L2 -gain analysis for switched linear delay systems was

studied in [17]. [18] addressed the L2 -gain analysis for switched systems via multiple Lyapunov functions method. In these

papers mentioned above, the switched system studied has no uncertainties and no control input and all the subsystems are
stabilisable.

In this paper, the Hoo control problem for a class of cascade nonlinear switched systems is discussed by the

average dwell-time approach incorporated with a piecewise Lyapunov function. The switched system under consideration is
composed of a nonlinear part and a uncertain linear part. The piecewise Lyapunov function, the switched feedback controller
and the switching law are constructed based on the characteristic of the switched nonlinear cascade system, under which
the closed-loop nonlinear switched system is exponentially stable when the disturbance equals to zero, with an disturbance

attenuation level y . Our result is distinct from the existing results, as we don't require the H_ control problem of each
subsystem is solvable.

The rest of this paper is organised as follows: Section 2 gives the description of the switched system we studied,
the preparative knowledge. Section 3 presents the main result. Some conclusions end the paper.

Notation: Given areal matix M, M denotes the transpose of M . 1, isthe KxK identity matrix. L,[0,o0)
(P) and A

denotes the space of square integrable functions on [0,0) . A, i (P) denote the maximum and

max
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minimum eigenvalues of P . P-P denotes the Euclidean norm. R" denotes the N -dimensional real Euclidean space.
R™" is the set of all real MxN matrix.
Problem statement and preliminaries

2.1. System description

In this paper, we consider the uncertain switched nonlinear system described by
2z =1,(z9)
E =AE+AAE+BU, +AB U +C W, (1)
y =D,

where Ze R, e RY are the states, u, € R™ is the control input, We R? is the external disturbance input and
we L,[0,0), yeRP is the controlled output. o (t) :[0,00] = I, ={1,..., N} is the switching signal, which is a
piecewise constant function of time and will be determined later. And o(t) =1 means that the ith switched subsystem is
activated. A, B, C. and D,(iel,) are constant matrices of appropriate dimensions that describe the nominal

systems. f,(z,&) are smooth vector fields, and we have f,(0,0)=0. AA and AB, are uncertain time-varying
matrices denoting the uncertainties in the system matrices and having the following form

[AA,AB]=EITR;, Ry, iely. (2)

where E; € RE" F, € R*M  and F, € R¥M are given constant matrices which characterize the structure of

uncertainty, and in is of full column rank. I" is the norm-bounded time-varying uncertainty, i.e.

r=r@)e {F(t) T(t)' T(t) =1,,T(t) e R™, theelementsof I'(t) areLebesguemeasurabIe}.
There are several reasons for assuming that the system uncertainties have the structures given in (2), which can been found
in [19].

The following lemma is given on the Input-to-state stability of switched nonlinear systems.

Consider the nonlinear switched systems described by equations of the form

x=f_(x,v). (3)

where o(t):[0,00] > I, ={1,...,N} is the switching signal, which is a piecewise constant function of time.

f.(X,V) are smooth vector fields, the set of measurable function V:[0,00) — R is the input.

Let Iy =1,Ul, suchthat I N1, =&. Where not all subsystems of the system (3) are ISS, but only for a

subset I, of |, . Denote by T"(7,t) the total activation time of the systems in |, and by T°(z,t) the total

u

activation time of the systems in |, during the time interval [z,t) , where O<7<t . Clearly,

T°(z,t) =t—7—T"(z,t) . Then, we choose a scalar A" € (0, 4,). Motivated by the idea in [23], we propose the
switching law satisfying the following condition:

T(r,t) _ A+ A4
inf U(T )2 u .
er TU(z,t) A —A

(4)
Lemma 1: Consider the switched system (3). Suppose exist functions al,a2,¢1 € KOO, continuously differentiable
functions Vp :R" —> R and constants A, 4, >0, 2>1 such that

o (| x]) <V, (%) <, (| X)),
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v,

X fo(u) <=4V, () +4(u)), Vpel,

v,

. f, (4, u) <AV () +4(ul), vpel,,
V,(X) < 1V, (%), xeR"

If there exist constants 7, 0 >0 such that

p<A
A+ A,

Vt>7>0: T'(t,7)<7,+p(t-7)
and if O is a switched signal with average dwell-time

7, > (5)
A,(1-p)-A,p

then the switched system (3) is ISS.

Definition 1: System (1) is said to be globally exponentially stabilizable via switching if there exist a switching signal
O'(t) and an associate switched state feedback U_ = Kaf such that the corresponding closed-loop system (1) with

W(t) =0 is globally exponentially stable for all admissible uncertainties.
Consider the switched system
X =AX+B_w,
{ o o (6)

y = CO'X’
where XeR", W, y, o arethesame asstatedin (1), A, B., C. (L<i<N) are known constant matrices.

Definition 2: System (6) is said to have a € ** —weighted L, -gain over o (t), from the disturbance input W(t) to
the controlled output Y(t) , if the following inequality holds for each & (t) and some real-valued function S(t) with

$0)=0

[y ®ymde<y? ['wW ©wt)dt+B(x(Q)),  w(t) e L,[0+), (7)

along the solutions to (6). Where X(0) # 0 is the initial state.

The aim of the paper is to find a switched state feedback controller and a class of average dwell-time based switching laws,
such that the corresponding closed-loop system (3) is globally exponentially stable with W(t) =0 and has a e*

-weighted L, -gain under the designed switching law.
The following lemma will be used in the development of the main results.

Lemma 2:[20] Given any constant A >0 and any matrices M , T", N of compatible dimensions, then
T 1+ T TnT
2X MFNXSEX MM " x+ Ax" N " NX.

forall Xe R", where T is an uncertain matrix satisfying T"'I' < .
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Main results

This section presents the sufficient condition for the stabilization and e ™ -weighted L2 -gain of switched system (1). The
switching law satisfying one average dwell time and the switched state feedback controller are also designed.

Theorem 1: Given any constant y > 0, suppose that the switched system(1) satisfies the following conditions

(i) if there exist constants ¢, >0, A, >0, A4, >0, such that the following inequalities

A'P+PA +&°PEE'P +y?PCC/P +&!F/F; + DD, + AP (8)
+1—(57'PB +&F F)(FiFy) ' (67RB +F F,)' <0, el
and
AP +PA +&°REE'P +y?PCC/P +¢&'R{F; +D/ D, - 4,P (9)
+1 _(‘C’flPiBi +& FliT in)(FzTi F2i)71(gi41PiBi +& FliT an)T <0, iel,
P <,i,j=1,.N (10)

have positive definite solutions P,

(i) there exists smooth positive definite function W (i),i € I, and positive numbers &, &,, @3, A, 4, , such that for

vz eR™ and iely,wehave

a,PzP? <w,(2) < a,PzP? (11)
M@ t0) <-Aw(2)  Viel.,
av\‘fz(z) (12)
———=1.(z,0) <A4,w(2), Viel,,
oz
P—a"‘g(z) P<apPzP (13)
Z

Then, the closed-loop system (1) with W(t) =0 is globally exponentially stable and has a e -weighted L2 -gain under
arbitrary switching law satisfying the average dwell time

T, > 7.4 i.u . (14)
A(-p)-A,p

and the corresponding switched state feedback controller is given by

u = —(FiF) (& B R + FiFy)E. (15)
Proof: For switched system (1), define the following piecewise Lyapunov function candidate
V(z,&)=Kw,(2)+&ETP.E. (16)
where W, .1 =1....,N are the solutions of inequalities (11)-(13), positive scalar K will be defined later.

Then, based on Lemma 1 and Lemma 2, when the ith subsystem is activated, the time derivative of V(z,&) along the
trajectory of the switched system (1) is

V=K M 2,0+ TAC + AAZ +BY +ABY +CoT P
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+ETRPIAE+AAE +BU; +ABU, +Cw]

= K% fi(z,0)+K%[fi(z,§>— fZO)]+E (ATP +PRA)E+ 26T RAAE +2£ PBY,

+2ETPABU, + 2T PC,w

l. When 1€ |, we obtain

V <—KAW,(2) + LKa,PZPPP + & (AP + RA)E+ 26" RET (R &+ Fuu,) + 28" PBY,
+2£"PCW
< —KAW, (2) + LKaPZPP&P + & (AP + PA + & °REE R)&
+&l (Fié+Fyu) (R + Fyu) + 28 PBU, + 26T PCw
<—KAW (2) + LK PZPPEP+ET (ATP + BA + & °PEE P +&°F{ F,)E
+282ETFFyu +glul B Fuu + 28T PBuU, + 28T PCw

< —KA,w (2) + LKaPZPPEP +£T (AR + A +5,"REE] R +4°F] )&

+au, +(FF,) (& 'RB + 4R B) €1 (FI R, ey, + (R F) (5 °PB, + 5, R F,)) ¢l
—E'[(&7'PB, +&F, F,)(F,F,) "(¢'PB, +&F  F,) 16+ 2" PC,w.
From (15), we obtain
V < —KAW (2) + LKa,PzPPEP + E'{A'P + PA + s °’PE,E'P +&’F F,
—[(&7'PB, +&FF,)(FiF,) ' (&'PB, +&F F,) 1} +25"PCw.
It is easy to calculate that
V+y'y—rw'w
< —KAW,(2) + LK PZPP&P + £ {A'P + RA + £ °REE/ R + & R F;
~[(*PB, +&,F[ F,)(F;Fy) ' (&'PB, +&F F,) ]} +25"PCw
+E'DIDE—-y*w'w
<—KAMW, (2) + LK ,PZPPEP + ET{A'P + PA + & °PEE P +&’F F;
+D]D, +7 *RCCR ~[(5'RB +&F F)(FIFy) (6 'RB + R F,) T}
~(r"CIREW)" (¥ "CP&,w)
From (8), we know
V+yy—pyw'w
<—KAW, (2) + LKa,PZPPEP - A ETPE-PEP?
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2

< KA (2) - AETPE+ LK%PW (Pep— K% pypy2

2
LSO
Choose 0<K < 4/21 >, we have
Lo
V+yTy—ywws<-AV. (17)
L2K20£§

where is = min{KA, — , A} When w(t) =0, from the above inequality, we obtain

1
V<-4V, (18)
Il. When iel,, from(9) and the above proof of inequality, we obtain
V+y'y—yw'w

<KAW (2) + LKa,PZPP &P + A, ETPE—P&P?

2
<KAW (2)+ A8 P+ SR % Ko b _ PP - K% pypy
L’K e
< (KA, + )W(z)+l§ PS.
For VK >0, we have
V+yy—ywWw< AV, (19)
- PK?a?
Where 4, = max{K4, + 2,4} When w(t) =0, from the above inequality, we obtain
21
V<AV, (20)
Moreover, from (10) and (16), it is easy to get
Vi) <), i jely. (21)
For arbitrary t>0, denote t,<t <t,<...<t ...<t, _on as the switching instants of o(t)

over the interval (0,t), then
A TYO00)-ATS 0Ot TYO.)-4T501t _
V(t)<e® TN (ty o) <™ CTTON (] o)

u S u S
< SIUNO_(O,t)eﬂuT O)-AT (O,t)\/ ©0)= eNo_(O,t)Iny—luT O.)-AT (o,t)v ).

If 7, satisfies (14), i.e.for arbitrary N, >0

N OO<N+ 5, 7 og= A 22)
T, A(A-p)-A.p
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then, we have
N_(O,t)In <Ny In u+t[A,(1-p)— A, p] (23)
Thus
v (t) < eNOIn,u—t[iup—ls (1—p)]+luTu(O,t)—ﬂsTs(O,t)\/ (O) (24)
and by (4), we obtain

v (t) <e NoInu-t[A, p-Ag (1-p)]-A" (T5+TY )V (0)
<e N Inu—t[A"+4, p—Ag (Lp)]v (O)

(25)
Based on (11) and (16), we know that there exist constants 4, >0, A, >0 such that
AP&P? + KaPzP? <V (t) < LP&P? + Ka,PzP?,
where 2, = min{Ay, (P)li€ 1}, 4, = max{A, (P)]icly}.
Let b, =min{4,Ka}, b, =max{i,,Ka,}, we have

b (P&P? +PzP?) <V (t) <b, (P&P? +PzP?). (26)
Combining (25) and (26) gives
b1 No 7/1*+/1up—ﬂ.s (1—,9)t
Pz(t),S(t)P < \/b:ﬂ e ? Pz(0),£(0)P. (27)
2
Hence, the globally exponential stability of the closed-loop system (1) with W(t) =0 for any N, >0 follows from
Definition 1.
From (17) and (19) ,we know that the piecewise Lyapunov function candidate (16) satisfies
-ty o) t —Jq (t=7) .
e " UV o) e Ty @@ -wWwidr el
V(1) < N, )

A=ty 1) t —2 (t=7) :
" N (o) T @Y - WDl e,
No_O,t

Since V(t,) <V (t;) holds on every switching point t; according to (21), we obtain by induction that
V(D) < o OGO () - [y et IR T () y )
0
— "W (r)w(z)]dz
— AT OD-4T O )+N )i tagTY (2.)-4gTS () +N  (z.)ln
=gl P V(0)- e 0 Iy (0)y(z)
—y*W' (r)w(z)]dz
From T°(z,t)=t—7-T"(z,t), we obtain

V (t) < ec—io+No_(0,t)|n/4\/ (0) _J';ecf/lo(tf‘r)+NO_(‘r,t)|n,u[yT (Z’)y(z’) _ 72WT (Z')W(’Z')]d -
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where c=24,T".

~N_ @)y

Multiplying both sides of the above inequality by e , results in

e UMY (1) <OV (0) - [ O TN YT (1) y(r) - W (Dw(D)ldz. (28)
Moreover, in view of V(t) >0, the following inequality follows from (23)

J‘tec—NOIn,u—iO(t—r)—[/ls (l—p)—ﬂ.up]ry'r (’[)y(T)dT < eC—/IOtV (O) + yzj;ec—Nolny—lo(t—r) (Z')W(T)d’l'. (29)

0

Integrating both sides of (29) from t=0 to oo and rearranging the double-integral area, we
obtain

[t Ay @)y () [ [ wec%“f)dt)df

<[V O+ [ W (w(e)u ( [ “’)dtjd “

1 —Ng [ -[4@-p)-4,pl7 T 1 72 -Ng [®, T
— u CILE Iy (D)y(r)dr <=V O0)+—u °| w (r)w(z)dz,
w0 i

which is equivalent to

j;e*“s AN (D) y(2)d 7 < 1"V (0) + 72 jo W (r)w(z)d . (30)

From Definition 3 we know that the closed-loop switched system achieves a e ™ -weighted L2 -gain.

Remark 1: Applying Shur complement formula, the first matrix inequality of condition (i) can be easily transformed into
Amax (P)
ﬂ“min (PJ)

Remark 2: when y7s =1, Z'; =0, and (16) becomes a common Lyapunov function for switched system (1). In this

the LIMs form. The second inequality of condition (i) is trivial, as long as we let £ = SUP, jely

case, the stabilization and robust HOO control problem can be solved under arbitrary switching law.

Remark 3: condition (i) implies that the second part of the switched system (1) is uniformly exponentially stable. Since
the second part of the switched system (1) has a lower dimension, its Lyapunov function is relatively easier to find than that
of the whole switched system. A number of methods are available for finding the common Lyapunov function for such
switched systems [3, 4].

When the switched system (1) with |u = (J . We have the following Corollary.
Co roIIary 1: Given any constant y > 0, suppose that the switched system (1) satisfies the following conditions
(i) if there exist constants & >0, A, >0, such that the following inequalities

AR +RA +2"REEIR+7?RCC/R +4°F]F, + D/ D, + 4R

31
+1 _(g;lF)iBi +& FliT in)(FzTi F2i)7l(‘c"i71PiBi +& FliT in)T <0, el 31

5877 |Page council for Innovative Research

April 2016
www.cirworld.com



& ISSN 2347-1921
Volume 12 Number 2
) Journal of Advances in Mathematics

P <

i j?

i,j=1,.,N (32)

have positive definite solutions P.

(i) there exists smooth positive definite function W (i),1 € I, and positive numbers o, a,,a;, A, such that for

(R

VzeR", and i€l ,wehave

a,PzP? < W, (z) < a,PzP? (33)
a""ai—z(z) fi)(z0)<-Aw(2), Viel, (34)
pM@p . prp (35)

oz

Then, the closed-loop system (1) with w(t) =0 is globally exponentially stable and has a e™
-weighted L,-gain under arbitrary switching law satisfying the average dwell time

a

7 zf='”7”, 5[0, 4,). (36)

and the corresponding switched state feedback controller is given by
U, = _(FzTi F2i)71(‘9i72 BiT E + FzTi RS (37)
Proof: The proof process is similar to that of Theorem 1.

Conclusions

In this paper, the stabilization and robust Hw control problem for a class of uncertain switched nonlinear cascade systems

with external disturbances input is investigated. The sufficient conditions guaranteeing the existence of the switched state
feedback controller are presented, the corresponding average-dwell time based switching law has been simultaneously
designed. With the switched state feedback controller the closed-loop switched system is globally exponentially stable and

achievesa € ™ -weighted L2 gain under the designed switching law. The stabilization problem and L2 -gain analysis for

the same class of switched nonlinear cascade systems when both parts are respectively stabilizable under two different
average-dwell time deserves further study.
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