

New Types of Pre-θ- Open Sets and Associated Weak Separation Axioms

M. M. El-Sharkasy
Department of Mathematics, Faculty of Science,
Tanta University, Tanta, Egypt.
sharkasy78@yahoo.com

ABSTRACT

Pal and Bhattacharyya (1996)introduced the notion of pre- θ -open sets. In this paper, we consider the class of pre- θ -open sets in topological spaces and investigate some of their properties. Also, we present and study some weak separation axioms by involving the notion of pre- θ -open sets.

Mathematics Subject Classification: 54C10, 54D10.

Keywords: pre- θ -open sets; pre- θ - D_1 spaces; preregular spaces; θ -R-precontinuous.

1. INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the variously modified forms of continuity, separation axioms, compactness, etc by utilizing generalized open sets. One of the most well-known notions and also an inspiration source is the notion of preopen set introduced by Mashhour et al. [7] in 1982. Pal and Bhattacharyya [9] used this notion and the preclosure [7] of a set to introduce the pre- θ -open sets by using the notion of the pre- θ -closure of a set. We also study some weak separation axioms defined by using the notion of pre- θ -open sets.

2. PRELIMINARIES

In this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always assumed to be topological spaces on which no separation axioms are assumed unless explicitly stated, For a subset A of X, the closure, interior and complement of A in X are denoted by cl(A), int(A) and $X \setminus A$, respectively.

Definition 2.1 Let A be a subset of topological space (X,τ) . Then the set A is

- 1. preopen [7], if $A \subseteq int(cl(A))$.
- 2. preclosed [7], if $X \setminus A$ is preopen or equivalently, if $cl(int(A) \subseteq A$.

The intersection of all preclosed sets containing A is called the preclosure [4] of A and is denoted by pc1(A). The preinterior [4] of A is the union of all preopen sets contained in A and is denoted by pint(A). A subset A is called preregular [3] if it is both preopen and preclosed. The family of all preopen sets (resp. preregular sets) of (X,τ) is denoted by $PO(X,\tau)$ (resp. $PR(X,\tau)$).

A point x in X is called a θ -adherent [10] (resp. pre- θ -cluster [8]) point of a subset A of X if $c1(U) \cap A \neq \phi$ (resp. $pc1(U) \cap A \neq \phi$) for every open set (resp. preopen set) U containing x. The pre- θ -closure of A [9], denoted by $pcl_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $pc1(G) \cap A \neq \phi$ for every $G \in PO(X, \tau)$ with $x \in G$. A subset A is called pre- θ -closed [9] if $A = pcl_{\theta}(A)$. The complement of a pre- θ -closed set is called pre- θ -open. The family of all pre- θ -open subset of X is denoted by $P\theta O(X, \tau)$.

Lemma 2.2 [2] Let A be a subset of a topological space (X, τ) .

- 1. If $A \in PO(X,\tau)$, then pcl(A) is preregular and $pcl(A) = pcl_{\theta}(A)$.
- 2. A is preregular if and only if A is pre- θ -closed and pre- θ -open.
- 3. A is preregular if and only if A = pint(pcl(A)).

Lemma 2.3 [2] A subset A of a space X is pre- θ -open if and only if for each $x \in A$, there exists a preopen set W with $x \in W$ such that $x \in W \subseteq pcl(W) \subseteq A$.

Lemma 2.4 Let A be a subset of a topological space (X, τ) . Then:

- 1. $pcl_{\theta}(X \setminus A) = X \setminus (pint_{\theta}(A))$.
- 2. $X \setminus (pcl_{\theta}(A)) = pint_{\theta}(X \setminus A)$.

Lemma 2.5 For any subset A of a topological space (X, τ) , $pcl_{\theta}(A)$ is pre- θ -closed for every $A \subset X$.

Lemma 2.6 For any subset A of a topological space (X,τ) , $pcl(A) \subseteq pcl_{\theta}(A)$.

3. PRE-θ-OPEN SETS

Definition 3.1 A set A of a topological space (X,τ) is said to be θ -complement preopen (in short θ -c-preopen) provided there exists a subset G of X for which $X \setminus A = pcl_{\theta}(G)$. We call a set θ -complement preclosed (in short θ -c-preclosed) if its complement is θ -c-preopen.

Remark 3.2 It should be mentioned that by Lemma 2.5, $X \setminus A = pcl_{\theta}(G)$ is pre- θ -closed and A is pre- θ -open. Therefore, the equivalence of θ -c-preopen and pre- θ -open is obvious from the definition.

Lemma 3.3 Let A be a subset of a topological space (X,τ) . Then A is pre- θ -closed if and only if there is a subset B of X such that $A = pcl_{\theta}(B)$.

Theorem 3.4 If A is preopen, then pint(pcl(A)) is pre- θ -open.

Proof. Since $pint(pc1(A))) = (X \setminus \{pcl(X \setminus pcl(A))\})$, $X \setminus pcl(A) (= B$, say) is preopen, $pcl(B) = pcl_{\theta}(B)$ (Lemma 2.2). Therefore there exists a subset $B = X \setminus pcl(A)$ for which $X \setminus pint(pcl(A))) = pcl_{\theta}(B)$. Hence pint(pcl(A)) is pre- θ -open.

Corollary 3.5 If A is preregular, then A is pre- θ -open.

Proof. It suffices to observe that, A is preregular if and only if A = pint(pcl(A)) (Lemma 2.2).

Theorem 3.6 Preregular is equivalent to pre- θ -open if and only if $pcl_{\theta}(A)$ is preregular for every set A.

Proof. Let X be a topological space. Assume preregular is equivalent to pre- θ -open and let $A \subset X$. Then by Lemma 2.5, $X \setminus pcl_{\theta}(A)$ is pre- θ -open which implies that $pcl_{\theta}(A)$ is preregular. Assume $pcl_{\theta}(G)$ is preregular for every set G. Suppose U is pre- θ -open and let $A \subset X$ such that $X \setminus U = pcl_{\theta}(A)$ i,e $U = X \setminus pcl_{\theta}(A)$. Then, $pcl_{\theta}(A)$ is preregular and U is preregular. Therefor, preregular is equivalent to pre- θ -open.

Theorem 3.7 If A is pre- θ -open, then A is union of preregular sets.

Proof. Let A be pre- θ -open, $x \in A$. Since A is pre- θ -open, there exists, a set $G \subset X$ such that $A = X \setminus pcl_{\theta}(G)$. Because $x \notin pcl_{\theta}(G)$, there exists a preopen set W for which $x \in W$ and $pcl(W) \cap G = \phi$. Hence $x \in pint(pcl(W)) \subset X \setminus pcl_{\theta}(G)$, where

 $pint(pcl((W))) (= Vsay) \in PR(X, \tau)$ i.e $A = \bigcup \{V : V \subset W, V \in PR(X, \tau)\}$.

 $\textbf{Corollary 3.8} \ \, \text{If} \ \, A \ \, \text{is pre-} \, \theta \, \text{-closed, there} \ \, A \ \, \text{is the intersection of preregular sets.}$

4. PRE- θ - D_1 TOPOLOGICAL SPACES

now, we introduce new classes of topological spaces in terms of the concept of pre- θ -open sets.

Definition 4.1 A subset A of a topological spaces X is called pre- θ -D-set if there two $U,V\in p\,\theta O(X,\tau)$ such that $U\neq X$ and $V=\phi$. It is true that every pre- θ -open set U different from X is a pre- θ -D-set if A=U and $V=\phi$.

Definition 4.2 A topological space (X,τ) is called pre- θ - D_0 if for any distinct pair of points x and y of X there exists a pre- θ -D-set of X containing x but not y or a pre- θ -D-set of X containing y but not x.

Definition 4.3 A topological space (X,τ) is called pre- θ - D_1 if for any distinct pair of points x and y of X there exists a pre- θ -D-set of X containing x but not y and a pre- θ -D-set of X containing y but not x.

Definition 4.4 A topological space (X,τ) is called pre- θ - D_2 if for any distinct pair of points x and y of X there

exists a disjoint pre- θ -D-sets G and H of X containing x and y, respectively.

Definition 4.5 A topological space (X,τ) is called pre- θ - T_o if for any distinct pair of points x and y of X there exists a pre- θ -open set containing one of the points but not the other.

Definition 4.6 A topological space (X,τ) is called pre- θ - T_1 if for any distinct pair of points x and y of X there exists a pre- θ -open set U in X containing x but not y and a pre- θ -open set V in X containing y but not x.

Definition 4.7 A topological space (X,τ) is called pre- θ - T_2 if for any distinct pair of points x and y of X there exists a pre- θ -open set U and V in X containing x and y, respectively, such that $U \cap V = \phi$.

Remark 4.8

- 1. If (X,τ) is pre- θ - T_i then pre- θ - $T_{(i-1)}$, i=1,2.
- 2. Obviously, if (X,τ) is pre- θ - T_i , then (X,τ) is pre- θ - D_i , i=0,1,2.
- 3. If (X,τ) is pre- θ D_i , then it is pre- θ $T_{(i-1)}$, i=1,2.

Theorem 4.9 For a topological (X,τ) the following statement are true:

- 1. (X,τ) is pre- θ D_0 if and only if it is pre- θ T_0 .
- 2. (X,τ) is pre- θ - D_1 if and only if it is pre- θ - D_2 .

Proof. (1) sufficiency: The sufficiency is stated in Remark 4.8(2).

necessity: To prove necessity, let (X,τ) be pre- $\theta-D_0$. then for each distinct pair $x,y\in X$, at least one of x,y, say x, belong to a pre- $\theta-D$ set G but $y\notin G$. Let $G=U_1\setminus U_2$ where $U_1\neq X$ and $U_1,U_2\in P\theta O(X,\tau)$. Then $x\in U_1$, and for $y\notin G$ we have two cases:

- (a) $y \notin U_1$,
- (b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ but $y \notin U_1$;

In case (b), $y \in U_2$ but $x \notin U_2$. Hence X is pre- $\theta - T_0$.

(2) sufficiency: The sufficiency is stated in Remark 4.8(3).

necessity: Suppose X is pre- θ - D_1 . Then for each distinct pair $x,y\in X$, we have pre- θ -D-sets G_1,G_2 such that $x\in G_1,y\notin G_1$ and $y\in G_2,x\notin G_2$. Let $G_1=U_1\setminus U_2$, $G_2=U_3\setminus U_4$. From $x\in G_2$, it follows that either $x\notin U_3$ or $x\in U_3$ and $x\in U_4$. We discuss the two cases separately.

- (i) $x \notin U_3$. By $y \notin G_1$ we have two subcases.
- (a) $y \notin U_1$. From $x \in (U_1 \setminus U_2)$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$ and by $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Therefore, $(U_1 \setminus (U_2 \cup U_3)) \cap ((U_3 \setminus U_1 \cup U_4)) = \phi$.
- (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2, y \in U_2, (U_1 \setminus U_2) \cap U_2 = \phi$.
- (ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4, x \in U_4, (U_3 \setminus U_4) \cap U_4 = \emptyset$. Therefore, X is pre- θD_2 .

Corollary 4.10 If (X,τ) is pre- θ - D_1 , then it is pre- θ - T_0 .

Theorem 4.11 A topological space (X,τ) is pre- θ - T_0 if and only if for each pair of distinct points x,y of X, $pcl_{\theta}(\{x\}) \neq pcl_{\theta}(\{y\})$.

Proof. Sufficiency: Suppose that $x,y \in X$, $x \neq y$ and $pcl_{\theta}(\{x\}) \neq pcl_{\theta}(\{y\})$. Let z be a point of X such that $z \in pcl_{\theta}(\{x\})$ but $z \notin pcl_{\theta}(\{y\})$. We claim that $x \notin pcl_{\theta}(\{y\})$ if $x \in pcl_{\theta}(\{y\})$ then $pcl_{\theta}(\{x\}) \subset pcl_{\theta}(\{y\})$. This contradicts the fact that $z \notin pcl_{\theta}(\{y\})$. Consequently x belongs to the pre- θ -open set $X \setminus pcl_{\theta}(\{y\})$ to which y

does not belong.

Necessity: Let (X,τ) be a pre- θ - T_0 space and x,y be any two distinct points of X. There exists a pre- θ -open set G containing x or y, say x but not y. Then $X \setminus G$ is a pre- θ -closed set which does not contain x but contains y. Since $pcl_{\theta}(\{y\})$ is the smallest pre- θ -closed set containing y, $pcl_{\theta}(\{y\}) \subset X \setminus G$ and therefore $x \notin pcl_{\theta}(\{y\})$. Consequently $pcl_{\theta}(\{x\}) \neq pcl_{\theta}(\{y\})$.

Theorem 4.12 A topological space (X,τ) is pre- θ - T_1 if and only if the singletons are pre- θ -closed sets.

Proof. Let (X,τ) be $\operatorname{pre-}\theta - T_1$ and x any point of X. Suppose $y \in X \setminus \{x\}$. Then $x \neq y$ and so there exists a $\operatorname{pre-}\theta$ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset X \setminus \{x\}$ i.e, $X \setminus \{x\} \cup \{U_y : y \in X \setminus \{x\}\}$ which is $\operatorname{pre-}\theta$ -open. Conversely, suppose $\{p\}$ is $\operatorname{pre-}\theta$ -closed for every $p \in X$. Let $x,y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a $\operatorname{pre-}\theta$ -open set containing y but not x. Similarly $X \setminus \{y\}$ is a $\operatorname{pre-}\theta$ -open set containing x but not y is a $\operatorname{pre-}\theta - T_1$ space.

Definition 4.13 A subset A of X is called a pre- θ -neighborhood of a point $x \in X$ if there exists a pre- θ -open set W of X such that $x \in W \subset A$.

Definition 4.14 A point $x \in X$ which has only X as the pre- θ -neighborhood is called a point common to all pre- θ -closed sets (briefly pre- θ -cc)

Theorem 4.15 If a topological space (X,τ) is pre- θ - D_1 , then (X,τ) has no pre- θ -cc point.

Proof. Since (X,τ) is pre- θ - D_1 , so each point x of X is contained in a pre- θ -D set $W=U\setminus V$ and thus in U. By definition $U\neq X$. This implies that x is not a pre- θ -cc point.

Definition 4.16 A subset A of topological space (X,τ) is called a quasi pre- θ -closed set (briefly qpt-closed) if $pcl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is pre- θ -open in (X,τ) .

Theorem 4.17 For a topological space (X, τ) , the following properties hold:

- 1. For each points X and Y in a topological space (X,τ) , $x \in pcl_{\theta}(\{y\})$ implies $y \in pcl_{\theta}(\{x\})$.
- 2. For each $x \in X$, the singleton $\{x\}$ is qpt-closed in (X, τ) .

Proof. (1) Let $y \notin pcl_{\theta}(x)$. This implies that there exists $V \in PO(Y, y)$ such that $pcl(V) \cap \{x\} = \phi$ and $X \setminus pcl(V) \in PR(X, x)$ which means that $x \notin pcl_{\theta}(\{y\})$.

(2) Suppose that $\{x\} \subset U \in P\theta O(X)$. This implies that there exists $V \in PO(X,x)$ such that $x \in V \subset pcl(V) \subset U$. Now, we have $pcl_{\theta}(\{x\}) \subset pcl_{\theta}(V) = pcl_{\theta}(V) \subset U$.

Definition 4.18 A topological space (X, τ) is said to be pre- θ - $T_{\frac{1}{2}}$ if every qpt-closed set is pre- θ -closed.

Theorem 4.19 For a topological space (X,τ) , the following are equivalent:

- 1. (X,τ) is pre- θ $T_{\frac{1}{2}}$
- 2. (X,τ) is pre- θ - T_1 .

Proof. (1) \Rightarrow (2): For distinct points x, y of X, $\{x\}$ is qpt-closed by Theorem 4.17. By hypothesis, $X \setminus \{x\}$ is pre- θ -open and $y \in X \setminus \{x\}$. By the same token, $x \in X \setminus \{y\}$ and $X \setminus \{y\}$ is pre- θ -open. Therefore (X, τ) is pre- θ - T_1 .

 $(2) \Rightarrow (1) : \text{Suppose that } A \text{ is apt-closed set which is not pre-}\theta\text{-closed. There exists } x \in pcl_{\theta}(A) \setminus A \text{. For each } a \in A \text{, there exists a pre-}\theta\text{-open set } V_a \text{ such that } a \in V_a \text{ and } x \notin V_a \text{. Since } A \subset \bigcup \{V_a: a \in V_a\} \text{ and } \bigcup \{V_a: a \in V_a\} \text{ is pre-}\theta\text{-open, we have } pcl_{\theta}(A) \subset \bigcup \{V_a: a \in V_a\} \text{. Since } x \in pcl_{\theta}(A) \text{, there exists } a_0 \in A \text{ such that } x \in V_{a_0} \text{. But this is a contradiction. Recall that a topological space } (X,\tau) \text{ is called pre-}T_2 \text{ [5] if for any distinct pair of points } x \text{ and } y \text{ in } X \text{, there exist preopen subsets } U \text{ and } V \text{ of } X \text{ containing } x \text{ and } y \text{, respectively, such that } U \cap V = \phi \text{.}$

Theorem 4.20 For a topological space (X, τ) , the following are equivalent:

- 1. (X,τ) is pre- θ - T_2 ,
- 2. (X,τ) is pre- T_2 .

Proof. (1) \rightarrow (2): This is obvious since every pre- θ -open set is preopen [11]

 $(2) \Rightarrow (1)$: Let x and y be distinct points of X. There exist preopen sets U and V such that $x \in U, y \in V$, and $pcl(U) \cap pcl(V) = \emptyset$, [11, Theorem 4.13]. Since pcl(U) and pcl(V) and preregular they are pre- θ -open and hence (X,τ) is pre- θ - T_2 .

Definition 4.21 A function $f:(X,\tau)\to (Y,\sigma)$ is said to be qusi-preirrasolute if for each $x\in X$ and each $V\in PO(Y,f(x))$, there is $U\in PO(X,x)$ such that $f(U)\subset pcl(V)$.

Remark 4.22 A function $f:(X,\tau)\to (Y,\sigma)$ is qusi-preirrasolute if and only if $f^{-1}(V)$ is pre- θ -closed (resp.pre- θ -open) in (X,τ) for every pre- θ -closed (resp.pre- θ -open) set V in (Y,σ) .

Theorem 4.23 If $f:(X,\tau)\to (Y,\sigma)$ is qusi-preirrasolute surjective and E is a pre θ -D-set in Y, then the inverse image of E is a pre θ -D-set in X.

Proof. Let E be a pre- θ -D set in Y. Then there are pre- θ -open sets U and V in Y such that $E = U \setminus V$ and $U \neq Y$. By qusi-preirrasoluteness of f, $f^{-1}(U)$ and $f^{-1}(V)$ are pre- θ -open in X. Scince $U \neq Y$, we have $f^{-1}(U) \neq X$. Hence $f^{-1}(E) = f^{-1}(U) \setminus f^{-1}(V)$ is a pre- θ -D-set in X.

Theorem 4.24 If (Y,σ) is pre- θ - D_1 and $f:(X,\tau)\to (Y,\sigma)$ is a qusi-preirrasolute injection, then (X,τ) is a pre- θ - D_1 .

Proof. Suppose that Y is a pre- θ - D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is pre- θ - D_1 , there exist pre- θ -D-sets U and V of Y containing f(x) and f(y), respectively, such that $f(y) \in U$ and $f(x) \in V$. By the above theorem, $f^{-1}(U)$ and $f^{-1}(V)$ are pre- θ -D-sets in X containing x and y, respectively. This implies that X is a pre- θ - D_1 space.

Theorem 4.25 For a topological space (X,τ) the following statement are equivalent:

- 1. (X,τ) is pre- θ - D_1 ,
- 2. For each pair of distinct points, x, y in X, there exists a quasi-preirresolute subjective function $f:(X,\tau)\to (Y,\sigma)$, where Y is pre- θ - D_1 space such that f(x) and f(y) are distinct.

Proof. (1) \Rightarrow (2): For every pair of distinct points of X, it suffices to take the identity function on X

 $(2)\Rightarrow (1)$: Let x and y be any pair of distinct points in X. By hypothesis, there exists a surjective quasi-preirresolute function f of space X into pre- θ - D_1 space Y such that $f(x)\neq f(y)$. therefor, there exist disjoint pre- θ -D-sets U and V of Y containing f(x) and f(y), respectively. Since f is quasi-preirresolute and surjective, by Theorem 4.23, $f^{-1}(U)$ and $f^{-1}(V)$ are pre- θ -D set in X containing x and y, respectively. Hence X is pre- θ - D_1 space.

5. ADDITIONAL PROPERTIES

Let A be a subset of a topological space (X,τ) . The pre- θ -kernal of A, denoted by $PKer_{\theta}(A)$, is defined to be the set $\{ A \in A : pcl_{\theta}(X) \cap A \} \neq \emptyset$

Definition 5.1 A topological space (X, τ) is said to be sober pre- $\theta - R_0$ if $\bigcap \{pcl_{\theta}(\{x\}) : x \in X\} = \phi$

Theorem 5.2 A topological space (X,τ) is sober pre- $\theta-R_0$ if and only if $PKer_{\theta}(\{x\}) \neq X$ for any $x \in X$.

Proof. Necessity Let the space (X,τ) be sober pre- $\theta-R_0$. Assume that there is a point y in X such that

 $PKer_{\theta}(\{y\}) = X$. then $y \notin G$ which G is some proper pre- θ -open subset of X . this implies that $y \in \bigcap \{pcl_{\theta}(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency: Now assume that $PKer_{\theta}(\{x\}) \neq X$ for any $x \in X$. If there exists a point y in X such that $y \in \bigcap \{pcl_{\theta}(\{x\}) : x \in X\}$, then every pre- θ -open set containing y must contain every point of X. This implies that the space X is the unique pre- θ -open set containing y, Hence $PKer_{\theta}(\{y\}) = X$ which is a contradiction. Therefore (X,τ) is sober pre- θ - R_0 .

Theorem 5.3 If the topological space X is sober pre- θ - R_0 and Y is any topological space, then the product $X \times Y$ is sober pre- θ - R_0 .

Proof. By showing that $\bigcap \{pcl_{\theta}(\{x,y\}): (x,y) \in X \times Y\} = \emptyset$ we are done. We have:

```
\bigcap \{pcl(\{x,y\}) : (x,y) \in X \times Y\} \subseteq \bigcap \{pcl_{\theta}(\{x\}) \times pcl_{\theta}(\{y\}) : (x,y) \in X \times Y\}= \bigcap \{pcl_{\theta}(\{x\}) : x \in X\} \times \bigcap \{pcl_{\theta}(\{y\}) : y \in Y\} \subseteq \phi \times Y = \phi
```

Definition 5.4 A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- 1. R-continuous [6] if for each $x \in X$ and each open set V of Y containing f(x), there exists an open subset U of X containing x such that $cl(f(U)) \subset V$.
- 2. θ -R-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists an open subset U of X containing x such that $pcl_{\theta}(f(U)) \subset V$.
- 3. R-precontinuous if for each $x \in X$ and each open set V of Y containing f(x), there exists an open subset U of X containing X such that $pcl(f(U)) \subset V$.
- 4. Preopen [7] if f(U) is preopen in Y for every open set U of X.

Remark 5.5 For a subset A of a topological space (X, τ)

- 1. $A \subset pcl(A) \subset cl_{\theta}(A)$ since for any set A, θ -R-preconuity implies R-preconuity.
- 2. Since the preclosure and pre- θ -closure operators agree on preopen on preopen sets Lemma 2.2, if follows that if $f:(X,\tau)\to (Y,\sigma)$ is R-precontinuous and preopen, then f is θ -R-precontinuous.

Definition 5.6 The graph G(f) of a function $f:(X,\tau)\to (Y,\sigma)$ is said to be p θ -c-preclosed if for each point $(x,y)\in (X\times Y)\setminus G(f)$, there exists subsets $U\in PO(X,x)$ and $V\in PO(Y,y)$ such that $(pcl(U)\cap V)\cap G(f)=\phi$.

Lemma 5.7 The graph G(f) of a function $f:(X,\tau)\to (y,\sigma)$ is $p\theta$ -c-preclosed in $X\times Y$ if and only if for each point $(x,y)\in (X\times Y)\setminus G(f)$, there exist $U\in PO(X,x)$ and $V\in P\Theta(Y,y)$ such that $f(pcl(U))\cap V=\phi$.

Proof. It follow immediately from Definition 5.6.

In [6, Theorem 4.1], it is shown that the graph of a R-continuous function into a T_1 - space is θ -closed with respect to the domain. Here an analogous result is proved for θ -R-precontinuous functions.

A space (X,τ) is pre- T_1 ([5]), if to each pair of distinct points x and y of X, there exists a pair of preopen sets one containing x but not y and the other containing y but not x.

Theorem 5.8 If $f:(X,\tau)\to (Y,\sigma)$ is θ -R-precontinuous quasi-preirresolute and Y is pre- T_1 , then G(f) is P θ -c-preclosed.

Proof. Assume that $(x,y) \in (X \times Y) \setminus G(f)$ and Y is preopen, there exists an preopen subset V of Y such that $f(x) \in V$ and $y \notin V$. The θ -R-precontinuity of f implies the existance of an open subset U of X containing x such that $pcl_{\theta}(f(U) \subset V)$. Therefore, $(X,y) \in pcl(U) \times (Y \setminus pcl_{\theta}(f(U)))$ which is disjoint from G(f) because if $x \in pcl(U)$, then since f is quasi-preirresolute, $f(x) \in f(pcl(U)) \subset pcl_{\theta}(f(U))$. Note that $Y \setminus pcl_{\theta}(f(U))$ is pre- θ -open. It is proved in [6, Theorem 3.1] that a function $f:(X,\tau) \to (Y,\sigma)$ is R-continuous if and only if for each $x \in X$ and

each closed subset F of Y with $f(x) \notin F$, there exist open subsets $U \subset X$ and $V \subset Y$ such that $x \in U$, $F \subset V$ and $f(U) \cap V = \phi$. The following theorem is an analogous result for θ -R-precontinuous functions.

Theorem 5.9 Let $f:(X,\tau)\to (Y,\sigma)$ be a quasi-preirresolute function. Then f is θ -R-precontinuous if and only if for each $x\in X$ and each preclosed subset F of Y with $f(x)\notin F$, there exists an open subset U of X containing X and a pre- θ -open subset Y of Y with $F\subset V$ such that $f(pcl(U))\cap V=\phi$.

Proof. Necessity: Let $x \in X$ and F be a preclosed subset of Y with $f(x) \in Y \setminus F$. Since f is θ -R-precontinuous there exists an open subset U of X containing x such that $f(pcl_{\theta}(f(U))) \subset Y \setminus F$. Let $V = Y \setminus (f(U))$, then V is pre- θ -open and $F \subset V$. Since f is quasi-preirresolute, $f(pcl(U)) \subset pcl_{\theta}(f(U))$. Therefore, $f(pcl(U)) \cap V = \phi$.

Sufficiency: Let $x \in X$, V be a preopen subset of Y with $f(x) \in V$ and let $F = Y \setminus V$. Since $f(x) \notin F$, there exists an open subset U of X containing X and a pre- θ -open subset W of Y with $F \subset W$ such that $f(pcl(U)) \cap W = \emptyset$. Then $f(pcl(U) \subset Y \setminus W)$ and

 $pcl_{\theta}(f(U) \subset pcl_{\theta}(f(Y \setminus W)) = Y \setminus W \subset Y \setminus F = V$. Therefore, f is θ -R-precontinuous.

Corollary 5.10 Let X and Y are a topological spaces and $f:(X,\tau)\to (Y,\sigma)$ be a quasi-preirresolute function. Then f is θ -R-precontinuous if and only if for each $x\in X$ and each preopen subset V of Y containing f(x), there exists an open subset U of X containing \mathcal{X} such that $pcl_{\theta}(f(pcl(U)))\subset V$.

Proof. Assume f is θ -R-precontinuous. Let $x \in X$ and let V an preopen subset of Y with $f(x) \in V$. Then there exists an open subset U of X containing X such that $pcl_{\theta}(f(U)) \subset V$. Since f is quasi-preirresolute, we have $pcl_{\theta}(f(pcl(U))) \subset cl_{\theta}(pcl_{\theta}(f(U))) = pcl_{\theta}(f(U)) \subset V$ Thus $pcl_{\theta}(f(pcl(U))) \subset V$. The converse implication is immediate. Recall that a topological space (X,τ) is said to be pre- R_1 ([7]) if for $x,y \in X$ with $pcl(\{x\}) \neq pcl(\{y\})$, there exist disjoint preopen sets U and V such that $pcl(\{x\}) \subset U$ and $pcl(\{y\}) \subset V$.

Proposition 5.11 A space X is pre- R_1 if and only if for each preopen set A and each $x \in A$, $pcl_{\theta}(\{x\}) \subset A$.

Proof. Necessity: Assume X is pre- R_1 . Suppose that A is a preopen subset of X and let $x \in A$, y be arbitrary element of $X \setminus A$. Since X is pre- R_1 . $pcl_{\theta}(\{y\}) = pcl(\{y\}) \subset X \setminus A$. Hence, we have $x \notin pcl_{\theta}(\{y\})$ and $y \notin pcl_{\theta}(\{x\})$. It follows that $pcl_{\theta}(\{x\}) \subset A$.

Sufficiency: Assume now that, $y \in pcl_{\theta}(\{x\}) \setminus pcl(\{x\})$ for some $x \in X$. Then there exists a preopen set A containing y such that $pcl(A) \cap \{x\} \neq \emptyset$ but $A \cap \{x\} = \emptyset$. Then $pcl_{\theta}(\{y\}) \cap A$ and $pcl_{\theta}(\{y\}) \cap \{x\} = \emptyset$. Hence $x \notin pcl_{\theta}(\{y\})$. Thus $y \notin pcl_{\theta}(\{x\})$. By this contradiction, we obtain $pcl_{\theta}(\{x\}) = pcl(\{x\})$ for each $x \in X$. Thus X is pre- R_1 .

Now, we show that the range of a θ -R-precontinuous function satisfies the stronger pre- R_1 condition.

Theorem 5.12 If $f:(X,\tau)\to (Y,\sigma)$ is a θ -R-precontinuous surjection, then (Y,σ) is a pre- R_1 space.

Proof. Let V be a preopen subset of Y and $y \in V$, $x \in X$ such that y = f(x). Since f is θ -R-precontinuous, there exists an open subset U of X containing x such that $pcl_{\theta}(f(U)) \subset V$. Then $pcl_{\theta}(\{y\}) \subset pcl_{\theta}(f(U)) \subset V$. Therefore by Proposition 5.11, Y is pre- R_1 .

We close this paper with a sample of the basic properties of $\,\theta$ -R-precontinuous function concerning composition and restriction.

Theorem 5.13 If $f:(X,\tau)\to (Y,\sigma)$ is continuous and $g:(y,\sigma)\to (Z,\eta)$ is θ -R-precontinuous, then $f\circ g:(X,\tau)\to (Z,\eta)$ is θ -R-precontinuous

Proof. Let $x \in X$ and W be a preopen subset of Z containing g(f(x)). Since g is θ -R-precontinuous, there exists an open subset V of Y containing f(x) such that $pcl_{\theta}(g(V)) \subset W$. Since f is continuous, there exists an open subset U of X containing x with $f(U) \subset V$, hence $pcl_{\theta}(g(f(U))) \subset W$. Therefore, $g \circ f$ is θ -R-precontinuous.

Theorem 5.14 Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(y,\sigma)\to (Z,\eta)$ be functions. if $g\circ f:(X,\tau)\to (Z,\eta)$ is θ -R-precontinuous and f is an open surjection, then g is θ -R-precontinuous.

Proof. Let $y \in Y$ and W be a preopen subset of Z containing g(y). Since f is surjective, there exists $x \in X$ such that y = f(x). Since $g \circ f$ is θ -R-precontinuous, there exists an open subset U of X containing x such that $pcl_{\theta}(g(f(U))) \subset W$. Note that f(U) is an open set containing y. Therefore, g is θ -R-precontinuous.

Theorem 5.15 If $f:(X,\tau)\to (Y,\sigma)$ is θ -R-precontinuous, $A\subset X$ and $f(A)\subset B\in PO(Y,\sigma)$, then $f\setminus A:A\to B$ is θ -R-precontinuous.

Proof. Let $x \in A$ and V be a preopen subset of B containing f(x) (not that $f(A) \subset B$). Hence V is be a preopen subset of Y containing f(x). Science f is θ -R-precontinuous, there exists an open subset U of X containing X such that $pcl_{\theta}(f(U)) \subset V$. Let $G = U \cap A$, then an open subset of A containing X such that $pcl_{\theta}(G) \subset pcl_{\theta}(U) \subset A$. Therefore, $f \setminus A : A \to B$ is θ -R-precontinuous.

REFERENCES

- [1] Caldas, M., Jafari, S. and Noiri, T. 2000. Characterizations of pre-Ro and pre- R_1 Topological spaces, Topology Proceedings, Vol. (25) (2000), 17-30.
- [2] Cho, S. H. 2000. A note on strongly- precontinuous functions, Acta Math. Hungar, (101), (1-2) (2000), 173-178.
- [3] Dontchev, J., Ganster, M. and Noiri, T. 2000. On p-closed spaces, Internet. J. Math. and Math. Sci. Vol. (24) No.(3) (2000), 203-212.
- [4] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S. and Noiri, T. 1983. On p-regular spacecs, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27(1983), 331-315.
- [5] Kar, A. and Bhattacharyya, P. 1990. Some weak Separation axioms, Bull Calcutta Math. Soc., 82, (1990), 415-422.
- [6] Konstadilaki-Savvopoulou, Ch. and Jankovic, D. 1992. R-continuous functions, Internet. J. Math. Sci., 15 (1992), 57-64.
- [7] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. 1982. On precontinuous and weak pecontinuous functions, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47-53.
- [8] Nori, T. 2001. Strongly precontinuous functions, Acta Math. Hungar, 90, (2001),307-316.
- [9] Pal, M. C., Bhattacharyya, P. 1996. Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc., 19, (1996), 63-75.
- [10] Velicko, N. V. 1968. H-closed topological spaces, Amer. Math Soc. Transl.,78, (1968), 103-118.
- [11] Zorlutuna, I. 2006. A note on almost strongly-precontinuous functions, Chos, Solitons and Fractals, (2006), 1101-1111.

M.M.EI-Sharkasy

Department of Mathematics, Faculty of Science,

Tanta University, Tanta, Egypt. Ph.D. in mathematics