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ABSTRACT 

A steady two dimensional boundary layer flow and heat transfer with variable viscosity electrically conducting fluid at T∞ in 
the presence of magnetic fields and thermal radiation was considered. The governing equations which are partial 
differential equations were transformed into ordinary differential equations using similarity variables, and the resulting 
coupled ordinary differential equations were solved using collocation method in MAPLE 18. The velocity and temperature 
profiles were studied graphically for different physical parameters. The effects of the parameters on velocity and 
temperature profile were showed.  
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INTRODUCTION 

The boundary layer flow and heat transfer in magnetic fields has become industrially more important. The applications 
arise in space technology, chemical engineering for filtration and purification technology to study the movement of natural 
gas, oil and water through the oil reservoirs. Also, in Agriculture to study the water transport in plants and trees and so on. 
If the temperature of the surroundings fluid is rather high, radiation effects play an important role for designing appropriate 
equipment and this situation does exist in space technology. When radiative heat transfer takes place, the fluid involved 
can be electrically conducting since it is ionized due to high operating temperature.  

Accordingly, examining the effect of magnetic field on the flow becomes more important. The process of fusing of metals 
in an electrical furnace by applying a magnetic field and the process of cooling of the first wall inside a nuclear reactor 
containment vessel where the hot plasma is isolated from the wall by applying a magnetic field are some examples of 
such fields. In controlling momentum and heat transfer in the boundary layer flow of different fluids, applied magnetic field 
may play an important role.  

The interaction of forced convection with thermal radiation has increased greatly during the last decade due to its 
importance in many practical applications. Radiation heat transfer becomes more important with rising temperature levels 
and may be totally dominant over conduction and convection at very high temperature. Thus, thermal radiation is 
important in combustion applications (furnaces, rocket, nozzles, engines, etc.), in nuclear reactors and during atmospheric 
recently of space vehicles. Many researchers have worked on these, some of them are; Bhattacharyya (2011) analysed 

the effects of heat source/sink on the steady two dimensional magneto hydrodynamic boundary layer flow and heat 
transfer past a shrinking sheet with wall mass suction. Makinde (2011) studied the inherent irreversibility in hydro 

magnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal 
radiation and Newtonian heating. Makinde et al. (2012) studied the composite momentum, heat and mass transfer in 

steady, incompressible laminar boundary layer flow of  an electrically conducting fluid past a moving vertical plate with a 
convective heat exchange at the surface in the presence of a transverse uniform magnetic field and chemically reactive 
species taking into account first-order and higher-order chemical reactions. Reddy et al (2012) studied MHD boundary 
layer flow of a non-Newtonian power-law fluid on a moving flat plate. Ghara et al. (2012) studied the effect of radiation on 
MHD free convection flow past an impulse moving vertical plate with ramped wall temperature. Butt et al. (2014) analyzed 
Irreversibility effects in magneto hydrodynamic flow over an impulsively started plate. Gururaj and Pavithra (2013) 

examined Nonlinear hydro magnetic two dimensional steady, laminar, boundary layer flow of a viscous, incompressible, 
electrically conducting and radiating liquid metal, with nonlinear radiation past a porous plate stretching with power-law 
velocity is analysed in the presence of a variable magnetic field. Idowu et al (2013) studied heat and mass Transfer of 

Magneto hydrodynamic (MHD) and Dissipative Fluid Flow Past a Moving Vertical Porous Plate with variable suction.  

In this paper, our main focus is on the Boundary Layer Flow and heat transfer with variable viscosity in the presence of 
Magnetic fields by extending the work of Makinde (2011) to include the effects of space variable. 

MATHEMATICAL MODEL 

We considered the steady two-dimensional boundary layer flow and heat transfer with variable viscosity electrically 

conducting fluid at temperature T  in the presence magnetic field and thermal radiation. It was assumed that the lower 
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surface of the plate is heated by convection from a hot fluid at temperature Tf which provides a heat transfer coefficient hf. 
A uniform transverse magnetic field B0 was imposed along the y-axis. The induced magnetic field due to the polarization of 
charges are assumed to be neglected. 

Under the usual boundary layer approximations, the flow is governed by the following equations: 
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where equation (1) is the continuity equation; (2) is the momentum equation; and (3) is the energy equation respectively;  

with 

U∞
  

= free stream velocity, cp   = specific heat at constant pressure,  α  = thermal diffusivity; 

σ   = fluid electrical conductivity, ρ   = fluid density,  =dynamic viscosity. 

The fluid dynamical viscosity   was assumed to be function of space variable y. 
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where 0  
is the cold fluid viscosity and y is space variable.  

using the Roseland approximation for radiation, the radiative heat flux is simplified as: 
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  is the Stephan –Boltzmann constant and 
k  is the mass absorption coefficient. 

The temperature differences within the flow are assumed to be sufficiently small so that 
4T may be expressed as linear 

function of temperature T using a truncated Taylor series about the free stream temperature T i.e.  

                                    
4T

43 34   TTT  .                       (6) 

The boundary condition at the plate surface and far into the free stream may be written as: 
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where, k   is the thermal conductivity coefficient. 

The stream function ψ, satisfies the continuity equation (1) automatically with: 
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A similarity solution of equations was obtained by defining an independent variable η and a dependent variable f in terms 
of the stream function ψ as: 
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After introducing equation (9) into Equations (1)-(8), we obtained: 
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     and  =1 corresponds to the absence of thermal radiation influence, where the prime 

symbol “ʹ” represents the derivative with respect to . 
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   (The Brinkman number) 

Numerical procedure  

This nonlinear differential equation cannot be solved analytically, so recourse must be made to a numerical approach. 

However no single numerical method is applicable to every nonlinear differential equation. Some of the popular methods 

that are available to solve these nonlinear differential equations are shooting methods, local similarity and non-similarity 

methods, collocation method, etc. 

These equations under the given boundary conditions were solved numerically by applying collocation method.  

     We, 

•  Take ∞ ≈ 5  

•  Impose boundary condition on a polynomial,  

a.  Assumed the trial functions as f ...32   dcba  

                                 ...32   dcba
 

and substituting  the trial function into the resulting differential equation gives the       Residual. The residual was 
collocated at various points within the domain.             

RESULTS AND DISCUSSION 

The computations were done by a written program which uses a symbolic and computational computer language 
MAPPLE. The plate surface temperature, the local skin- friction coefficient and the Nusselt number which were 

respectively proportional to )0(),0( f   and )0(  , were also worked out and their numerical values were 

represented in tabular forms. 
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Table 1: Computation showing ƒʹʹ (0), θ (0), and θʹ (0) for various values of key parameters. 

Bi y  Br Ra Pr Ha ƒʹʹ(0) -θʹ(0) θ(0) 

0.1 0 0.1 0.7 0.72 0.1 0.3948713134 0.06347214374 0.3652785626 

1.0 0 0.1 0.7 0.72 0.1 0.46947812315 0.1586991113 0.8413008887 

0.1 0.5 0.1 0.7 0.72 0.1 0.5309543414 0.06197198263 0.3802801737 

0.1 1.5 0.1 0.7 0.72 0.1 0.569807966 0.05593634397 0.4406365603 

0.1 0 1.0 0.7 0.72 0.1 0.6027894290 0.02294326748 0.9705673252 

0.1 0 10 0.7 0.72 0.1 0.720194572 0.5879561961 6.8795619615 

0.1 0 0.1 5.0 0.72 0.1 0.3940059928 0.06752046764 0.3247953236 

0.1 0 0.1 10 0.72 0.1 0.394001777 0.06792127703 0.3207872297 

0.1 0 0.1 0.7 3.0 0.1 0.382459888 0.07517001125 0.2482998875 

0.1 0 0.1 0.7 7.10 0.1 0.363547769 0.08073780503 0.1926219497 

0.1 0 0.1 0.7 0.72 0.5 0.4140059928 0.05985400244 0.4014599756 

0.1 0 0.1 0.7 0.72 1.0 0.796753026 0.0549397485 0.4504602515 

0.1 0 0.1 0.7 0.72 2.0 1.04752930 0.04515391962 0.5484608038 

Below is the graphical representation of physical parameter involved on the flow and thermal field 

 

Figure 1: Velocity profile at different values of space variable, y with Ha = 0.1, δ = 0.25. 
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Figure 2: Velocity profile at different values of magnetic field parameter Ha with y = 0, δ =   0.25 

 

 

  

Figure 3: Velocity profile at different values of boundary layer thickness δ with y = 0, Ha = 0.1 
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Figure 4: Temperature profile with different values of magnetic field parameter for Pr =0.72, 

Br = 0.1, Ra = 0.7, y = 0, Bi =0.1. 

 

 

 

Figure 5: Temperature profile with different values of space variable viscosity for Pr = 0.72, 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 7  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6418 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

J u l y  2 0 1 6                                                     w w w . c i r w o r l d . c o m  

Ha =0.1, Bi = 0.1, Ra = 0.1, Br = 0.1 

 

 

Figure 6: Temperature profile with various values of Brinkmann number for Pr = 0.72, Bi = 0.1, 

Ra = 0.7, y = 0, Ha = 0.1 

 

 

Figure 7: Temperature profiles with different values of Biot number for Pr = 0.72, Ha =0.1, 

y=0, Ra = 0.7, Br =0.1. 
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Figure 8: Temperature profiles with different values of Radiation parameters Ra for Pr = 0.72, 

Ha = 0.1, Br = 0.1, Bi = 0.1 y = 0. 

 

 

Figure 9: Temperature profile with different values of Prandtl number for Bi =0.1, Ha =0.1, 

Br = 0.1, Ra = 0.7, y = 0. 

DISCUSSION ON RESULTS 

Figure 1 shows the variation of the velocity profile as a function of η at different values of increase in the fluid viscosity 
(i.e.as parameter y increases), the momentum boundary layer becomes thinner, leading to an increase in the fluid velocity 
gradient. This is as a result of the increase in the viscosity, which in turn, decreases the velocity.  

In figure 2, the fluid velocity is lowest at the plate surface and increases to the free stream value as Ha increases, 
satisfying the far field boundary condition. Application of the magnetic field creates a resistive force similar to the drag 
force that acts in the opposite direction of the fluid motion, thus causing the velocity of the fluid to overshoot towards the 
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plate surface. Similar trend is observed in figure 3, increase in the velocity profile as the boundary layer thickness 
increases.  

The fluid temperature increases with an increase in Ha from figure 4 accordingly leading to an increase in thermal 
boundary layer. The transverse magnetic field gives rise to a resistive force known as the Lorentz force of an electrically 
conducting fluid. This force makes the fluid experience a resistance by increasing the friction between its layers and thus 
increases its temperature. It can be seen from the figure 5 that the thermal boundary layer decreases due to a decrease in 
the fluid viscosity and this causes the temperature of the fluid to decrease.  

From figure 6, it can be observed that as Br increases, thermal boundary layer also increases. This causes the 
temperature of the fluid to increase. From Figure 7, the thermal boundary layer increases as The Bi increases, and this 
leads to increase in fluid temperature. It is noteworthy from Figure 8 that the fluid temperature decreases with an increase 
in Radiation parameter (Ra) leading to a decrease in the thermal boundary layer thickness. This result qualitatively agrees 
with the expectations, since the effect of radiation is to decrease the rate of energy transport to the fluid. From figure 9, the 
temperature profiles for different values of the Prandtl number decreases with an increase in Prandtl number, 
consequently the thermal boundary layer decreases. 

CONCLUSION 

In the present project, we have theoretically studied the boundary layer flow and heat transfer with variable viscosity in the 
presence of magnetic field. The partial differential equations were transformed using similarity variables and the resulting 
non-linear equation  were solved using collocation method in MAPLE 18.The velocity and temperature profiles were 
studied graphically for different physical parameters of space variable, y, Biot number, Bi, Brinkman number, Br, Radiation 
parameter, Ra, Prandtl number, Pr, and Hartmann number, Ha. 

 

The skin friction, ƒʹʹ (0), increases as Biot number, Bi, Brankmann number, Br, Space variable, y, and Hartmann number, 
Ha increase, the skin friction, ƒʹʹ (0) decreases with increase in Radiation parameter, Ra, and Prandtl number, Pr. And 
Nusselt number also increases as Biot number, Bi, Brinkman number, Br, Radiation parameter, Ra, and Prandtl number, 
Pr, increase, Nusselt number decreases as Space variable, y, and Hartmann number decrease. The plate surface 
temperature θ(0) increases as Biot number, Bi, Brinkman number, Br, Space variable, y and Hartmann number, Ha 
increase, plate surface temperature θ(0) decreases as Radiation parameter, Ra, and Prandtl number, Pr, increase 

The fluid velocity is lowest at the plate surface and increases to the free stream value as Ha increases, satisfying the far 
field boundary condition. The velocity profile increases as the boundary layer thickness increases. 
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