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Abstract 

In this article, we are trying to see the Iterated function system or more generally a skew product as formation a semigroup 
action system. We will try to implement more semigroup action properties on itself. For this purpose, we introduce a 
semigroup action corresponding Iterated function system and explain more properties of itself then with considering 
Hutchitson operator on Iterated function system, we try consider the corresponding semigroup action for Iterated function 
system and achive more its properties. 

Keywords: Iterated function systems; Minimality; Transitivity; Hutchitson operator; Semigroup action. 

Mathematics; Dynamical Systems.  

2010 Mathematics Subject Classification; 37B05, 37C85, 54H20. 

1  Introduction 

Iterated function systems is a fast developing topic which has been studied extensively during the last decade. An iterated 
function system is a finite set of contraction mappings on a complete metric space. One major reason for this recent 
activity was the introduction of the fractal concept in the seventies, which led to question on how to create new fractals. An 
important method is to use iterated function systems (IFS), (see Barnsley and Demko [1985]).  

Problems concerning more effective image building naturally led to the introduction of iterated function systems with 
probabilities, i.e. iterated function systems controlled by a sequence of independent, identically distributed random 
variables.  

Barnsley, Elton and Hardin (1989) generalized this model. They considered IFS controlled by a Markov chain and called 
them recurrent IFS, (e.g. [1, 3, 6, 12]). 

The aim of present paper is to discuss the behavior of dynamical systems in semigroup actions and reach to relationship 
of  concepts, [6]. We study iterated function systems with Hutchitson operator and find main results.   

The present paper is organized as follows: In section 2, we recall some standard defnitions about iterated function 

systems. In section 3, we study equicontinuity, transitivity and minimality of the dynamical system (
Z  ,

n

 × M )  and 

show that if 
n

 × M  is polish space due to densely point transitivity of ( Z  ,
n

 × M ) . 

In section 4, we study iterated function systems with Hutchitson operator and show that if M  is polish space due to 
densely set transitivity of every topological transitive system. 

2   PRELIMINARIES 

Let M be a compact metric space and 
n

  be symbol space, We define the dynamical systems as  

skew product F  with (
n

 × M , F ) that 

 F  :  
n

 × M 
n

 × M                                                      (1)    

( , ) ( , ( ))p f p F , 
n




  , p M
 

In particular skew product is composition of semi-action of functions on generators 1 2{ , ,..., }sf f f .  

We centralize on fiber M , we will be faced with the concept of Iterated function systems shortly IFS. 

The iterated function system of these maps, denoted by 1 2( : , ,..., )sM f f f or shortly 

mailto:esmaeel.rezaali@stu.um.ac.ir
mailto:esmaeel.rezaali@gmail.com


                            I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 6  

    J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  
 

6377 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

J u l y  2 0 1 6                                                     w w w . c i r w o r l d . c o m  

 IFS( F ), is the set of all finite forward composition of these maps.  

Let F :
n

 × M 
n

 × M be a skew product with generators 
1 2{ , ,..., }sf f f , we define  

following statements. We have  

                                 
1( ) ... ( )n

nf x f f f x   
    ,                                               (2) 

thus the orbit of F  with respect to 
n




  at x M  is the set  

                                   

2( ) { , ( ), ( ),..., ( ),...}nO x x f x f x f x   
                                     (3) 

and the total orbit of F at x M  is the set     

                          0( ) { ( ) : }
nn

totalO x f x n and 


   .                          (4)    

         For skew product Ƒ, 
0 0( , )p  is periodic of period n  , if  

                                                  0 0 0 0( , ) ( , )nf p p 
                                                     (5) 

i.e. 0 0( )n     and 
0 0( )nf p p  . 

For every periodic sequence 0 0 0( ( ) )n       of period n , we say that 
0p  is periodic point  

of IFS( F ) if 
0 0 0( )nf p p  . 

3  Iterated function systems as semigroup action 

We know that {0,1,2,...} Z  with operator " "  is semigroup. Let 
n

  is the set of all  

one side sequence of {1,2,..., }n . A dynamical system in the present article is a triple 

 (
Z  ,

n

 × M , ) where 

                                                      
: ( )

n n
M M   

    Z
                                            (6) 

 

  such that   

    
( , ( )) ( ( ) , ( ))n nn p f p  

 

where M  is a manifold. For 
n

U


  we have 

 

                            
{ ( , ) : ( ( ) , ( )) }n n nnU p M f p U      

                            (7) 

We have  

                                      
( , ) {( ( ) , ( )) : ( , ) }n nn U f p p U    

                                 (8)
 

Definition 3.1.  Let S be a topological semigroup. 

(1) We say that S  is a F -semigroup if for every 0s S the subset 0\S Ss  that 0 0{ : }Ss s S s Ss  
 

 is finite. 

Since 0 0\ {0,1,..., 1}n n    Z Z  is a finite set, then ( , ) Z   is a F - semigroup. 
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(2) We say that S  is a C -semigroup if
0\S Ss  is relatively compact (that its closure is compact) in S  . 

Note that every F -semigroup is C  -semigroup, so ( , ) Z  is a C -semigroup. 

Definition 3.2. Let  (
Z  ,

n

 × M )  be a dynamical system where  (
n

 × M , d  ) is a metric space.  

 Where 
Md d d    such that d  is metric on symbol dynamic and 

Md  is a metric on M . 

(1) A subset A  of 
Z  act equicontinuity at 

0 0( , ) np M   if for every  , for every  

  > 0  there exists    > 0 such that 
0 0(( , ), ( , ))d p p  <   implies 

                           
                                  00 0(( ( ), ( )),( ( ), ( )))n n n nd f p f p     <

                                   
(9) 

for every n A  . 

(2) A subset A  of 
Z act fiber equicontinuity at 

0p M  with respect 
0   if for every  

  > 0 there exists   > 0 such that  
0( , )Md p p <  implies that  

                                                      0 00( ( ), ( ))n nd f p f p  <                                                (10) 

 for every n Z . 

(3) A point 
0p M   is called an orbital equicontinuity point with respect to 

0  

00( ( ))p Eq M  if 
Z  act orbital equicontinuity at 

0p  with respect to 
0 .  

The fiber 
0  is equicontinuous fiber if 

0
( )Eq M M  . 

(4) The orbital 
0 is called almost orbital equicontinuous if the subset 

0
( )Eq M of orbital equicontinuity points is 

dense subset of M . 

Definition 3.3.  The dynamical system (
Z  ,

n

 × M ) is called 

(1) topological transitive if for every ( , )U V of nonempty open sets U ,V  in 
n

 × M  there exists n Z  such that 

( , )n U V  . 

(2) Point transitive if there exists a point 
0 0( , )p  with dense orbit   

                                 00 0 0 0( , ) {(( ( ), ( )) : }n np f p n    Z Z
                                    (11) 

is dense in 
n

 × M . Such a point 
0 0( , )p  is called transitive point,  

                                                    0 0( , )p  ∈ tran (
n

 × M  ).                                         (12) 

(3) Densely point transitive if there exists a dense set 
nY M   of transitive points.  

(4) Orbital topological transitive with respect 0  , if for every nonempty open sets ,U V  in M , there  

exists n Z such that 
0
( )nf U V  . 

(5)  Orbital point  transitive with respect to 0 , if there exists a point 0p  with dense orbit 
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00

{ ( ) : , }nf p n p M
    Z Z in M .                                 (13) 

(6) Orbital densely point transitive if  there exists a dense set Y M  of orbital  transitive points.  

Lemma 3.4. Consider (
Z  ,

n

 × M ) as orbital topological  transitive with respect to
0 , 

 if 
0 0

, ( )p Eq O p   is dense in M . 

Proof.  We need to show that for every x M  and  >0 there exists n Z such that  

                                                          0
( ( ), )n

Md f p x < .                                               (14) 

Consider 
2


    , by definition of equicontinuity, there exists   > 0 such that if  

( , )Md p q < , q M , then for every  n Z ,  

                                                  0 0
( ( ) , ( ))n n

Md f p f q  <  .                                           (15) 

Now consider ( ) , ( )U B p V B x    , by definition of orbital topological transitive with respect  

to
0 , there exists 

0n Z such that  0

0
( )

n
f U V  . Therefore there exists y U  such that  

                                                       

0

0
( ( ), )

n

Md f y x <  .                                              (16) 

Now we have    

 

         
 

0

0
( ( ), )

n

Md f p x  0

0
( , ( ))

n

Md x f y + 0 0

0 0
( ( ), ( ))

n n

Md f y f p  <      .             (17) 

Corollary 3.5.  Let (
Z  ,

n

 × M ) is orbital topological transitive with respect to 0 . If
0

Eq  ,  

then (
Z  ,

n

 × M ) is orbital point transitive. 

Proof.  According to lemma 3.4 is trivial. 

Lemma 3.6. Consider dynamical system (
Z  ,

n

 × M ). Let A Z  be a finite subset,  

Then A act equicontinuously on (
n

 × M ,d ). 

Proof.  This lemma holds trivial, because continuity in finite set implies equicontinuity. 

In this article we consider M as perfect Reimanian manifold so 
n

 × M  is a space without isolated points. 

Densely point transitive implies point transitive and point transitive implies topological transitive.  

Note that (
n

 , d  ) is a polish space but ( , )MM d  (and so (
n

 × M , d ))  can be a polish space or not. 

Proposition  3.7.  If 
n

 × M is a polish space, then every topological transitive system  

( Z  ,
n

 × M ) is densely point transitive (and hence also point transitive). 

 

Proof.  If (
Z  ,

n

 × M ) is topological transitive, then UZ  is a dense subset of 
n M  , for every  
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open set U . We know that  
n

 × M  is polish, then there exists a countable open 

base B of the given topology. By the Baire space theorem  { : }U U B  Z  is dense in 
n

 × M  

and every point of this set is a transitive point of the dynamical system 
n

 × M . 

Definition  3.8.  (1) 
n

 × M  is called minimal, if  

                                                           
( , )p Z

n

 × M .                                                 (18) 

 In other words, all points of 
n

 × M are transitive points. 

(2)  A point ( , )p  is called minimal if the subsystem ( , )pZ  is minimal.  

(3) A point ( , )p is called almost periodic if the subsystem ( , )pZ is minimal and compact. 

(4) If the set of almost periodic points is dense in
n

 × M , we say that (
Z  ,

n

 × M )  satisfies the Bronstein 

condition.  If in addition the system (
Z  ,

n

 × M ) is topological transitive, we say that it is an M -system. 

(5) Let (
n

 × M , f ) be a classical discrete dynamical system, as usual, a point ( , ) np M   is periodic, if there 

exists a natural n Z such that ( )n    and ( )nf p p  .  

If 
n

 × M  is a topological transitive and the set of periodic points is dense in 
n

 × M , then we say that it is a  

P -system. 

If 
n

 × M  is compact then a point in 
n

 × M is minimal iff it is almost periodic. Therefore it is also  

abvious that every P -system is an M -system. 

For a system (
Z  ,

n

 × M ) and a subset B   
n

 × M , we use the following notation 

                               

                               
(( , ), ) { : ( , ( )) }n np B n f p B     Z

                            (19) 

Definition 3.9.  A subset P Z  is (left) syndetic, if there exists a finite set F Z such that FP  Z . 

Lemma  3.10.  Let 
n

 × M be a (not necessarily compact) 
Z -dynamical system and  

0 0( , )p 
n

 × M . consider the following conditions. 

(1) 0 0( , )p is an almost periodic point. 

(2) For every neighborhood V of 0 0( , )p ∈ 
n

 × M  there exists a finite set F Z such that  

                                                        0 0( , )FV Y p  Z .                                              (20) 

 

(3) for every neighborhood V of 0 0( , )p ∈ 
n

 × M the set 0 0(( , ) , )p V  is syndetic.  
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(4) 
0 0( , )p  is a minimal point (i.e. the subsystem ( , )pZ is minimal).  

Then (1) implies (2) , (2) implies (3) and (3) implies (4).  

If 
n

 × M is compact then all four conditions are equivalent. 

Proof (1) (2): Suppose that ( , )YZ  is minimal and compact that  Y  ( , )pZ , then for every  

open neighborhood  V of 
0 0( , )p ∈ 

n

 × M , for every 
1 1( , )p Y  there exists n Z  such  

that 
1 1( )nf p V  . Equivalently 

1 1( )nf p nV   . Therefore 

n

nV Y


 
Z

. By compactness of  Y   

we can choose a finite set F Z  such that 0 0( , )FV Y p  Z .    

(2)  (3):  It suffics to show that    

                                                0 0(( , ) , )F p V   Z
                                            (21) 

in otherwise there exists n Z  such that  

                                                   n 0 0(( , ) , )F p V 
                                             (22)

 

then  

 

                                                 00 0( , ( ))n nf p FV    .                                            (23) 

On the other hand clearly 
00 0( , ( ))n nf p Y   , contrary to our condition that FV Y  . 

(3)   (4) :  Y  ( , )pZ  is nonempty,  closed and invariant. It remains to show that if 
1 1( , )p Y   then 

0 0 1 1( , ) ( , )p p Z .  Assume otherwise, so that
0 0( , )p   1 1( , )pZ .  By the regularity of 

n M  , we can 

choose an open neighborhood V of 
0 0( , )p 

n M   such that  

                                                       V ∩ 1 1( , )pZ  = ∅.                                                            (24) 

 By our assumption the set 0 0(( , ) , )p V  is syndetic.  Therefore there is a finite set 1{ ,..., }kF n n  so that for 

every n Z some  

                                             00 0( , ( ))i in n n n
f p V  


                                          (25) 

that is  

                    
00 0

1

( , ( ))
k

n n

i

i

f p FV nV 


    for every n Z .                      (26) 

Hence  

 

                                                    0 0( , )p Z
1

k

i

i

nV



                                               (27)

 

then  
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             1 1 0 0( , ) ( , )p p  Z
1

k

i

i

nV


 =

1 1

k k

i i

i i

nV n V
 

   
                    (28) 

contrary to our assumption. 

If 
n M   is compact then by definition it follow that (4) implies (1). 

 

4  Iterated function systems with Hutchitson operator 

We consider M  as compact manifold and IFS
1{ , ,..., }kM f f . We can use Hutchitson operator  

for constructing semigroup. We have set  

                                         
{ : }A M A is compact  

                                        (29) 

and 

                                                               
:  

                                                (30) 

        1( ) ( ) ... ( )kA f A f A   
 

Note that for every open set U  we have  

                                              1( ) ( ) ... ( )kU f U f U    .                                              (31) 

Thus   under function composition is semigroup and isomorphic to 
Z . Therefore we explain  

more definitions for . 

1) Compact  set A M  is equicontinuous if  for every  > 0 there exists  > 0 such that for every compact set 

,B M
 

                                                          
( , )Hd A B <                                                    (32) 

 

then  

                                 
( ( ), ( ))n n

Hd A B  < , for every n Z .                         (33) 

Particularly if { }A a  is equicontinuous means,  for every > 0 there exists  >0 such that for  

every , ( , )Mb M d a b <  then for every , ,n n   Z  

                                                
( ( ), ( ))n n

Md f a f b  < .                                      (34) 

We say that M  is equicontinuous if for every compact set A M , A  is equicontinuous set. 

2) Operator   is almost equicontinuous if M  be a equicontinuous set.  

3) Operator   is topological transitive if for every nonempty open sets ,U V  there exists 

compact set ,A U n   that   

 

                                                     
( )n A V 

                                                       (35) 

or operator   is topological transitive if for every nonempty open sets ,U V ,  there exists n   

that ( )n A V  .   
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4) M is set transitive if there exists compact set A M  such that  

                                                     
( )HO A M

                                                   (36)
 

and A  is set transitive if ( )HO A M . 

Let D  be a collection of compact sets B such that for every compact set A M and for every  >0 there exists 

compact set B D   such that ( , )Hd A B < . 

D  is dense in   if D  . 

5) M  is densely transitive if for every  > 0 and compact set A M , there exists B D , ( , )d A B <    

and B  is transitive set. 

6) M  is polish space means that a separable metric space which is homomorphic to a complete  

metric space. 

Lemma 4.1. Consider M  as compact manifold. Let A Z be a finite set. Then A  act equicontinuously on . 

Proof.  According to continuity of operator  is trivial. 

For every compact set B M , for every  >0, there exists  > 0 such that for  

every , ( , )HB d B B  <   then  

                             
( ( ), ( ))n n

Hd B B  < , for every n A .                         (37) 

Let 
1{ ,..., }kA n n  and B M , B  is compact subset.  We know that 

1,..., lf f  (generator of IFS) 

 is continuous, so for every  >0 there exists ,1i  for 
if  such that if  

                                                    
( , )Hd B B < ,1i

                                               (38)                  

then  

                                           
( ( ), ( ))H i id f B f B <  .                                         (39) 

 

Then if 

                                         
( , )Hd B B < ,1 1min{ }l

i i 
                                         (40) 

 

then  

 

                                    1 1

( ( ) , ( ) )
l l

H i i

i i

d f B f B
 

  < .                                   (41) 

Therefore  ( , )Hd B B < 1min{ }l

i i   then  

                                          
( ( ), ( ))Hd B B  < .                                            (42) 

If  min{ }i   then  there  exists ,2i  that if   
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( , )Hd B B  < ,1 ,2 1min{ , }l

i i i  
                                  (43)

 

therefore  

                                   
( ( ), ( ))Hd B B  < 1min{ }l

i i  ,                             (44) 

then  

                                       

2 2( ( ), ( ))Hd B B  < .                                        (45) 

Under finite repeats, with minimizing initial   if  

                      
( , )Hd B B < ,min{ , 1,..., , 1,..., }i j ki l j n   ,                   (46) 

then  

                    
( ( ) , ( ))s s

Hd B B  <  for every 0,1,..., ks n .                  (47) 

Because {0,1,..., }kA n  then every compact set is equicontinuous with respect to A and proof 

 is complete. 

Proposition  4.2.  If M  is polish space, then every toplogical transitive system is densely set transitive. 

Proof.  For proving we need to show that for every  >0 and for every compact set A , there exists a compact set 

B M  such that ( , )Hd A B < , B  is set transitive. We must suppose that compact set A ,  >0 are arbitrary. We 

need to show that there exists compact set B M , that ( , )Hd A B < , is set transitive. Then we must show that      

       

                                       

( )lim
n

n i n

M B


 

 
                                            (48)                 

means that for open set V must there exists { } ,in 
 

                                           
( )in
B V  .                                         (49) 

 We know that 
1( )B A U   is an open set in M . According to topological transitivity for 

1 ,U V  there exists compact 

set 1 1A U   such that  

                                                1( )n A V  .                                              (50)   

We consider 
1

1 2( )n U U  . 
0B A  suppose that 

1i i iB B A
  , we can easily that ( , )H id B A < , 

1

i

i

B A A




   compact, then the set B  is set transitive.  

 

Lemma 4.3. Consider   as topological transitive and M  as compact manifold. If ( )A Eq  , then ( )O A  is  -

dense. 

Proof. We need to prove that for every  >0 and p M  there exists n Z  that ( ) ({ })n A B p
  . Since 

( )A Eq   then there exists 0 >0, ( , )Hd A B <
0  then for every n Z , ( ( ), ( ))n n

Hd A B  <
3


. Since   is 

topological transitive for 
0
( )U B A
 , 

3

({ })V B p  then for every compact set 
0
( )A B A

   such that 

3

( ) ({ })n A B p
   . Consider B A A    , it is easy to see that 

0
( )A B B
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and 
0
( )B B A

   so  

( , )Hd A B  <
0 . So for every  n Z ,  

                                 
( ( ), ( ))n n

Hd A B   <
3


 ,                                        (51) 

 

                                   

3

( ) ({ })n A B p
 

                                             (52)

 

then there exists x M  that ( , )Md x p <
3


, ( )nx A . Since for every n Z ,    

                                  
( ( ), ( ))n n

Hd A A A     <
3


.                               (53) 

For every n Z  there  exists 
ny A  such  that ( ( ), )n

M nd y x <
3


. Then 

               
( , ( )) ( , ) ( , ( ))n n

M n M M nd p y d x p d x y    <
3 3

 
 <                   (54)  

so ( ) ({ })n

ny B p   then ( ) ({ })n A B p
  . 

Definition  4.4. 1)   is called minimal if  for every A  , B   and  >0, ( ( ))nB B A   is equivalent to 

({ })HO x M , for every x M . In other words all members of   are set transitive i.e.      

( ) ( )n

H

n

O A H A M


 
Z

. 

2) A member A   is called minimal if subsystem ( )HO A  is minimal.  

3) A member A  is called almost periodic if subsystem ( )HO A  is minimal and compact. 

4) If the set of almost periodic sets is dense in  , we say that ( , )Z  satisfies the 

Bronstain condition. If in addition the subsystem ( , )Z  is topological transitive, we say that it is an  

M -system. 

5) A set A  is periodic if there exists n Z such that ( )nH A A .  If   is a topological transitive and the set of 

periodic sets is dense, then we say that it is a P -system. 

6)  A subset P Z  is (left) syndetic if there exists a finite set F Z such that 

 .FP  Z
 

Proposition  4.5.  If   is  compact  with  respect to Hausdroff  metric Hd  then  a member in   is minimal iff it is 

almost periodic. 

Proof ( ): This result is trivial, because A   is almost periodic then ( )HO A  is minimal and compact then A   

is minimal. 

( ) : ( )HO A  is minimal holds, we need to show that ( )HO A  is compact. We have 
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2 3( ) { ( ) : , } { ( ) , ( ) , ( ),...}n

HO A A A n A A A        Z .                 (55) 

 Because A  is compact, we use continuity of   and ( )n A  is compact.  

Because for every
2 3, { , ( ) , ( ) , ( ),...}n A A A A   Z is collection of sets in   then ( )HO A  is closed 

collection of compact collection  , every closed subset of compact set is compact.  
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