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ABSTRACT

A modification of the generalized projective Riccati equation method is proposed to treat some nonlinear evolution
equations and obtain their exact solutions. Some known methods are obtained as special cases of the proposed method.
In addition, the method is implemented to find new exact solutions for the well-known Drinfel'd—Sokolov—Wilson system of
nonlinear partial differential equations.
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1. Introduction

The investigation of exact travelling wave solutions to nonlinear evolution equations (NLEE's) plays an important role in the
study of nonlinear phenomena in many fields such as physics, biology, chemistry and mechanics, etc. As the mathematical
model for these phenomena helps us understand them better. Due to the increasing interest in obtaining exact solutions of
nonlinear partial differential equations (NLPDE's), many powerful methods are now available for treating and obtaining
solitary wave solutions. They have been developed since the establishment of the inverse scattering technique [1],
Backland and Darboux transform [2-4], Hirota method [5], Jacobi elliptic function method [6], Hyperbolic functions
expansion method [7], tanh method [8], cosine-function method [9], the auxiliary equation method [10], Mapping method
[11], and so on. Implementing these methods yield large nonlinear systems, which are usually difficult to solve. But with the
help of Maple or Mathematica programs, that perform tedious algebraic calculations, one can solve such systems easily.

In this paper an improvement on the work done in [12-18] is achieved. A series of new and more exact solutions of
Dreinfeld’s—Sokolov—Wilson system are obtained including solitary wave solutions and triangular periodic solutions.

This paper is organized as follows: in section 2, we describe the modified generalized projective Riccati equation method.
In section 3, we derive two well-known methods, namely, the sech § —tanh 5 and the extended tanh methods as special

cases. In section 4, we apply the method to treat theDrinfel'd-Sokolov-Wilson(DSW) equations. Finally, some concluding
remarks are given in section 5.

2. Description of the modified generalized projective Riccati equation method
In this section, we will describe the modified generalized Projective Riccati equation (MGPRE) method based on [18].

Consider the nonlinear PDE

P, w0, Uy, Uy -nn) = 0. (1)

Using the wave transformation
wz,t) = u(§),§ =z — ct, )
where ¢ is a constant, Eq. (1) converts to an ordinary differential equation (ODE) of the function u(f)
!/ "
O(u,u’,u",...) = 0. 3)

To apply the method, we use the following steps:

Step 1. We assume that the solution of Eq. (3) is in the form:

u(€) = H(0(£),7(8) = ay + > 0" a,0(8) + b,7(8)], 4)

i=1
where a, and b, are constants to be determined later, H(O(f),T(g)) is a rational function in the new variables U(ﬁ),

7(&) which satisfy the system
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0'(€) = co(§)7(6), ©

7'(€) = —R + e7%(&) + po(€),e = *1, ®)
2

) = %[R —2u0(&)+ %02(@], R=0, @)

where €, R, [t are real constants and € == 0. Itis noticeable that U({)T(f) = 0.

Step 2. The parameter 1 can be determined by balancing the highest order derivative term with the nonlinear term in Eq. (3),
1 is usually a positive integer. If 1 is a fraction or a negative integer, we make the following transformation

1. Whenn = p / q is afraction, we let

u(§) = v/*(8),

and then substitute into (3) to determine n.

2. When n is a negative integer, we let

u(€) = 0"(8),

and then substitute into (3) to determine 71 .

Now, we will solve Projective Riccati equations (5-7) based on the idea of Zuntao Fu, see [18] for details, by making
appropriate generalizations.

We will assume
o(@— == ®)

then using (5), we obtain
_17©
€ a(§)
Substituting (8) and (9) in (6) and after simplifying, we obtain:
¢" () — Reg(€) + pe = 0, (10)

Solutions of Eq. (10) are obtained as follows:

7(§) ©)

(i) Ifwe assume R = 0 and Re > 0.1fwe let Re = A2, then Eq. (10) can be rewritten as

B"(&) — N2¢(&) + pe = 0. (11)

and the general solution of Eq. (11) is given by

¢(§) = ¢c(£) + ¢p(§) = a, + a, Sinh()\f) + a, COSh()\ﬁ),

where A = « Re and a, = g = %. Explicitly, we can write the solution as follows

gzil(g)z%+alsinh(\/§§)+a2 cosh(ﬁé), (12)

SO

R
5 = )
a,(§) o+« sinh(V Re§) + B, cosh(V Ref)

and
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—VRe ¢« COSh(\/Ef) + 5 sinh(@&“)

nle = € ptaq sinh(\/ﬁ&’) + B, cosh(\/ﬁf), .
where «, and (3, are arbitrary constants, and 6 = a12 - 512
(i) If we assume €R < 0 and Re = —)\2, then Eq. (10) can be rewritten as

¢"(§) + NG(&) + pe = 0, (14)

the general solution of Eq. (14) is

?,(§) = by + b, sin(AS) + b, cos(AE), A = N —Re,

where bo = % . Therefore, we can write the solution as follows

,(€) = % + b, sin(N—Re€) + b, cos(V—Re€), (15)

R
o,(§) = ,
() B+ «, sin(V—Re§) + B, cos(V —Ref)
and
A8 - = —Re @, cos(N—Re) — 3, sin(v —Ref) 6)
1 € p+a,sin(v—Ref) + 3, cos(V —Ref),
where @, and ﬁg are arbitrary constants, and 6= —Oég . ﬂ;

(iii) Assume R = 0, then Eq. (10) becomes

B <=0, a7
The solution of Eq. (17) is given by

¢3<§) o G’O o= 0/15 N~ %527 (18)

where a, and a, are two arbitrary constants. Using (18), we have

1
o,(§) = :
(%) ao—{-al{—%’sﬁQ
and
7,(€) = e B RS

€ |aq, +a1§—%’€§2

The following derivations are needed for the results in Section 3.

Assume

o = 0(§) = ¥ () = ¥, 9

then (7) can be written as
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(€)= 2R 200§+ LD gl R = 0,

From (19), we get

o) = =g g

1
m
Solving for %", get

W' = mo'y mp = m(eoT)Y mp = emTpnp mp = emTih
where ¢ = Y(§),0 = o(§) and T = 7(§).
Squaring both sides of Eq.(22a), we obtain

¢'2 _ 62m2¢272,
substituting (20) in (22b), we get

I

1 216 2
0% = )R — 2 (e) + L)
If we take m = —1 in(23), we obtain

2
P2 =c R¢2—2uw+<“—;6> .

Equations (22b) - (24) are used to drive the special cases below.
Special cases
3.1. The sech¢ —tanh ¢ method

In this section, we will obtain the sech & — tanh & method as special case of our proposed method.

The main steps of the sech & — tanh & method are as follow:

We assume the solution of the ODE (3) is in the form:

u() = ay + > 0 (8)]a,0(8) + b7(E)],

i=1
with
0(&) = sech &, 7(§) = tanh&,

The relation (25) becomes

n

u(§) = a, + z sech' ™' ¢[a, sech £ + b, tanh ],

=1

(20)

(21)

(22a)

(22b)

(23)

(24)

(25)

(26)

@7)

where a, bi are constants to be determined later, 1 can be determined by balancing the highest order derivative term with

the high degree nonlinear term in ODE (3).

If we assume

e=—-1Lp=0R=—-16=—1m=—1,

Then Eq.’s (5) — (7) become
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a’(f) = —sech{tanh & = —0(5)7(5)
7'(§) = 1—tanh? & = 1 — 7%(§) (28)
72(5) =1—sech’¢é =1-— 02(5),
If we take n = 1,2 in (25), obtain
u(€) = H(0(€),7(€) = ay + a,0(8) + b,7()
and
u(€) = a + a,0(€) + a,0%(€) + b7(€) + b0 ()7 (S),

respectively, where 0 () and 7(§) are obtained as follows: from Eg. (22b)

(W) = ¢*(O7*()-

and

P = Pyl =42,
or

a'(§) = a(&)«/l —o(&)?, (29)
the solution to (29) is 0(§) = sech &, and using the relation 7(§) = —%, we obtain that 7(§) = tanh §.
3.2 The extended tanhmethod
The main steps of the extended tanh method are as follow:
fwetake 7(§) = RY ™' + ¢ and m = € = —1 inEq. (22)

@' = *(RY™ + ) = (R + )% (30)
The last equation gives

' = R+ 2 (31)
The general solution of Riccati equation (31) is given by:
If R <0,

= —N—R tanh(V—R¢), (32)

and
1) = —J—R coth(N —R¢). (33)
I R=0,
-1
Y =—, 3
¢ (34)
It R >0,
¥ = VR tan(VR¢) (359)
and
Y =-—R cot(\/Eé'). (35b)

Now projective Riccati equations are
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[ '(€) = —a(&)7(£)

T = (Ro(§) — 5"

According to (32)-(35) the solutions to system (36) are given by

o, (€) = \/__LRcoth(\/Eg),

7,(8) = Z é) msech \/_f CSCh(\/_f)

0,(€) = &tanh(ﬁa,

7, (§) = —22—8 = —ﬁsech(ﬁﬁ) csch(mﬁ).
2

03(5) 3 _5 and Tg(g) o
o,(€) = %cot(ﬁ{),

T,8) = —ZS—Eg = \/Esec(\/ﬁﬁ)csc(\/ﬁﬁ).

a,(€) = %m(ﬁa,

(&) = —% = —\/Esec(\/gﬁ) csc(\/Eﬁ).

To solve Eq. (3), with R < 0, we can try to find solutions using expansions,

v(€) = a, + zn:tanhjl(mf) la, tanh(v=R€) + b, sech(V—RE) csch(vV=R€)],

or the expansion
v(§ —ao—i-Za —&) 4+ a_ i( (=), R =0.
If & > 0, to find solutions using the expansion

§=a,+> tanjfl(\/Eé)[aj tan(\/Ef) +b; sec(\/Ef) csc(\/ﬁf)].
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(36)

@37

(38a)

(38b)

The value of m is calculated by the balancing procedure. Usually, 7 = 1,2. For these particular choices ansatzes (36),

(37) and (38) take the following forms:

v(€) = a, + a, tanh (V=RE) + b, sech(v—RE) csch(V—RE),
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v() = a, + a, tanh(ﬁﬁ) + a, tanh? J=Re¢
+b, sech \/35 csch ﬁf +b, sech? ﬁf

v(€) =a; — o+ a_1§_1
v(€) =a, — @&+ a_lf_l + a2§2 + a_2§_2
v(§) = a, + a, tan(\/ﬁf) + b sec(\/Eﬁ) csc(\/ﬁ{)

v(€) = a, +a, tan(«/EQ + a, tang(\/ﬁf)
+b, sec(\/ﬁf) csc(\/ﬁf) +b, sec2(\/E€).

4. Drinfel'd-Sokolov-Wilson equations
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In this section, we are going to apply the MGPRE method to solve the DSW equations [19—-20]. The DSW equations are a

nonlinear partial differential equation with (1+1) dimension

u, v, =80, (39)
v, +qu, .+ ruv, + su.v =0, (40)
where p,q,r,s are nonzero parameters. Eg. (39) and (40) are proposed by Drinfel'd—Sokolov in [19] and Wilson [20].
Using the traveling wave transformation
U(.’E,t) 3 u(g)a vzt = v(ﬁ), = T 3 ct,
Egs. (39) and (40) can be transformed to the ODE's
—cu' + pw’ =0, (41)
—cv'+ qu"+ ruv'+ su'v = 0. (42)
Integrating (41) once and neglecting the constant of integration, we get
)
U= =0, (43)
2c
substituting Eq. (43) into (42) and integrating, we get,
p(r + 2s
—e©) + 0O+ 22 e — o @
&
Balancing the terms v with vin (44),wefind n +2 = 3n, n =1,
Using the MGPRE method (4) we assume the solution of Eq. (44) is
v(§) = a, + a,0(§) + b,7(§), (45)
where (&), 7(&) satisfy the system
a'(§) = ea(§)7(§),
7'(&) = —R + e7%(§) + po(€),e = +1, (46)
1 pu?+6
r2(6) = 18 —2n0() + D026, R=0 @)
€
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and a b1 constants to be determined later. Substituting (45) — (47) into (44), yields a system with coefficients of

00
a'(&)T(&) (i =0,1,2,... , j=0,1). Setting the coefficients of "7 1o zero, we obtain algebraic equations with
the respect to unknowns ag, @, .bl,R, L, 6 and c. To get a nontrivial solution of this algebraic equations, we need to

assume a12 + 612 = (). With the aid of the computer program Maple, we obtain the following sets of solutions:

Case 1. When 6 = —1, we obtain the following sets of solutions:

3 c
a, = 0, a1=:|:2 —=€q, by =0, Re = —, p =0,
p(r + 2s) q
3(p? — 1) 3ecq 2¢
= 0, ::}:’—<,b = —— 28 ¢ Re= -2, =,
%o " 2p(r + 25)€q 3 - p(r + 25)F ‘ q H "

3 1
g, =0, o, =0, b =+2 | % ¢ Re=--2 p Ly,
p(r + 2s) 2q

First set

Second set

Third set

Using to the first set and assuming Re = ? > (), the solutions for Eq. (44) read:

p(r+2s)

= B L
1 \/512—lsinh[\/%(x—ct)]—i—ﬁlcosh[\/g(w—ct)}

(%

and

6c
(r + 2s) 4/612 —1sinh[\/%(m - ct)] + 5, cosh[\/%(m . Ct)} 2

In particular, if 3, = %1, we get

= +

and
6c
uy, = .
(r+ 2s)cosh2[\/%(a: — ct)]
However, for Re = —j < 0, the solutions are
3
v, = + 2c p(r+2s)
3 ] )
J-B2 + 1sin] /—i(:z: — ct)] + B, cos[\[— £(z — et)]
and
w — 6c
3 = - 4 - )
(r + 25)(\/f622 + 1sin| /fi(z — ct)] + B, cos| [fi(x —ct)])?
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Note if 3, = +1, we get

3
v, = + p(r+2s)

cos[\/ji(x — ct)]7

and

Uy =

6c
(r + 2s) COSZ[\/T?(x — ct)]’

Using to the second set and assuming R € = — 2 > 0, the solutions for Eq. (44) read:
q

o, | 312 —1)
2p(r—+2s)
Mo+ \/612 -1 Sil’lh[\/— 2q—c(x — ct)] + ] cosh| —2q—c(:17 — ct)]
\/_7270 /_ p(fj_cgs) 31 sinh| —2(70(90 — ct)]
JIass \/[312 -1 Sil’lh[\/— QQ—C(:U — ct)] + 3] cosh| —2(]—6(:6 — ct)]
+\/%cosh[\/—7%c(x —et)]

pot 52 -1 sinh[\[—2(z — )] + B cosh[\[—26(z — ct)]

’U5IZ|:

:F

and

3(12-1)
< 2p(r+2s)

(x ct)]+81(:osh[\/ 20(36 ct)]

N AL — B sinh] /—2—6(:1: ct)]
> 9 M‘F\/ﬁ%*lSlnh[ 2qc(:£ ct)]Jrﬁlcosh[\/*%C(m*ct)]
+ 32— 1cosh] [<2€ (s ct)]]

,u+\/,6'12—lsinh[\/ 20(;15 ct)|+ Blcosh[\/—%ic(x—ct)]

Note if we set (& = 0, in the second set and assuming € > 0, we get

v, = & Ze T2 (r?ii-Qs)
6 =

NS smh[\/i(x —ct)] + 5, cosh[ﬂ(m —ct)]
\/_2; . :’:1; B, smh 2;(:17 — ct)]
" NS smh[\/_q(cc —ct)| + B, cosh[\/—_%(z — ct)]
B2 - 1cosh[\/7q(x —et)]
Jp2 -1 Smh[\/—_{f(a; — )]+ B, cosh[\/—_Qq—C(:E —et)]

and
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_ 3
2¢ 2p(r+2s)

+
\/,1312—1 sinh|[ f—%(w—ct}]-l—ﬁl cosh[\/—%(w—ct)}
7 ’—27‘3 ’—p(ff%) 3, sinh]| —%(w—ct)]

2¢c :F\/,Blz—lsinh[ —%(a:—ct)]—!—ﬂlcosh[\/—Qq—C(w—ct)}
+4/ 32 —1 cosh]| —@(w—ct)]

\/A)’Q—lslnh[\/——( z—ct)]+ 5, cosh| —%(z—ct)]

In particular, if 3, = %1, we get

ol 3qc .
+ m 2;\/jsmh — 2c (x _ ct)]
v, = \/ |

== cosh[\/ 2¢(g — ct)] == cosh[\/ 2‘3(:1: — ct)]

and

2

32 —1) \/i W —2c(y —
u, = ﬂ N 2c 2p(r+2s) q p(r+2s) Sll’lh (.T Ct)]

2c| pt cosh[\/— 2(1—"(33 - ct)] == cosh[\/ 2‘3(:1: — ct)]

Note if we set (& = 0 in the second setand assume Re < 0, we get

2p( T+25 \/72;\/ ficzs il nh 2? 3 Ct)]
cosh[\/?(x 3 ct)] cosh[\/?(:c — ct)]

%
, 2¢c ’ 3qc 1l
2p r+2$) q p(r+2s) Slnh .T Ct)]

8 20 cosh[\/ 2c($ — ct)] cosh[\/ Qqc(a: = ct)]

and

However, for Re < 0, the solutions are

_ 3
2¢c 2p(r—+2s)

J1 = B2 sin] 26(z — ct)] + B, cosl[24(z — ct)]

2¢ [ _ 3gc _ ; 2¢(p
[q ‘, Sp(r129) B, sin| q(x ct)]

N J1 — 82 sin| 26(z — )] + B, cos[[2(z — ct)]
+4/1 — 522 cos[\/% x — ct }
J1— 52 sin[([24(z — et)] + 3, cos[\[2(z — ct)]

vy = £

and
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2¢c,[— 3 2
:|: 2p(r+2s)
\fl—/ﬁg sin[,[2¢(z—ct)]+ /3, cos| ’2—0(:z:—ct)]
q q
2c¢ [__ 3gc A & 2¢(p
P p T2 (9] 3, sin| p (x—ct)]

Uy = —|F ,
P 9e|  J1-82sin] %(:p—ct)]—l—,%cos[\/%(:v—ct)]

+4/1— 83 cos| %(m—ct)}

\/1—[322 sin| %(Jv—ct)]—i—,@2 Cos[\/%(:v—ct)]

Note if & = 0,3 = =£1, we get

2o aim P e sl — o)
10 Cos[\/%(:b“ — ct)] cos[ﬁ(:z - ct)] )

2
_ 3 / 2c ’_ 3qc ; oae.
2p(r+2s) 1l qc 2p(r+2s) Sln[ qc (l‘ Ct)]

Uyg — — ’
o 2 cos| %C(x — ct)] cos| %C(x — ct)]

and

€ > (), the solutions for Eq. (44) read:
q

W N 2;4[ fi;s 8 smh (:c — ct)]

i \/62 —lsmh[ \/7(1(33—075)]"‘6 COSh[ \/—?C(m —ct)]
—|—mcosh[%\/—7jﬁ ] ]

VB2 — 1sinh[t [=2(z — ct)] + 8, cosh[L [ 2(z - ct)]

3¢(f, sinh[} \/—_%(x — ct)]+ /B2 — 1cosh| %\/T%(x -
(r +2s)(y B — Lsinh[2 \/?(:1: — ct)] + B, cosh[%\/? T = ct)|

However, for Re < 0, the solutions are

N[

Using to the Third Set and assuming Re = —

and

Uy =

3qc (=5, sin[% \/%(x — ct)]

V.. = + ? 2p (r+2s)
12 =
_ 2 — 1 [2¢(p
N1— 053 sin[} / qc(g: ct)] + B, cos|; qc(x ct)]

[
1= 82 cosl? [=( — et))
N 62 s1n[ ?c(a: —ct)] + B, COS[% %(I - Ct)],

and
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3c(—5, sin[% 2?6(33 —ct)] + \/1 - ﬁf COS[% %(x —ct)])?

- (r+25)(y1— 55 sin[% %(x —ct)] + 5, COS[% \/%(x — ct)])?

Note if we let 3 = =1, we get

2¢ [ 3gc Gl [2e(p
e e
cos[} \/%(x —ct)]

271 [2¢ _
3csin®[} 7(m ct)]

Ug =

and

13 211 [2e(,.
(r + 2s)cos”[ ?(x ct)]

Case 2. When & = 1, we obtain the following sets of solutions:

First set
a 0, a, = £2, |- 3 eq, by =0, Re = w=20
0 ) 1 p(’l”‘+2$) b ) q? ’
Second set
3 p?+1 9
ag, 07 a; = + — . <% b1 = & [ 3cq €, = __Ca = M,
2p(r + 2s) p(r + 2s) q
Third set
Aol » B A 7 4V EN WS _§
0 B * 3 p(r + 2s) y 2q’ {

Using the first set and assuming Re = 2 > (), the solutions for Eq. (44)

L 3
=y 2c p(r+2s)

0 \/msmh[\/g(x —ct)|+ 5, COSh[\/%(w 2l

.

and
6¢
N + 25)(y/ B2 + 1sinh[, /¢ t)] + B3, cosh[, /¢ )2
(r +25) (/B + Lsinb[[[5(w — ct)] + 5, cosh[|[*(z — ct)))
However, for Re = ? < 0, the solutions are
___ 3
v, = 4+ 2c p(r—+2s)
15 9
2 .
_ 1 (g — e
(85 + )sm[,/ q(x ct)] + B, cos|,/ q(a: ct)]
w. — — 6¢
15 3 ] ‘ , g’
(r + 2s)(y—(B; + 1)sin| /—j(x — ct)] + B, cos|, [—g(x —ct)])
Using the second set and assuming e = —% > 0, 1 = 0, the solutions for Eq. (44) read:
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, 3
2c 2p(r+2s)

\/5 + ]_Sll’lh[\/ 20(33 —ct)] + B, cosh[\/— %‘(:E — ct)]

—2c [ 3qc —2c(p —
A q,/ 1 75) B, sinh| q(a: ct)]

(B2 + Usinh[[[=22(z — )] + B, cosh[\[—2(z — ct)]

+4/ B2 + 1 cosh|[ —Qq—c(a: — ct)]
\B? + 1sinh] —%(az — ct)] + B, cosh| —%(a: — ct)] ’

2

Vg —

3
2p(r+2s)

\/312 —1sinh| —Q—C(z—ct)]-i-[)' cosh[\/—i%c(:c—ct)]

p| P e

2¢| B2 +1sinn[ [~ e cosh[ﬁ(x—ct)]
,//32—+1cosh[\/—72ll—c(x—ct)}
\//32+151nh[\/71(:p ct)]+ﬂlc05h[\/—72—;(x—ct)]

Using the second set and assuming &€ = —2 > 0, = 0, the solutions for Eq. (44) read:
q
3 u?+1
2¢ +25)
U17 N 2p(r+2s

B2+ Lsinh[,[—2(z — ct)] + B, cosh[,[— 2(a — et)]

J- ;c/ 10 (B sinh[\[—2¢(z — ct)]

(r +2s)(pn + \/,6’12 +1 smh[\/—%(x — ct)] + B, cosh| —%C(a: —ct)])?
++ B2 +1 cosh[,/—%}—c(x — gl

(r + 2s)(p + \/512 -+ 1sinh[\/—%(z F ct)] AR, cosh[ —%(w = ct)})Q7

:F

and
2
3 p2+1
2¢
:l: 2p(r+2s)
i+ 32 +1 sinh] ~2(a—ct))+ 3, cosh| } (g —ct)]
P [—2e ’ 3?:2 B, smh :E ct)]
pr
U, = | F o B ’
2¢ (r+2s)( /1+\/32+1 sinh] C(z—ct)]+53; cosh[ 2e(p—ct)])?
q q
+4/ 57 +1 cosh| ’—%(m—ct)]
(r+2s)( /1+\//’32+1 sinh| , 2¢(g—ct) |+, cosh[,[—2¢(z—ct)])?
it Re = —2¢ <0, = 0, the solutions are
q
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, 3 p?+1
v - + 2c 2p(r+2s)
p4 (82 + 1) sinly/2(z — ct)] + 5, cos[\[2(a — e)]

, ’ 3qc . .
Q(TC _ . TJ]r(2$ _ﬁ2 Sln[ %((IJ - Ct)]

4 (82 + 1) sin[\/%(x — ct)] + B, cos[\/%(a: — ct)]

—l—J— B2 +1 cos| Qj(z — ct)]

p+ =82 + DsinlZ(x — ct)] + B, cos[\[2(x — )]

:F

and
3(4%+1) 2
:|: 2p(r+2s)
p—(B82+1) 51n[\/7(a: ct)]+13, cos[\/%(x—ct)]
c _ 3gc
P 2 ’ T} —B, sm (z—ct)]
u18 = B :F \/ \!2: 1 +22)(‘ 2c
2¢c p+— (85 + )sm[\/;(:z;—ct)]—i—ﬁ2 cos[\/;(x—ct)]
—0—4’— B2 +1 cos[\/%(a:—ct)])
pA[—(B2+1) sin] 2 (g—ct)|+B, cos] [ (s —et)]
Using the third set and assuming Re = ——5 > (), the solutions for Eq. (44) read:
n , L fos (8, sinh[} (x — ct)]
19
B2 +1 smh[f /—2—6(:1: — ct)] + B, cosh[] /—2q—c(x — ct)]
1 A
+4/ 87 + 1cosh[5,, . 2(g —ct)])
NBE+ Lsinh(], /—%C(x — ct)] + B, cosh[7, /—i—c(x — ct)]
and

3¢(B, sinh[l,/—%(z — ct)] 4+ /B + 1cosh| 5y~ %(:1: — ct)]
Ujg = =
o (r+25)(\ 57 + 1sinh[] ;‘/’(x — ct)] + 3, coshl[; = ;C T — ct)]

Case 3. When 6 = %1, we obtain the following sets of solutions:

First set
2
a’(]:j: 10\/6 7a1:i%6/“1’% 61:0, RG:—_C’(S:Q
/p —op(r + 2s) \l p(r + 2s) q
Second set
b€
a, =0, a, =0, b ::F/——c, p=20 6=0,
0 L 1 p(r +2s)R
Third set
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3 3e
a0=:|: —c, ale, b1=:|: S — O
2p(r + 2s) 2p(r + 2s)R

3 2
R = - _— 7“2076:07
2 pb?(r + 2s)

Using the first set and assuming Re = —2 > 0, the solutions for Eq. (44) read:
q

6

0 = L p(r + 2s)
p r+2s

2 6
+ cH p(r+2s)

o+ [5’12 sinh[\/—i%c(:c —ct)] + B cosh[\/—i%(az — ct)] ’

and

_p 6

Yoo o S
2 1
c :F\/p Ty p(r + 2s)
2
+ QC'LL P 7‘3—25
f + /B sinh] /—%(az — ct)] + B, cosh][, /—%C(a: — ct)]
Using the second set and assuming [2€ > 0, the solutions for Eq. (44) read:
] | pR(fiQS)(ﬁl sinh[V Re(z — ct)] 4 « 37 cosh[V Re(z — ct)])
21 I )
¢(y/ 87 sinh[N Re(z — ct)] + S, cosh[NV Re(z — ct))])
and
3¢(fB, sinh[V Re(z — ct)] + +/ 67 cosh[V Re(z — ct)])?
U. 1 — )
(r + 2s)(y 37 sinh[V Re(z — ct)] + B, cosh[V Re(z — et)])?
Using the third set and assuming Re > 0, the solutions for Eq. (44) read:
Z D)
. 1 cN Re pR(fi%) (B, sinh[V Re(z — ct)]
2 ¢(y/ 87 sinh[V Re(z — ct)] + B, cosh[NV Re(z — ct)])
++/ 87 cosh[V Re(z — ct)])
e(y/ B2 sinh[VRe(z — ct)] + B, cosh[VRe(z — ct)])’
and
2
+1le [—6
P 2 p(r+2s)
U T o N B (8, sinh[NRe (z—ct)[+[5? cosh[VRe(z—ct)])
e(\/gsinh[\/ﬁ(xfct)Hb’l cosh[\/ﬁ(xfct)])
The solution obtained in this section are new up to our knowledge.
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3. Conclusion

The modified generalized projective Riccati equation method is an efficient method for finding exact solutions of the
nonlinear partial differential equations. The method is a powerful method to search for exact solutions to NLPDE’s, but is
more complicated than other methods, in the sense that it demands more computer resources since the algebraic system
may require a lot of time to be solved. In some cases, this system is so complicated that no computer algorithm may solve it,
especially if the value of m is greater than four. Using modified generalized projective Riccati equation method, a series of
new and more general exact solutions of the DSW equations are obtained including solitary wave solutions and triangular
periodic solutions. A wide range of solutions are obtained which will be helpful for the understanding various physical
phenomena described by these equations.
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