
I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 6  

    J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6295 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

J u n e  2 0 1 6                                                    w w w . c i r w o r l d . c o m  

UNIT FRACTIONS AND THE ERDÖS-STRAUS CONJECTURE 

A.G. Shannon  
Emeritus Professor, University of Technology Sydney, NSW 2007,  

& 
Campion College, PO Box 3052, Toongabbie East, NSW 2146, Australia 

J.V. Leyendekkers 
Faculty of Science, The University of Sydney, NSW 2006, Australia 

t.shannon@campion.edu.au, tshannon38@gmail.com 

 

ABSTRACT 

This note considers some aspects of finite sums of unit fractions, including associated recurrence relations and 
conjectures in the context of experimental mathematics. Unit fractions provide a unifying theme. 
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TYPE (METHOD/APPROACH) 

This paper considers conjectures in general and their mathematical context with particular applications to the Erdös-Straus 
conjecture with unit fractions as the unifying theme in the context of experimental mathematics. 

INTRODUCTION 
As an exercise in experimental mathematics [2], this note aims to elaborate some conjectures related to Egyptian fractions 
and harmonic numbers and to explore them with some recurrence relations and continued fractions. In the context of 
teaching and learning in general they implicitly involve the relatively neglected educational concepts of functional literacy 
and numeracy [27]. 
Conjectures have an inherent fascination and challenge because we can neither prove them nor find counter examples 
[10]. They can encourage non-standard mathematical skills such as shrewd guessing (or conjecturing) [21], considering 
integer structure [16], and new approaches to viewing the Cartesian plane [8] in the context of the history of mathematical 
conjectures [9]. 

EGYPTIAN FRACTIONS 
Egyptian fractions are finite sums of distinct unit fractions. Unit fractions are rational numbers with unit numerators and 
positive integers as denominators. For example, 1/2 + 1/3 +1/6 qualifies as an Egyptian fraction. We shall also consider 
briefly such non-standard properties as repeated fractions or negative integers [23]. 
 
Every positive rational number can be represented by an Egyptian fraction, so that this was one way the ancient Egyptians 
were able to use these sums as notation for rational numbers [12]. For instance, 
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Fibonacci’s Liber Abaci used what we know as vulgar fractions to replace Egyptian fractions [24]. For example, 
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in which the numerator is split as follows 
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where 

.1|,1|  bqbp  

 
Fibonacci went further by suggesting what is now referred to as a ‘greedy algorithm’ for calculating Egyptian fractions [11]. 
A greedy algorithm seeks locally optimal solutions to a problem at each stage of a problem solving heuristic [6]. In the 
example, the iterations terminate with finite a expression starting with 
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in which   represents the ceiling function. For instance, 6/17 = 1/3 + 1/51. 

 
The Erdös-Straus conjecture [1] is a related unsolved problem. It can be stated as: there exist positive integers x, y and z 
such that 

zyxn

1114
  

 

(2.1) 

 
for every integer n ≥ 2 [3]. For example, for n = 2, (x,y,z) = (2,2,1); when n = 3, (x,y,z) = (2,2,3). When x,y,z are distinct the 
solution represents an Egyptian fraction for 4/n [25]. Sometimes there are multiple solutions such as when n = 5, (x,y,z) = 
(2,4,20) and (2,5,10). This case makes us wonder if there are patterns, and there are for some n, but not for all n [14]. As 
with other famous conjectures, computational mathematicians have verified the truth of the conjecture for very large 
values of n, but it has not been proved for all n [cf. 15].  
 
Because of the symmetry of the right hand side of (2.1) it can be rearranged as 
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(2.2) 

in which B = x(y + z)/yz is constant for a given (n,x) pair (Table 1) and corresponding (x,y,z) triplets are shown in Table 2. 
Thus for n equal to a prime p 

pxpB  4  (2.3) 
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(2.4) 

pB is odd and changes by 4 when x changes by 1 (Table 1), but some pB values do not give integer solutions. 

 

Table 1: pB  4444 31;13  pBppBp  

p\x 1 2 3 4 5 6 7 8 9 10 11 12 

3 1 5           

5  3 7          

7  1 5 9         

11   1 5  13       

13    3 7        

17     3 7       

19     1 5  13  21   

23      1 5 9 13 17  25 

29        3  11 15  

41           3 7 

 
Different p values may have the same pB values (Figure 1). In this case the primes are in the same class.  For example, a 

pB of 1 and 5 (in 41 ) occurs for p = 3,7,19,23,… where 443 Zp  , )34 3  rp [17], whereas a pB of 3 and 7 

occurs for 441 Zp  , )14 1  rp . 

 
 
 
 

Figure 1: Representation of Table 5 
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In Figure 1: x-axis: 1-5 pB =1; 6-10 pB =3; 11-15 pB = 5; 16-19 pB = 7;  

20-21 pB = 9; 22-23 pB =13; 24 pB =15; 25 pB = 17; 26 pB = 21; 27 pB = 25.  

Series 1: pB; Series 2: corresponding p; Series 3: x (see Table 5). 

 
Table 2: Equations (2.3) and (2.4) 

 

p pB x y z 
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1 
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1 
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112 
63 
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14 

11 1 
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1 
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5 
5 
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66 
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44 
33 
33 
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3 
3 
7 

4 
4 
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52 
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p pB x y z 

19 1 
1 
1 
1 
1 
5 
5 
5 
13 
21 

5 
5 
5 
5 
5 
6 
6 
6 
8 

10 

96 
100 
114 
120 
190 
23 
30 
38 
12 
10 

9120 
1900 
570 
456 
190 

2622 
95 
57 

456 
95 

23 1 
1 
1 
5 
9 
13 
13 
17 
25 

6 
6 
6 
7 
8 
9 
9 

10 
12 

144 
141 
150 
42 
24 
16 
18 
15 
12 

3312 
6486 
1725 
138 
138 

3312 
138 
138 
138 

29 3 
3 
3 
3 
11 
15 

8 
8 
8 
8 

10 
11 

80 
87 
88 

116 
29 
22 

2320 
696 
638 
232 
290 
638 

41 3 
7 

11 
12 

154 
72 

6314 
2952 

 

 
 
 
 
 
 

Table 3: z/y in relation to p and x 
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p x z/y p x z/y p x z/y 

3 1 3 11 4 4 19 6 3/2 

 1 1  4 11/4  8 2 x 19 

 2 3/2  6 11/2  10 19/2 

5 2 5 13 4 2 x13 23 6 23 

 2 2  4 13/2  6 2 x 23 

7 2 7  4 2  6 23/2 

 2 2x7  5 13  7 23/7 

 2 7/2 17 5 17  8 23/4 

 2 2  5 5  9 9 x 23 

 2 1  6 2 x 17  9 23/3 

 3 7/3  6 100/17  10 2 x 23/5 

 4 7/2 19 5 19  12 23/2 

11 3 11  5 5 x19 29 8 29 

 3 3x11  5 5  8 71 

 3 11/3  5 19/5  8 29/4 

 3 3  5 1  8 2 

 3 1  6 6 x 19  10 10 

 4 4 x11  6 19  11 29 

    6 19/6    

 

Since odd integers in classes 41 and 43 extend to infinity, the parallel lines in Figure 1 below will be intersected by 

horizontal (parallel to the x-axis) lines which represent the primes. While these intersections can yield non-integer x, there 
will be some integer intersections. Thus all primes will have one or more sets of (x,y,z) triples, as will composites since 

they are products of primes. That is 
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and so on. For example, for n = 6 (= 2x3), (x,y,z) = (2,8,24) and for n = 3, (x,y,z) = (1,4,12). 

 
To calculate y and z from B it is useful to note that z/y = p or kp (Table 3). Since B is known from the pattern in Table 1, 

that is, 41p has 3,7,11,…, and 43p has 1,5,9,… for pB which corresponds to a particular x. Thus when z/y = p, 
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For instance, for p = 11, x = 3, and pB = 1, so that z = 3(12)x11/1 = 396, and y = 396/11 = 36.  Hence, (x,y,z) = (3,36,96) 

(Table 2). Some examples of larger primes are displayed in Table 4. Notice that when ,14p  pB ε {3,7,11,15,...} [25: 

A004767] and when ,34p  pB ε {1,5,9,13,...} [25: A016813].  A modification of Table l and parts of Table 4 appears 

below, followed by a graphical representation which emphasises the consistency of the structures. 
 

 
 
 
 

Table 4: (x,y,z) for some prime examples [selected at random] 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 6  

    J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6299 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

J u n e  2 0 1 6                                                    w w w . c i r w o r l d . c o m  

p Z4 k pB x z = x(kp + 1)/B y = z/kp 

101 
41  

1 3 26 26 x 34 x 101 = 89284    26 x 34 = 884   ? 

127 
43  

1 1 32 32 x 128 x 127 = 520192 32 x 128 = 4096 

1307 
43  

1 1 327 327 x 1308 x 1307 = 559024812 327 x 1308 = 427716 

2819 
43  

1 1 705 705 x 2820 x 2819 = 5604453900 705 x 2820 = 1988100 

3433 
41  

2 7 860 860 x 981 x 3433 = 2896284780 430 x 981 = 421830    

7121 
41  

1 3 1781 1781 x 2374 x 7121 = 30108257374 1781 x 2374 = 4228094 

22349 
41  

1 3 5588 5588 x 7450 x 22349 = 930402279400 5588 x 7450 = 91630600 

86287 
43  

1 1 21572 21572 x 86288 x86287=160615030455232 21572 x 86288=1861404736 

99787 
43  

1 1 24947 24947 x 99788 x 99787=248410879006732 24947 x 99788=2489411236 

530443 
43  

1 1 132611 132611 x 530444 x530443=3.73127977E16 132611x530444=70342709284 

533993 
41  

2 7 133499 133499x152581 x 533993=1.08771228E16 133499x152581=20369410919 

 
Table 5: Reconfiguration of Tables 1 and 4 

pB p x pB p x pB p x pB p x pB p x pB p x 

1 3 1 3 5 2 5 3 2 7 5 3 9 7 4 15 29 11 

1 7 2 3 13 4 5 7 3 7 13 5 9 23 8 17 23 10 

1 11 3 3 17 5 5 11 4 7 17 6 13 11 6 21 19 10 

1 19 5 3 29 8 5 19 6 7 41 12 13 19 8 25 23 12 

1 23 6 3 41 11 5 23 7    13 23 9    

 
 
A further refinement of the work in this section would be to investigate finite sums of reciprocals of distinct n

th
 primes [13], 

and we look at some other types of finite sums in the next section.  
 

HARMONIC NUMBERS 
Harmonic numbers are sums of the reciprocals of the natural numbers. More precisely, the n

th
 Harmonic number is the 

sum of the reciprocals of the first n natural numbers: 
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3 1 H , so that the components are unit fractions. Moreover, it can be seen that Hn is n times the 

inverse of the harmonic mean of these natural numbers. More generally, the harmonic mean of n numbers x1, x2,…,xn is 
given by 
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where  G and  A represent the geometric and arithmetic means respectively of their arguments which are 

expressed in terms of symmetric vectors v(r,t,m). Other examples of these vectors include 

 

 211332 ,,)2,1,3( xxxxxxv    

and 
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t

n

tt xxxtnv   
 

They are related to the symmetric function of r different xi to the power t taken m at a time 
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which opens up a whole world of enumeration mathematics [18]. 
 

Generalized harmonic numbers of order r can be represented by
)(r

nH (though this symbol has also been used for 

hyperharmonic numbers [7]: 
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so that
)1(

nH is an ordinary harmonic number and nHn )0(
. They satisfy the recurrence relations 
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(3.2) 

 
Other properties, such as generating functions, can be readily developed. Consider 
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the Riemann zeta function. 
 

RECURRENCE RELATIONS 
The harmonic, geometric and arithmetic means all satisfy first order recurrence relations: 
 

,, 11 dAArGG nnnn    

 
the first being homogeneous (with common ratio r) and the second non-homogeneous (with common difference d).  The 
generalized harmonic numbers have two recurrence relations, one of each kind: (3.1) a non-homogeneous recurrence 
relation for n, and (3.2) a homogeneous recurrence relation for r. 
 
Fibonacci’s Liber Abaci, mentioned in Section 2, effectively introduced the Fibonacci numbers. These can be defined by 
the second order homogeneous recurrence relation 
 

,2,21   nFFF nnn  (4.1) 

 

with initial conditions .121  FF  The general term of the sequence {Fn} of Fibonacci numbers is given by the formula 
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(4.2) 

where  51
2
1   is the golden ratio. These have many well-known properties which can be explored further by 

considering the generalized golden ratio,  a1
2
1  and applying this to second order homogeneous linear recurrence 

relations to get the patterns in Table 6 where )4(mod1a and  4/ab   in which    is the floor function.  

 
 
 
 

Table 6: Generalized Fibonacci numbers 
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a b 1,2, 2121   uunbuuu nnn  Sloane [25] 

5 1 1 1 2 3 5 8 13 ... A000045 

9 2 1 1 3 5 11 21 43 ... A001045 

13 3 1 1 4 7 19 40 97 ... A006130 

17 4 1 1 5 9 29 65 181 ... A006131 

21 5 1 1 6 11 41 96 301 ... A015440 

25 6 1 1 7 13 55 133 463 ... A015441 

29 7 1 1 8 15 71 176 673 ... A015442 

 
The patterns across rows, down columns (and diagonals) are worth further investigation in the context of partial 
recurrence relations with analogies from partial difference equations to partial differential equations. We can also connect 
the ordinary Fibonacci numbers with unit fractions in continued fractions. As an illustration consider the continued fraction 
expansion of φ. Although it is an algebraic irrational number we can specify its continued fraction expansion accurately 
and precisely. It is an example of the fact that the continued fraction expansion of an irrational number is unique. We start 
with 
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which we continue 
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and so on.  We express this in the simple form 

 1;1  . 
 

Likewise the continued fraction expansion of the surd 2 can be expressed as  

 

 2;12  . 
 

However, the continued fraction expansions of the transcendental irrational numbers are not so neat; for instance [25],  

 

   ,...2,2,2,1,1,2,14,1,3,1,2,1,1,1,292,1,15,7;3 .  

Continued fractions can be used in integer structures for rational approximations of real numbers and Diophantine 

equations with second order linear recurrence relations [4,19,20] as can their multidimensional generalizations with 

arbitrary order linear recurrence relations [22]. These computational exercises lead quite naturally into topics in the 

philosophy of mathematics [5] as foreshadowed in the Introduction to this note.  
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