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ABSTRACT
In 1945, wolfgang Hahn introduced his difference operator D, ,, which is defined by
D, f(t)= f(qt+w)— f('[)’ t %,
‘ (gt + w) -t

[0
where @, = —— with 0< g< 1, > 0. In this paper, we establish Leibniz’s rule and Fubini’s theorem associated with

this Hahn difference operator.
Keywords. g, @ -difference operator; (], @ -Integral; g, @ —Leibniz Rule; q, @ —Fubini’s Theorem.

lintroduction

The Hahn difference operator is defined by

D f(y= @)= fO
4 (qt + w) —t

, t#a,, (1)

where ( € (0,1) and @ >0 are fixed, see [2]. This operator unifies and generalizes two well known difference operators.
The first is the Jackson ( -difference operator which is defined by

qu(t)=L_tf(t), t=0, @)

see [3, 4, 5, 6]. The second difference operator which Hahn'’s operator generalizes is the forward difference operator
ft+w)— f(t)
(t+w)-t

where @ is a fixed positive number, see [9, 10, 13, 14]. The associated integral of (3) is the well known Noérlund sum

A f(t)=

, teR, @)

[TOAL=-0)f (x+ka), @)
* k=0

see [12, 13, 15]. In some literature Norlund sums are called the indefinite sums, cf. [14]. Then we can define
b 0
[T®AL= o) [f(a+ke) - f(b+ko)] 5)
a
k=0

whenever the convergence of the series is guaranteed. Note that, under appropriate conditions,
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limD,,f(t) = A, (),
g1
lim D,,f() = D,f(v), 6)

f1(t).

lim D,,f()

qd1,070

In [1], A.Hamza et al. gave a rigorous analysis of the calculus associated with Dq’w. They stated and proved some basic
properties of such a calculus. For instance, they defined the inverse of quw which contains the right inverse of Dq and the

right inverse of Am . Then, they proved a fundamental lemma of Hahn calculus.

This paper is devoted to establishing Leibniz’s rule and Fubini’s theorem associated with the (], @ - difference operator. We
organize this paper as follows. Section 2 gives an introduction to (], @ - difference calculus. In Section 3, we prove Leibniz’s rule

which is concerning with differentiating under the integral sign. Some related results are obtained. Also, we prove Fubini’'s
theorem in Hahn difference operator setting, that is, we prove that the iterated integrals are equal.

2 Preliminaries
Let N be the set of natural numbers and N, := NU{0}. For k €N, and 0 < g <1, we define the ¢ -numbers

k

1-q
k], := :
[kl = 1=

Let | isaninterval of R containing @, where @, := @l(1—Q), and h denote the transformation
h(t)=qt+o,tel.

One can see that

> T, fort < @,
h(t)s= t, fort = w,,
< fort > w,.

The transformation h has the inverse h™ (t) = (t—@)/Q,t € | . The K — th order iteration of N is given by

h*(t):=hoho---oh(t) = g*t+ wlk],, tel, (1)
k—times

t-olK],

k

(h“@)*:=h*@t)=h"ch?o--oh™(t) =

k—times

, tel. 2)

Furthermore, {h* (t)}.-, is a decreasing (an increasing) sequence in K when t> @, (t < @) with
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inf h*(t), t> @,
keN
Wy = 3)
suph*(t), t < a,.
keN

The sequence {h™* (t)}r-, isincreasing (decreasing), t> @, (t < @) with

suph™(t), t> w,,
keN
o0 = (4)
—inf h™ (1)), t < @,
keN

Let f be afunction defined on | .The Hahn difference operator is defined in [2] by

f(gt+w)— f(t)
(gt + w) -t

D, f(t):= it t£a, (5)

and D,,f(e)= f'(w,), provided that fis differentiable atw,, where qe(0,1) and @>0. In
this case, we call Dq’wf , the q,w-derivative of f. Finally, we say that f is q,w-differentiable,

i.e. throughout I , if D, ,f(®,) exists.
One can easily check that if f,g are q,w-differentiableat tel, then
D, ., (of +4)(1) = oD, , T (1) + D, ,9(1), @, f<C,
D,.,(f9)(t) = D, ,(f (©)a(®) + f(qt + ») D, ,9(b),

5 ( f J“) _ Dy, (F0)3t) = 1)D,,9)
"9 9(t)9(qt+ o)
provided in the last identity g(t)g(qt+w) =0, cf. [1]. The right inverse for D, , is defined in [1] in

terms of Jackson-Norlund sums as follows. Let a,bel the q,w-integral of f from a to b is
defined to be

[[£0d, t=[ Od,t-[ fd)d,.t ()

o0

[ 10, t:=(x1-0)-0)>a" f (xq" +alk],),  xel, (7)
@ k=0
provided that the series converges at X=a and X=Dh. It is known that if f is continuous at a,,
then the series in (7) is uniformly convergent.

In the folloing we present some needed results from [1] concerning the calculus associated with D, ,.

Corollary 1 The series
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Yo" (t1-0) @)}

is uniformly convergentto |[t—a@,| oninterval | =[a,b] containing @,.

Theorem 2Let X be a Banach space endowed with a norj.|l. Assume f : 1 — X is continuous at @,. Then the
following statements are true

< L ((sg*) + @[k],) ey converges uniformly to f () on I.

. Zf:oqk f(sq" +@[K],) is uniformly convergenton | and consequently f is q,® -integrable over I .

* The function
F(x) = I ft)d, t, xel,
“0

is continuous at @, . Furthermore, D, ,F(X) exists for every X € | and
D, ,F(X) = f(x).
Conversely,

I:quwf (t)d, t=f(0)—f(a) forall abel.

Consequently, the (, @ - integration by parts for continuous function f, g is giving in by

[ f®D, 9, .t = fOM L [ D, (f®)g@t+w)d, t, abel. )

Theorem 3 Let f : 1 - R be continuous function at @, thenfor t |

-[r:(t)f (S)dq,a)s F (t B h(t)) f (t)

We will apply the time scales calculus tools, see [7, 8], to obtain a (], @ -analog of the chain rule.

Theorem 4 Let g:1 —> R be continuous and (, @ -differentiable and f :R — R be continuously differentiable. Then,
there exists C between (U +@ and 1 such that,

D, (f°g)(t)= f (9(c))D,,9(1).®
3 q,o-Differentiation Under The Integral Sign

In this section we study the continuity and the (], @ -differentiation of the integral
w (t)
f(t,s)d, s
[, f€.9),,
We establish Libnitz’s rule. Finally, we prove that the iterated integrals are equal (this theorem is known by Fubini’'s Theorem).

Let f:1x1 —R.we begin by the following definitions.
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Definition 1

() We say that f(t,S) is continuous at t=t, uniformly with respect to Se[a,b]lc!l if
limee, f(t,s) = f(t,,s)uniformly with respect tos e[a,b]c 1.

(i) The Q, @ -partial derivative of f with respectto 1 is defined by

f(t,s)— f(h(t),s) tel\o
t—h(t) o
Dyoe f(t,8) =
lim f(t,s)— f(w,,s) t= o,
t>a, t—w,

whenever the limit exists.
(i) We say that f (t,S) is uniformly partially differentiable at t = @, € | , with respectto S e[a,b]< | if

f(t,s)— f(w,,S)

t»a}o t — a)o

exists uniformly with respectto S €[a,b].

Definition 2 Let @, €[a,b] = | . we define the (, @ -interval by

[a,b], ., ={aq" +afk], ke N, }u{bg* + a[k], 'k eN.}Am, }-
For any point C € |, we denote by

[cl,. ={cq" + ak], -k eNg} Ay}

v (t)
From now on, we assume some appropriate conditions that imply the integrals of the form L(t) o(t, S)dq,ws = F(t) exist,
where g:lxlI >R and g, 1 > 1.
Lemma 3 The following statements are true

(i) Assume that f (t,s) is continuous at t = @, uniformly with respectto S € [b], ,. Then

b
F(t) = j f(t,s)d,,s
“0
is continuous at t = @, .
) Dy, F(t) :Ib Dy, f(t,S)d, .8, t#a,.
UJO e !

(i) If Dy, f(t,S) exists uniformly at t = @, with respectto S €[b], ,, then D, F(t) exists at t = @,

q.0’
and
_ b
Dy F @) = [, Dyt f (@,8)d,5
Proof.
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() Let £>0.Thereexists 0 >0 such that

Vte l(t—a, < 5= f(t,ba* +w[k],)— f (2, bq* +@[K],) |< Ib—gl’Vk)'

Wy
In view of corollary 1, for t € IN]ew, =&, + @[, we have
|FO)-F(eop)| D 9" (b(1-a)-@)[f (t,ba" +afk],)- f (w5, ba" +efk],)]]

k=0
<e.

(ii) For t+# w,, we have

D, F() =k°'20q (bt(l h?t)) OVt (t,bg" + w[k],)— f (h().ba" + o[K],)]

- qu (b(1-q)— @)D, ,,  (t.ba" +e[k],)

U’II

f(t,s)d,,

q(ot

(iii) Assume that D, f(t,s) existsuniformlyat t=a, withrespectto sel[b],,.We conclude that

F (0~ F ()
t— a)o

Zq “(b(1- q) “’)f(t bq' + a[K],)

k=0

R 0-q)- ) £ (,bq* +fK],)

t—w,
—Zq (b(1-q)- @)D, ,, f (@, ba* +@[K],)|
; £ (t,bo" +@[k],) — T (9, b0 +[K],)

t—w,

b
| =[P f(@,9)d,,8]

= >(a" (b(1-a) - @)
k=0
D¢ (@5,b0" + k]
For £>0,thereexists >0 suchthatforall tel wehave 0qt—w,|<KJ

f(t,bq" +oK],) — T (@,bq" +ofK],)
N — D,... f (5,bq* +@[k],) < Ib— "

In view of corollary 1, for tel suchthat 0<|t—a,|<J, we see that

Ft)-F(o b
| %_J‘%Dq,w,t f(@,9)d,,SI< &
0
Corollary 4 If D,,, f(t,s) exists uniformly at t=cw, with respect to se[a],, and se[b],, ,
then
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f(t s)d s= f’D f(t,5)d, s tel.

q ot q,0 q,0,t

Proof. By lemma 3, we get the desired result from the following inequality
b b a
Dy |, f(6,5)d,,5= Dy, [ Lof (t,)d, .S~ LO f(t,s)d, sl
Theorem 5 (Leibniz's integral rule) Define the function F by
t
F(t):= j f(t,s)d, s
“o

The following statements are true

Q) For t+# w,, we have

f(t,s)d,,s. (1)

q,m,t

t
D, F(t) = f(h(t),t)+ LOD
(i) If f(t,s) is continuous at (@,,@,) , then F is differentiable at t=w@, and
F'(w,) = f (0, ,).
Proof.

(i) At t+#a,, we have

0, F0 =3 T D=1 10" oty

+f (h(t),19" + @lk],) — T (h(t), 19" +@lK],)]

k+1

(tl-9)-w) ki1
—k:O 0 f (h(t),t9"" + @[k +1],)

i (tt(l hc(lt)) a’)[f(t tq* + w[k],) - f (h(t),tq" + a[K],)]

SENUCRD)
2 1 ho f (h(t), 19" +@lK],)

k+l

(tQl-9)-w) ki
—k:O h f (h(t),t9"" + @[k +1],)

I "t (h(t),5)d, 5 j £(N(t),5)d, 5]

t h(t)
+f f (h(t),s)— f(t,s)d
@ t—h(t) e

_ 1 o t
e [ T(h),s)d, s+ LODW f(t,5)d, 8
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By theorem 3, we get
t
D, F(t) = f(h(t),t)+ LODq,w,t f(t,5)d, s

(ii) Using corollary 1, we see that

|F(S)—F(a)o)
S—a,

L 305 q) - )l f (5.59° + @K],)  f (@ @y)]]-

(S _a)o k=0

= f (o, )|

The continuity of f(t,s) at (@,,@,) implies that given &£>0, there exists >0 such that
|s—w,|< &, (and consequently sq“+a[k], <& ), implies | f(s,50 +@[K],) - f (@, @) I< &. Thus

F(s) - F(ap)
S—a,

~f @y @y)|< &

whenever 0<|S—aj,|< 8, which completes the proof.

Theorem 6 Let ¢:1 —1 be bounded. Define the function F by
$(t)
F):=| Ut (t,5)d, 5.
“o
The following statements are true

(i) The function F is g, -differentiableat t= @, and

1 J-¢(h(t))

qua)F(t) 5 t—h(t) 5(0)

f(h(t),s)dq'ws+'fj:)D f(t,5)d,,5 t#a, 2)

q,0,t

(ii) Assume that the following conditions hold
- ¢ is Q,w-differentiable.

- f(t,s) is uniformly partially differentiable at t =@, with respect to Sel such

that D, f(®,,s) iscontinuousat S=a@,.

q,o,t
- The function H(t) = J.t f (e,,9)d, s is differentiable at ¢(a;,).
2 !

Then D, ,F(t) existsat t=ew, and

D,., F (@) = T (@0, H@))F (@) + [ "Dy (@,5)d,,5.

“0
Proof.

(i) For t#m, we have
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D, F (0= 3 HEOC =100 + ofkd)

— F(h(®), ¢(1)q" + [K],)]

Zq (¢(t)f1h(3) )t (h(t), g(t)a" + lk],)

k+1

S0 (p()(1-9) - w) kil
-y Coh f(h(t), 4(t)q“" + afk +1],)

k=0

:r(t) f(h(t),s)— f(t,s) d
@ t—h(t) 00> h()

#(h(1)

[j"’“f(t $)d, .

f(t,s)d,,s]

“0

L j"“” f(t,5)d, S+ j”“”D
0

gt h(t) st F(t.)dq.08

q,0,t

(ii) To ensure the differentiability at t = @,, we write F as follows

F(t) =P +(H¢)),
where

(1)

P(t) = j {F(t,5)~ f(@,,5)}d,,S.

$(@qg)
First, we show that D, ,P(a@,) = J- D Dyo: f (@,8)d, ,S. Indeed, one can see that

I:’(t) P(600)

(@0
| _I qwtf(a)o S)dq(u |
“0

«m) f(t s)— f(@y.8) 0]
|I t—CO = q(utf(a)o S)]d J“”O qmtf(a)o S)dq @
0

#(w)
— " Pawa T (@5, 9)d 8|
SJ~¢<t)|[f(t ,8) — T (w,, s)

“0

t— o,
¢((00)
_I q(otf(a)o S)d
(UO

# (1)
Dy f (@5, 9)11d,, (s+|jmo Dy f (@,,9)d, .5

q,0 |

Since f(t,s) is uniformly partially differentiable at t=ca@, with respect to sel, and ¢ is
bounded, then

rﬁ(t)l f(t,s)—f(a,8)

Dy f (@,9)1d,,,5 — 0ast — .
@ t—w,

t
The continuity of D, f(@,,s) at s=w, implies that K(t)=J. Dy 0. f(@,8)d, S is continuous at
(UO

t =@, whichinturnimpliesthat K(g#(t)) is continuousat t=@,, thatis
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f (,,9)d, 8| Oast — .

q,w,t q,0,t

|J‘¢(t)D f(a)O,S)dq'wS—J'qj(mO)D
“o “o

Consequently, we conclude that

| P(t) - P(w,) _I¢( 0)

f (w,,9)d, s |- Oast — . (3)
t—w,

q,m,t

Since H is differentiable at ¢(w,) and ¢ is differentiable at @,, then Hog¢ is differentiable at

t=w, and D,,(Ho@)(@,)=(Hog) (@) = H (#(@))¢ () = (@, #(@,))p(2,) . Therefore, we get
the desired result.

Corollary 7 Let ¢,v:1 — 1 be bounded functions. Define the function F by
F(t) = j'””f(t 5)d,.,

Then, the following statements are true

(i) For t# m,, we have

1 v (t) #(1)
DeaF ) =i [/ o (00, 5= [ F (N, 9,51

v/()
qa)t

f(t,s)d, s t=a,.
(ii) Assume that the following conditions hold

- ¢ and y are (,w-differentiable.

- f(t,s) is uniformly partially differentiable at t =, with respectto Sel such

that D, f(®,,S) iscontinuousat S=a,.

q,o0,t
- The function H(t):J‘t f(,,9)d, s is differentiable at ¢(w,) and w(®,).
@ !

Then D, ,F(t) existsat t=ew, and

v (@ 0)

Dy oF (@) = (@ @)y (@)~ f (@, g@o)d (@) + [ "Dy F (@,5)dy s

Proof. By theorem 6 and using the definition

(t) (t) $(t)
Dyt gy {6908 = Dy If] TH (t,9)dg, 8= [ " (t:5)d,5]

we get the desired result.

Theorem 8 (Fubini's theorem)

Let f be defined on the closed rectangle R=[a,,a]x[ay,b]c1x]. Assume that f(t,s)
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continuous at t =@, uniformly with respect to s e[a]q’w and continuous at S =@, uniformly with

respectto te[b], . Then, the double q,® -integrals

b pa a rb

[ ] fts)dytd,,s and [ [ f(t,s)d,,sd,,t

¥ ’ ' 9 ’ '
exist and they are equal, that is

j:o [ resd, =] Eof (t,)d, s d, .t

b
Proof. By assumptions, lemma 3 tells us that Ia f(t,s)d,t and j f(t,s)d,,s are continuous at
“o “o

S=w, andat t=w, respectively. Therefore both double @, -integrals above exist and we have
b ra b i i A
J, 1, f©9)dg,tdgus = [ 130" @1-0)= ) f (aa’ + @l jl;. 9)1d, .5
j=0

=33 b(1-0) - )(a(l-) o) T (aa’ +al ;b + olk],)

=53 0" (1) ~o)(b(-0) - ) f ag’ + L], b’ + lk],)
= :[iqk(b(l—q)—co) f (t,bg* + w[k],)1d, ,t :J: jj f (t,5)d, ,5d, ,t.
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