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ABSTRACT 

In this paper, we consider a system of rational difference equations in the plane 

     

where ,  and the initial values , . We will prove that the unique positive 

equilibrium point of this system is globally asymptotically stable. We also determine the rate of convergence of a solution 

that converges to the equilibrium point (  of this system. 
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1. INTRODUCTION AND PRELIMINARY RESULTS 

Let  and  be intervals of real numbers. Consider a first order system of difference equations of the form. 

                                              (1.1)  

where  and  , when the function  is increasing in  and 

decreasing in  and the function  is decreasing in  and increasing in , the systems (1.1) is called competitive. 

One can consider a map  associated with the system (1.1) and define the notions of 

competitive map accordingly. 

If , we denote with ,  the four quadrants in  relative to , i.e., 

,  , and so on. Define the 

South-East partial order  on  by   if and only if  and y . Similarly, we define the 

North-East  partial order  on  by   if and only if  and y . For  and 

, define the distance from  as dist (x, A):=inf{||x-y||: y }. By intA we denote the interior of a set A. 

It is easy to show that a map  is competitive if it is non-decreasing with respect to the South-East  partial order, that is if 

the following holds: 

                                                           (1.2) 

For standard definitions of attracting fixed point, saddle point, stable manifold, and related notions see [7, 9, 10] and [16]. 

When the function  is increasing in  and increasing in  and the function  is increasing in  and 

increasing in , system (1.1) is called cooperative. Strongly competitive systems of difference equations or strongly 

competitive maps are those for which the function  and  are coordinate wise stricly monotone. 

System (1.1) where the function  and   have monotonic character opposite of the monotonic character in competitive 

system will be called anti-competitive, while system (1.1) where the function  and  have monotonic character opposite 

of the monotonic character in cooperative system will be called  anti-cooperative. Anti-competitive and anti-cooperative 

systems will be called anti-monotone systems. 

 Competitive and cooperative systems have been investigated  by many authors, see [2, 3, 4,  9, 12, 17] and others. The 

study of  anti-monotone systems started recently in [5]. The rational systems of difference equations play an important role 

in modelling in biology and economics, see [6] and [7]. 

The following result gives a convergence result for a system in R
2
 when there exists an invariant rectangle and the map of 

the system satisfies certain monotonicity and algebraic conditions. See [8] and [6, 11]. 

Theorem 1.1  

Let R  and 

 R   R   

be a continuous functions such that: 

            (a)   is decreasing in both variables  and   is decreasing in both variables for each  R; 

            (b) If  R
2   

is a solution of 
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                                                        (1.3) 

Then  and . Then the system (1.1) has a unique equilibrium (   and every  solution 

 of the system (1.1) with  R converges to the  unique equilibrium ( . In addition, the 

equilibrium  (   is globally asymptotically stable. 

In this paper we want to give an example of anti-monotonic system with a unique equilibrium which is globally 

asymptotically stable. 

In Section 2 we consider the following system of difference equations  

                                                          (1.4) 

where ,  and the initial values ,  and 

This system has exactly one positive equilibrium point  

(  which is locally asymptotically stable. We use Theorem 1.1 to show 

that the positive equilibrium point  (  is locally asymptotically stable. 

  Finally, in Section 3 we give the rate of convergence of a solution that converges to the equilibrium   (  of the 

systems (1.4) for all values of parameters. The rate of convergence of solutions that  converge to an equilibrium has been 

obtained for some two-dimensional systems in [13] and [14]. 

The following results give the rate of convergence of solutions of a system of difference equations 

                                                       (1.5) 

where  is a -dimensional vector,  is a constant matrix, and    is a matrix function 

satisfying  

                                                  (1.6) 

where  denotes any matrix norm which is associated with the vector norm;   also denotes the Euclidean norm in 

 given by  

                                                       (1.7) 

Theorem 1.2([15]) Assume that condition (1.6) holds. If  is a solution of system (1.5), then either   for all large  or  

                                                                          (1.8) 

exists and is equal to the modulus of one of the eigenvalues of matrix  . 

Theorem 1.2([15]) Assume that condition (1.6) holds. If   is a solution of system (1.5), then either   for all 

large  or  

                                                                           (1.9) 
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exists and is equal to the modulus of one of the eigenvalues of matrix  . 

2. DYNAMICS OF THE SYSTEM (1.4). 

In this section we consider system of difference equations (1.4). 

Theorem 2.1 System (1.4) has the unique positive equilibrium   which is globally asymptotically stable. 

The equilibrium point of the system (1.4) satisfies the following system of equations  

                                                                            (2.1) 

where   is the real number that for . 

From system (2.1) we have  

                                                                       (2.2) 

The map  associated to the system (1.4) is  

                                                                  (2.3) 

The Jacobian matrix of  is  

                                                                                                 (2.4) 

By using the system (2.2), value of the Jacobian matrix of   at the equilibrium point   is   

                                                                     (2.5) 

The determinant of (2.5) is given by 

 

The trace of (2.5) is  

 

The characteristic equation has the form 

 

Instead of proving local stability by standard test, which is a fairly complicated task, we will prove global asymptotic 

stability which will implies the local stability as well. We will use Theorem 1.1. 

First, let  

R  R  

and 
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 R   R   

 and ) are continuous functions in R. 

It is easy to see that  and ) =  are decreasing in both variables for each (x, y) . 

If (  is a solution of  

                                                                                (2.6) 

we have:   

                                                                                      (2.7) 

also, we get: 

 

Assuming that  >  this implies > , which is a contradiction. Since  and . The 

conclusion of this theorem follows from Theorem 1.1   and the fact that Theorem  1.1  does not give only global attractivity 

but global stability as well. 

3. RATE OF CONVERGENCE  

Our goal in this Section is to determine the rate of convergence of every solution of the system (1.1) in the regions where 

the parameters  a ∞), b ∞) and initial conditions  and  are arbitrary, nonnegative numbers. 

Theorem 3.1 The error vector 

 

 

of every solution  of (1.1) satisfies both of the following asymptotic relations: 

for some i=1, 2,…                                          (3.1) 

And 

 for some i=1, 2,…                                              (3.2) 

where   is equal to the modulus of one of the eigenvalues of the Jacobian matrix evaluated at the 

equilibrium  

Proof 

First, we will find a system satisfied by the error terms. The error terms are given as 
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                                                  (3.3)                                      

and 

 

                                                           (3.4) 

We calculate  as following: 

                      (3.5) 

Similarly, we have: 

                                            (3.6) 

Then from relation (3.3), (3.4), (3.5) and (3.6) we get: 

                                       (3.7) 

and 

                                       (3.8) 

That is 

                                       (3.9) 

Set  

 and   

Then system (3.9) can be represented as: 
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where  

 

Taking the limmits of , ,  and  as n , we obtain 

  

that is 

 

where  0,  0,  0 and  0 as n . 

Now, we have system of the form (1.1): 

 

where  

 

and  

||B(n)|| 0 as n . 

Thus, the limiting system of error terms can be written as: 

 

The system is exactly linearized system of (1.1) evaluated at the equilibrium 

. Then Theorem 1.2 and Theorem 1.3 imply the result. 

When , we also obtain the following result. 

Corollary 3.1 

Assume that a ∞), b ∞). Then the positive equilibrium point 

(   

is globally asymptotically stable. The error vector 

 

of every solution  of (1.1) satisfies both of the following asymptotic relations: 
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and  

 

where  is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at the equilibrium E. 
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