

(1,2) - Domination in the Total Graphs of C_n , P_n and $K_{1,n}$

N. Murugesan and Deepa.S.Nair*
Post Graduate and Research Department of Mathematics
Government Arts College, Coimbatore-18, India
*deepamtcr@gmail.com

Abstract:

In this paper, we discuss the (1,2) - domination in the total graphs of C_n , P_n and $K_{1,n}$

Key words: Dominating set; domination number; (1,2)-dominating set; (1,2)-domination number; total graph.

Mathematics Subject Classification: 05C69

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 4, No. 3 editor@cirworld.com <u>www.cirworld.com</u>, member.cirworld.com

1. Introduction

By a graph G = (V, E), we mean a finite, undirected graph without loops or multiple edges. A subset D of V is a dominating set of G if every vertex of V-D is adjacent to a vertex of D. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. A (1,2) dominating set in a graph G is a set S having the property that for every vertex v in V-S there is at least one vertex in S at distance 1 from v and a second vertex in S within distance 2 of v. The order of the smallest (1,2) - dominating set of G is called the (1,2) - domination number of G denoted by $\gamma(1,2)$ (G).

For a given graph G, let T(G) be a graph with vertex set $V(G) \cup E(G)$. Two vertices x, y in the vertex set of T(G) are adjacent in T(G) in case one of the following holds (i) x, y are in V(G) and x is adjacent to y in G. (ii) x, y are in E(G) are x, y are adjacent in G (iii) x is in V(G), y is in E(G) and x, y are incident in G. That is, the total graph F(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

2. (1,2)- domination in Total graph of C_n

Consider the following examples

Hence in $T(C_3)$, $\{e_1, v_3\}$ is a dominating set and also (1,2) dominating set.

$$\gamma[T(C_3)] = 2$$
 and $\gamma_{(1,2)}[T(C_3)] = 2$

In $T(C_4)$, $\{e_1, v_3\}$ is a dominating set and also (1,2) dominating set.

$$\gamma [T(C_4)] = 2$$
 and $\gamma_{(1,2)} [T(C_3)] = 2$.

In $T(C_5)$, $\{e_1, v_4\}$ is a dominating set and also (1,2) dominating set.

$$\gamma [T(C_5)] = 2$$
 and $\gamma_{(1,2)} [T(C_5)] = 2$

 C_6 :

 $T(C_6)$:

 $\{e_1, v_4, v_6\}$ is a dominating set and also (1,2) dominating set.

 C_{7}

 $T(C_7)$:

 $\{e_1, v_4, v_6\}$ is a dominating set and also a (1,2) dominating set.

C₈:

 $T(C_8)$:

 $\{e_1, v_4, v_6, v_8\}$ is a dominating set and also a (1,2) dominating set.

 $\{e_1, v_4, v_6, v_8\}$ is a dominating set and also a (1,2) dominating set.

 $\{e_1, v_4, v_6, v_8, v_{10}\}$ is a dominating set and also a (1,2) dominating set. From the above examples, we have the following theorems.

Theorem 2.1

$$\gamma [T(C_n)] = \left| \frac{n}{2} \right|$$

Figure 1. n-cycle and its Total Graph

Proof:

It can be easily observed that $\gamma[T(C_3)]=2$, $\gamma[T(C_4)]=2$, $\gamma[T(C_5)]=2$ and $\gamma[T(C_6)]=3$.

Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and $E(C_n) = \{e_1, e_2, \dots, e_n\}$ in which $e_i = v_i \ v_{i+1}$. By the definition of total graph $V[T(C_n)] = \{v_1, v_2, \dots, v_n\} \cup \{e_1, e_2, \dots, e_n\}$ and

 $E[T(C_n)] = \{e_i \ e_{i+1}/1 \le i \le n\} \cup e_n e_1 \cup \{v_i \ v_{i+1}/1 \le i \le n\} \cup v_n v_1 \cup \{e_i \ v_{i+1}/1 \le i \le n-1\} \cup \{e_n v_1\} \cup \{v_i \ e_i/1 \le i \le n\}$. The total number of vertices in $T(C_n)$ is 2n and each vertex is of degree 4. The cycles of $T(C_n)$ are $C_i = e_i v_{i+1} e_{i+1}$ ($1 \le i \le n-1$), $C_n = e_n e_1 v_1$, $C_i' = v_i v_{i+1} e_i (1 \le i \le n-1)$, $C_n' = v_n v_1 e_n$. In $T(C_n)$, each e_i is adjacent to e_{i+1} and e_1 is adjacent to e_n . Also v_i is adjacent to v_{i+1} and v_1 is adjacent to v_n . Now we can find the dominating set of $T(C_n)$.

The minimum dominating set

$$D = \begin{cases} D_1 = \{e_1, v_4, v_6, ..., v_n\} & \text{if } n = 2k \\ D_2 = \{e_1, v_4, v_6, ..., v_{n-1}\} & \text{if } n = 2k + 1 & \text{where } k = 3, 4, 5, \end{cases}$$

$$|D_1| = \frac{n-4}{2} + 1 + 1 = \frac{n}{2}$$

$$|D_2| = \frac{n-1-4}{2} + 1 + 1 = \frac{n-1}{2}$$

$$|D| = \begin{cases} \frac{n}{2} & \text{if } n = 2k\\ \frac{n-1}{2} & \text{if } n = 2k+1 \end{cases}$$

$$= \begin{cases} \frac{n}{2} & \text{if } n = 2k \\ \frac{n}{2} - \frac{1}{2} & \text{if } n = 2k + 1 \end{cases}$$

Hence $\gamma[T(C_n) = \left| \frac{n}{2} \right|$ for all values of C_n .

Theorem 2.2

$$\gamma_{(1,2)}[T(C_n)] = \left| \frac{n}{2} \right|$$

Proof:

It can be easily observed that $\gamma_{(1,2)}[T(C_3)]=2$, $\gamma_{(1,2)}[T(C_4)]=2$ and $\gamma_{(1,2)}[T(C_5)]=2$ and $\gamma_{(1,2)}[T(C_6)]=3$. Let $V(C_n)=\{v_1, v_2,..., v_n\}$ and $E(C_n)=\{e_1, e_2,..., e_n\}$ in which $e_i=v_i$ v_{i+1} . By the definition of total graph $V[T(C_n)]=\{v_1, v_2,..., v_n\}\cup\{e_1, e_2,..., e_n\}$ and

 $E[T(C_n)] = \{e_i \ e_{i+1}/1 \le i \le n \ \} \cup e_n e_1 \cup \{v_i \ v_{i+1}/1 \le i \le n \ \} \cup v_n v_1 \cup \{e_i \ v_{i+1}/1 \le i \le n-1 \ \} \cup \{e_n v_1\} \cup \{v_i \ e/1 \le i \le n \}.$ The total number of vertices in $T(C_n)$ is 2n and each vertex is of degree 4. The cycles of $T(C_n)$ are $C_i = e_i v_{i+1} e_{i+1}$ ($1 \le i \le n-1$), $C_n = e_n e_1 v_1$, $C_i' = v_i v_{i+1} e_i (1 \le i \le n-1)$, $C_n' = v_n v_1 e_n$. Every minimum cardinality dominating set is also a (1,2) - dominating set in $T(C_n)$. Hence

$$\gamma_{(1,2)}\left[T(C_n)\right] = \left| \begin{array}{c} n \\ \overline{2} \end{array} \right|.$$

3. (1,2) domination in Total graph of P_n

Consider the following examples

 P_3 :

In $T(P_3)$, { v_2 } is a dominating set and { e_1 , v_3 } is a (1,2) dominating set.

Therefore $\gamma[T(P_3)] = 1$ and $\gamma_{(1,2)}[T(P_3)] = 2$

 P_4 :

In $T(P_4)$, $\{v_2, e_3\}$ is a dominating set and $\{v_1, v_2, v_4\}$ is a (1,2) dominating set.

Therefore $\gamma [T(P_4)] = 2$ and $\gamma_{(1,2)} [T(P_4)] = 3$

 P_5 :

 $T(P_5)$:

In $T(P_5)$, $\{v_2, v_4\}$ is a dominating set and $\{v_1, v_3, v_5\}$ is a (1,2) dominating set.

Therefore $\gamma[T(P_5)] = 2$ and $\gamma_{(1,2)}[T(P_5)] = 3$

 P_6 :

 $T(P_6)$:

 $\{v_2,\ v_4,\ v_6\}$ is a dominating set and $\{\ v_1,\ v_3,v_5\}$ is a (1,2) dominating set.

 P_7 :

 $\{v_2,\ v_4,\ v_6\}$ is a dominating set and $\{\ v_1,\ v_3,v_5,v_7\}$ is a (1,2) dominating set.

 $\{V_2, V_4, V_6, V_8\}$ is a dominating set and $\{V_1, V_3, V_5, V_7\}$ is a (1,2) dominating set.

 $\{v_2, \ v_4, \ v_6, \ v_8\}$ is a dominating set and $\{\ v_1, \ v_3, v_5, v_7, v_9\}$ is a (1,2) dominating set.

 $e_{\scriptscriptstyle 1}$

 $\{v_2, v_4, v_6, v_8, v_{10}\}\$ is a dominating set and $\{v_1, v_3, v_5, v_7, v_9\}\$ is a (1,2) dominating set.

 P_{11} :

 $T(P_{11})$:

 $\{v_2, v_4, v_6, v_8, v_{10}\}\$ is a dominating set and $\{v_1, v_3, v_5, v_7, v_9, v_{11}\}\$ is a (1,2) dominating set.

From the above examples, we have the following theorems.

Theorem 3.1

$$\gamma[T(P_n)] = \left| \frac{n}{2} \right|$$

Proof: It is easy to observe that $\chi[T(P3)] = 1$, $\chi[T(P_4) = 2]$, $\chi[T(P_5)] = 3$

Let P_n be a path on n vertices where n > 5.

Figure 2. Path and its Total Graph

Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{e_1, e_2, ..., e_n\}$. By the definition of total graph, $V(T(P_n)) = V(P_n) \cup E(P_n)$, $E(T(P_n)) = \{v_i e_i/1 \le i \le n\} \cup \{e_i v_{i+1}/1 \le i \le n-1\}$. The cycles of $T(P_n)$ are $C_i = v_i v_{i+1} e_i$ ($1 \le i \le n$), and $C_i' = e_i e_{i+1} v_{i+1} (1 \le i \le n-1)$. In $T(P_n) v_1$ and v_n are non-adjacent. Also e_1 and e_{n-1} are non adjacent. Each vertex v_i $2 \le i \le n-1$, and e_i , $2 \le i \le n-2$ are of degree 4. Now we can find the minimum dominating set. For $v_n = v_n = v$

$$\mathsf{D} = \begin{cases} D_1 = \{v_2, v_4, ..., v_n\} & if \quad n = 2k \\ D_2 = \{v_2, v_4, ..., v_{n-1}\} if \quad n = 2k+1 \end{cases}$$

$$|D_1| = \frac{n-2}{2} + 1 = \frac{n}{2}$$

$$|D_2| = \frac{n-1-2}{2} + 1 = \frac{n-1}{2}$$

Hence
$$|\mathbf{D}| = \begin{cases} \frac{n}{2} & \text{if } n = 2k \\ \frac{n}{2} - \frac{1}{2} & \text{if } n = 2k + 1 \end{cases}$$

Hence
$$\gamma[T(P_n)] = \left\lfloor \frac{n}{2} \right\rfloor$$
 for all values of P_n .

Theorem 3.2

$$\gamma_{(1,2)}[T(P_n) = \left\lceil \frac{n}{2} \right\rceil$$

Proof

It is easy to observe that $\gamma_{(1,2)}[T(P_3)] = 2$, $\gamma_{(1,2)}[T(P_4)] = 3$, $\gamma_{(1,2)}[T(P_5)] = 3$.

Let P_n be a path on n vertices where n > 5.

Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{e_1, e_2, ..., e_n\}$. By the definition of total graph, $V[T(P_n)] = V(P_n) \cup E(P_n)$, $E[T(P_n)] = \{v_i e_i / 1 \le i \le n\} \cup \{e_i v_{i+1} / 1 \le i \le n-1\}$

 $\bigcup \{v_i \ v_{i+1}/1 \le i \le n\} \bigcup \{e_i \ e_{i+1}/1 \le i \le n-1\}$. The cycles of $T(P_n)$ are $C_i = v_i v_{i+1} e_i$ $(1 \le i \le n)$, and $C'_i = e_i e_{i+1} v_{i+1} (1 \le i \le n-1)$. In $T(P_n)$ v_1 and v_n are non-adjacent. Also e_1 and e_{n-1} are non adjacent.

Now we can find the (1,2)- dominating set.

For n=2k, $\{v_1, v_3, ..., v_{n-1}\}$ will form a (1,2)- dominating set and for n=2k+1, $\{v_1, v_3, ..., v_n\}$ will form a (1,2)- dominating set for $T(P_n)$.

Therefore the minimum dominating set

$$S = \begin{cases} S_1 = \{v_1, v_3, ..., v_{n-1}\} & if \quad n = 2k \\ S_2 = \{v_1, v_3, ..., v_n\} & if \quad n = 2k + 1 \end{cases}$$

$$|S| = \begin{cases} |S_1| & \text{if } n = 2k \\ |S_2| & \text{if } n = 2k+1 \end{cases}$$

$$|S_1| = \frac{n-1-1}{2} + 1 = \frac{n}{2}$$

$$|S_2| = \frac{n-1}{2} + 1 = \frac{n-1+2}{2} = \frac{n+1}{2}$$

$$|S| = \begin{cases} \frac{n}{2} & \text{if } n=2k\\ \frac{n+1}{2} & \text{if } n=2k+1 \end{cases}$$

$$\gamma_{(1,2)}[T(P_n)] = \left\lceil \frac{n}{2} \right\rceil$$

4. (1,2)- domination in Total graph of $K_{1,n}$

In the above examples the central vertex $\{v\}$ is a dominating set and $\{v, e_1\}$ is a(1,2) - dominating set.

Theorem 4.1

$$\gamma[T(K_{1,n})]=1$$

Figure 3. Star graph and its Total Graph

Proof:

Let $V(K_{1,n}) = \{v, v_1, v_2, ..., v_n\}$ and $E(K_{1,n}) = \{e_1, e_2, ..., e_n\}$. By the definition of total graph $V[T(K_{1,n})] = \{v\} \cup \{e_i/1 \le i \le n\} \cup \{v_i/1 \le i \le n\}$ in which the vertices. $e_1, e_2, ..., e_n$ induces a clique of order n. Also the vertex v is adjacent with v_i ($1 \le i \le n$). In $T(K_{1,n})$, the central certex $\{v\}$ dominates all other vertices. Hence $y[T(K_{1,n})] = 1$

Theorem 4.2

$$\gamma_{(1,2)}[T(K_{1,n})] = 2$$

Proof:

Let $V(K_{1,n}) = \{v, v_1, v_2, ..., v_n\}$ and $E(K_{1,n}) = \{e_1, e_2, ..., e_n\}$. By the definition of total graph $V[T(K_{1,n})] = \{v\} \cup \{e_i/1 \le i \le n\} \cup \{v_i/1 \le i \le n\}$ in which the vertices. $e_1, e_2, ..., e_n$ induces a clique of order n. Also the vertex v is adjacent with v_i ($1 \le i \le n$). In $T(K_{1,n})$, the central certex $\{v\}$ dominates all other vertices. Hence $\gamma[T(K_{1,n})] = 1$. So we can form a (1,2) - dominating set by selecting the central vertex v and any one of e_i ($1 \le i \le n$). Hence $\gamma[T(K_{1,n})] = 2$.

5. Relation between domination number and (1,2) domination number in the total graph of C_n , P_n and $K_{1,n}$.

Theorem 5.1

In $T(C_n)$, domination number equals (1,2) - domination number.

Proof:

By theorem 2.1 and 2.2, we have this result.

Theorem 5.2

In $T(P_n)$, domination number is less than or equal to (1,2) - domination number.

Proof:

This result is obvious from theorem 3.1 and 3.2.

Theorem 5.3

In $T(K_{1,n})$, domination number is less than (1,2) - domination number.

Proof

This is clear from theorem 4.1 and 4.2.

6. Conclusion

In the paper, we found the domination number and (1,2) domination number of total graphs of C_n , P_n and $K_{1,n}$. It can be seen that domination number is less than or equal to the (1,2)- domination number in all cases which conincides with the result of [5].

References

- [1] Akbar Ali M.M., S. Panayappan, Cycle Multiplicity of total graph of C_n , P_n , $K_{1,n}$. Int J. Engg, Sci, and Technology, Vol.2, No.2, 54-58, (2010).
- [2] Bondy J.A. and Murty U.S.R. Graph Theory with Application (1976).

- [3] Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, Inc., USA, (1974).
- [4] Michalak, D., On Middle and total graphs with coarseness number equal 1, Springer Verlag graph theory, Lagow Proceedings, New York, 139-150 (1981).
- [5] Murugesan N. and Deepa S. Nair, (1,2) domination in Graphs, J. Math. Comput. Sci., Vol.2, No.4, 774-783 (2012).
- [6] Steve Hedetniemi, Sandee Hedetniemi, (1,2) Domination in Graphs.
- [7] Vernold Vivin. J and Akbar Ali.M.M, On Harmonious Coloring of Middle Graph of C(C_n), C(K_{1,n}) and C(P_n), Note di Matematica Vol.(29) 2, pp. 203-214, (2009).
- [8] Vernold Vivin. J, Ph.D Thesis, Harmonious Coloring of Total Graphs, n-Leaf, Central graphs and Circumdetic Graphs, Bharathiar University, (2007).
- [9] Venketakrishnan Y.B and Swaminathan.V,Colorclass domination number of middle graph and central graph of $K_{1,n}$, C_n and P_n .,AMO Vol.12,No.2,2010
- [10] K.Thilagavathi, D.Vijayalakshmi, N.Roopesh, b-Coloring of Central graphs, Int. Jou. Comp. Appl., Vol. 3, No. 11, 2010
- [11] M. Venkatachalam, Vivin. J. Vernold, The b-chromatic number of star graph families, Le Matematiche, Vol. LXV(2010)

527 | Page Dec 7, 2013