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Abstract

Characterization results have great importance in statistics and probability applications. New characterizations of
Exponential and Power Function distributions are presented using the s th conditional expectation of order statistics in
terms of their failure (hazard) rate. Our results generalize some of the known results of Ahsanullah (2009). A simulation

study has been conducted to help an engineer or a practitioner to check whether the underlying distribution belongs to the
hypothesized family.
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1. Introduction

In recent years order statistics and their moments have assumed considerable interest, the moments of order statistics
have been tabulated quite extensively for several distributions, for example see Arnold et al (1992) and David
(1981).

Many papers dealing with characterization through properties of order statistics are appeared, see for example Khan
and Abouammoh (1999), Malik et al., (1988), Lin (1988), Kamps (1995) and Mohie EI-Din et al., (1991), Ahsanullah
(2009).

Khan and Abu-Salih (1989) have characterized many well-known continuous probability distributions such as Pareto
and power function distributions through conditional expectation of functions of order statistics. Ahsanullah and Raqgab
(2004) have characterized continuous distributions by conditional expectation of some functions of generalized order
statistics. Ahsanullah and Hamedani (2007) characterized beta of the first kind and the power function distribution using 1
th order statistics and n th order statistics respectively. Hamedani et al., (2008) characterized certain univariate
distributions using truncated moments of X(;y. We like to mention here the works of Galambos and Kotz (1978), Kotz and
Shanbag (1980), Ahsanullah (1989), Oncel et al., (2005) and Wesolowski and Ahsanullah (2004). Ahsanullah (2009)
characterized several univariate distributions using truncated moments of the i th order statistic. Ahsanullah (2009)
characterized several univariate distributions by the moments of the i + 1( 1 < i = n ) th order statistic given i th order
statistic= t. In this paper characterizations of some univariate distributions using the s th moments of the r + 1 th order
statistic given r th order statistic = x are given. Besides, our results generalize some of the known results in the literature
(see, e. g., Ahsanullah (2009)).

Let X1, X,, ..., X, be a random sample of size n from an absolutely continuous distribution with cumulative distribution
function (cdf) F(x) and the corresponding probability density function (pdf) f(x). Let Xy, X(2), .., Xm) be the
corresponding order statistics. Then the pdf of X, the joint pdf of X,y and X(,,,) and the conditional pdf of X, given
X = x are, respectively, see Arnold et al. (1992).

fxy ) = mf(x)[l’(x)]r M1 =F@I]"",a<x<b. (1.1)

fxoyX ooy 0 Y) = mf(x)f(y)[F(x)]r M-FEI""Ha<x<y<bh. (1.2)
fX X (i1 (X,) nrl

Fr ke, 19 = % = (n - ) EEBRE £ (5). (1.3)

In section 2, the exponential and Power Function distributions are to be characterized through truncated moments of
order statistics given by:

E(Xs(r+1)|X(r) = x) = fysfx(r+l)|x(,)(}’|x) dy,s =1,2,3,..., r=12,..,n—1.
X

2. Characterization Theorems
2.1 Characterization of the Exponential distribution

In this section characterization of the exponential distribution through truncated moments of order statistics is
presented.

Theorem 2.1:

Let X be a nonnegative continuous random variable with distribution function F(.), survival (reliability) function F(.),
density function f (.) and Failure (hazard) rate function h(.) . Let X3y < X(3) - < X(,) denote the order statistics of a
random sample of size n from F(.). Then X has the exponential distribution with positive parameter A if and only if

! [xh @I
E(X*ginlXey =x) = [h("x)]s *=0 (sf;)!’gn_ry. ,s=12,..,r=123,..,n—1,and h(x) = . (2.1)

The following two lemmas are used to prove the sufficiency of theorem 2.1.
The two lemmas are proved in the appendix.

Lemma 1:

d /s (Ax)s _ sl o (Ax)s7—1
(%) S =Dl AL (s —j - Dyl

Lemma 2:
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() G S (S_!)S_ ()1

2y (s=pip X)Ly (s = j =D/

Proof. ( Necessity ): Observe that

E(XS(T+1)|X(T) = x) = f ySfX(r+1)|X(T) (y|x) dy.
X

Using Equation (1.3), we obtain

n-r © _ n-r n-r
E(X*qrnlXey = %) = iy Jo (™) dy = Sy A (2.2)
Where
— 1 s,y T
A= 1 W) (e™™)" " ay.
X
Let u = Ay and let, for simplification, g = Ax, p=n—r.
Hence
A= %quus e ¥ du. (2.3)
Integrating Equation (2.3) by parts, we obtain
1 (O —qp 5
a=5(Tew +2my). 2.4)
But
00 s—1 4
H; = fq usle W du. = qTe*qp + sleHz. (2.5)
And
0 -2 i
Hy, = fq uS2eWdy = qTe’q” +STZH3. (2.6)
Substituting from Equation (2.5) and Equation (2.6) into Equation (2.4), we obtain
(2 gqp ST g ST gy St
A= = (p e + = e + (5_2)!p3e + (5_3)!p3H3). 2.7)

After integrating Equation (2.7) for a number of times, the following recurrence relation is obtained

o0
H; = J- uS~te ¥ du
q

—i

= %e“"’ + S i, i =125 = 1 (2.8)

And

Hy=~e, (2.9)

Substituting from Equation (2.8) and Equation (2.9) into Equation (2.7), we obtain

_ 1 slq*™ _
A _A_S f—=0me qp (210)
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Substituting from Equation (2.10) into Equation (2.2), we obtain

s=j
E(XSgin|Xey = x) = =25 O(S_{iij,s =12,.,r=12,..,n—1

Where g = Ax,p =n —r, then

s _[xh@P

! .
E(X°gaplXpy = x) = [h(sx)]s =0y S = b2 =123,.,n— Land h(x) = 1.

(Sufficiency): Notice that Equation (2.12) can be rewritten as follows

[0 () =) )

Differentiating both sides of Equation (2.13) with respect to x, we obtain

s () SIS o (2

Using Lemma (1), we obtain

Dip/

—px*f (%) (F(x))p { F(x) ] AsSI1Z (s(Ax)s " pf@) (F(x))p_l (%) %
j=0

Using Lemma (2), we obtain

s () I
v (Feo)” (), o~ | PO 5= 2 oo
J= L=

A -1
Dividing both sides of the above equation by (F(x))p , we obtain

(Ax)s7—1 — _ ps! (Ax)s——1
f@ 5 Z(s 1)'p’+1_F(x)/15 12(5 j = Dlpitt

Or equivalently

Integrating both sides of Equation (2.14) with respect to x, we obtain
InF(x) = —Ax + lnc, where ¢ is constant

Hence

In <F(x)) =Ilne M,
c

Or equivalently
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F(x) = ce ™.
Using the fact that F(0) = 1, then ¢ = 1, hence

F(x)=e™,x>0,1>0m

Which is the sf of the exponential distribution with positive parameter A .
This completes the proof.

Remark 1 Specifyings = 1 and s = 2 in (2.1) yields the following results

[0) E(Xg+nlXey = x) =2+ (nl_r) .
(ii) E(X2q4n)|Xgy = x) = 22 ++ (jf 5 mf—_)z
Then
Var(Xe+plXey = x) = ,12(;2
n—r)

Remark 2 Specifying s = 1 in (2.1) gives the result of Ahsanullah (2009).
2.2 Characterization of the Power Function distribution

In this section characterization of the Power Function distribution through truncated moments of order statistics is
presented.

In the sequel, we shall use the following symbol, which is known by the Pochhammer symbol (L), ; see Mathai and
Haubold (2008).

L), =LL+1DUL+2)..L+r—1),L)y=1,L=0,r=1.23,..
Theorem 2.2

Let X be a positive continuous rv with df F(.) , sf F(.), pdf f(.) and HR function h(.). Let X(;) < X() - < X() denote
the order statistics of a random sample of size n from F(.).Then X has the power function distribution if and only if

J (L)1s'afxs~7
E(X5¢iplXe) = x) = "
r+D 14 0) 720 (L)I+1(S — j)' (h(X))i

a
=12,.,r=12,..,n—1,L=an—r1),h(x) =

(2.15)
The following two lemmas are used to prove the sufficiency of theorem 2.2.

The two lemmas are proved in the appendix.

Lemma 3:

AN Ws!x 1 =0 W Whs!x i@ = x)7
dx;:o (L)j41(s = ! _1—x7=1 (L)j41(s = )

Lemma 4:

- L)s!x* (1 —x)? - (L)ys!' x5 (1 — x)?
P L Wl =)

Proof. ( Necessity ): Observe that

[*<}

E[X5 iyl Xy = x] = f Y ey, -

X

Using Equation (1.3), we obtain
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1

an-r) .
E(XS¢yp)|Xoy = x) = a9 fys(l - y)rr-lgy
X
1 1 _ A
E(X*qanlXoy = %) = o J, WA =)y = = - (2.16)
Where L = a(n —r),
1 _
A= [ Lys(1—y)tdy. (2.17)
Integrating Equation (2.17) by parts, we obtain
A=x*(1—-x)*+ Hy. (2.18)
But
1 _ s—=1 1— L+1
Hy=s [}y (1 - y)tdy = 20 4y, (2.19)
Where
_sG=D 1 oo NIt _ s(s—Dxs2(A—x)t+?
H, =35 v (L -y)ittdy = == 20 =o— + Ha. (2.20)

Substituting from Equation (2.19) and Equation (2.20) into Equation (2.18), we obtain

s (- ) s@— 1V — x)- 1
A=<x (1-x)*+ C+D L+DAL+2) H3>

L)1 A -0 (L)gsixS72(1—x)E+2

— +S(1 — +\L
" (1 X) + (L) (s—1)! (L)3(s=2)! Hs. (221)
But
= _@hust (1 g3 L yL42 _ @Wsxs3a—x)kt3
. (L>3(s_3>!fx y (= y)tdy =T 0. +H,. (2.22)

After integrating Equation (2.22) for many times, we note the following recurrence relation

1
L)s! . L
Hi - (L)( (Zli 4:)! y5—1(1 A y)L+/L—1dy

(L) 1 s—i(l_ )L+i ;
H = % +Hiq,i=12,..,5—1 (2.23)

Finally, we find that

_ @W)ys!@—x)tts

B =" (2.24)
Substituting from Equation (2.23) and Equation (2.24) into Equation (2.21), we obtain
A= (1 - x)k g5, L0 (2.25)

@L)j41(s=!

Substituting from Equation (2.25) into Equation (2.15), we obtain

. N = (L);s! x5~ (1 — x)?
EX ¥ =x) = ;0 DG = !
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(Sufficiency): Notice that Equation (2.26) can be rewritten as follows

s (L)1sla?xs=F

720 (1)1 =P (h )

[Fa= v fo (Fo)

Differentiating both sides of Equation (2.27) with respect to x, we obtain

= {(f(x))n_r %
=0

Using Lemma (3) and Lemma (4) and simplifying, we obtain

@j+1(s=!

(L)1s!x57#(1 — x)?
(L);+1(5 - !

~m-nwf@ (F@)

fc-rreo (Feo) )

- )

=1

o Wsste (-2 (L),

-1 — n-r S=F(1 )7
dy =(F(x)) ;:O (L)ysxs77(1 x)’l

~(-nf (Fw)

=0

(L)1s'x57#(1 — x)?

(Tl—T)f(x)Fl L) j41(s — P! S a- )F( );i=1 (L)j41(s — !
_ @y -
n—r)fx) = a—n F(x)
or equivalently
fG) _  «a
Fx) -0

Integrating both sides of Equation (2.28) with respect to x, we obtain

FORE a
7o ‘f(l—x)d"

InF(x) = aln(l — x) + Ink, where k is constant

In <%x)> =In(1—x)%

F(x) = k(1 —x)“.
Using the fact that F(0) = 1. Then k = 1.
Hence
FX)=10-x%0<x<1a>0m
Which is the sf of the power Function distribution. This completes the proof.

Remark 3 Specifying s = 1 and s = 2 in (2.15) yields the following results

. 1

0] E(X(r+1)|X(T) = X) =x+ ﬁ

.. _ 2x(1—x) 2(1—x)?
(ii) E(X2¢inlXey = %) = x> + ==+ Cnamg

Then

Locz(h(x))_2
(L+1D2(L+2)°

Remark 4 Specifying s = 1 in (2.15) gives the result of Ahsanullah (2009).

Var(Xg+nlXey =x) =

3. Simulation Study

ISSN 2347-1921

(2.26)

(2.27)

= (L)ls!xs—ﬂ'm—x)ﬂ‘}

(L);+1(S - !

3 (L);s! 27 (1 — x)? -1 (L)s! x5~ (1 — x)?
(L)j41(s = ! } {(n ~ (F(x) ( * Z (L)j41(s = ! )}

(2.28)

This section illustrates the practical importance of the results above through an experimental validation, using
simulated data. The objective of the simulation study is to show that these results pave the way for simple and easily
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checks, from any given data set, enabling an engineer or practitioner to identify the present distribution. Although the work
in this section can be done for the two characterization results presented in this paper, the focus is on Theorem (2.1). This
is s0, since the objective is just to show that all the characterization results give an easy way for the practitioner to test
whether the available data follows a particular distribution, rather than going to sophisticated hypothesis testing analysis.
To validate the correctness of the theoretical results obtained in this paper, a simulation study has been conducted with
m=20 and n=30, and once more with m=100 and n=100, and the results of these two choices are presented in Tables
(3.1) and (3.2), respectively

Table 3.1: Verification of the results

-

AT,S,% E(X°+n)|Xey = %) ( )Z (s _(]/;Juc)(n ]_ =Y, —R'H':_ ;LS 2.3
0.2, 22,1, 5.6687 6.4644 6.2937 0.0271
0.2, 22, 2, 6.3561 49.8862 49.1264 0.0155
0.5, 22, 1, 2.5417 2.8212 2.7917 0.0106
0.5, 22, 2, 2.6600 8.8063 8.7594 0.0054
1,22,1, 1.2086 1.3053 1.3336 0.0212
1,22,2,1.2270 2.0310 1.8435 0.1017
3,22,1,0.4057 0.4255 0.4474 0.0489
3,22, 2,0.3982 0.1997 0.1952 0.0231
6, 22, 1, 0.2200 0.2361 0.2408 0.0195
6, 22, 2, 0.2059 0.0545 0.0518 0.0521

Table 3.2: Verification of the results

s

A7,8,% E(X*g1n)lXe) = X) ( )Z (s _(]/;x)(n j_ Y %
0.2, 80, 1, 7.9686 8.1956 8.2186 0.0028
0.2, 80, 2, 7.8521 66.4844 65.7065 0.0118
0.5, 80, 1, 3.1938 3.2873 3.2938 0.0019
0.5, 80, 2, 3.1582 10.7353 10.6259 0.0103
1, 80,1, 1.6204 1.6705 1.6704 0.00006
1, 80, 2, 1.5821 2.6700 2.6663 0.0014
3, 80, 1, 0.5344 0.5551 0.5511 0.0073
3, 80, 2,0.5374 0.3103 0.3073 0.0098
6, 80, 1, 0.2649 0.2733 0.2732 0.0004
6, 80, 2, 0.2601 0.0734 0.0721 0.0180

The second column of Tables (3.1) and (3.2), contains the values of the left-hand side (LHS), while the third column
contains the corresponding values of the right- hand side (RHS) and the right most column contains the absolute relative
difference between the two sides of the characterizing equation. This is done for several choices of the parameter A, 7, s.

The right most column shows that the absolute relative difference between the two sides of the characterizing equation
has a maximum value less than 10%, but the bound of the absolute difference goes down to only 1:8% when the sample
size is increased from 30 to 100 and the number of samples is increased from 20 to 100, as seen from table (3.2).

This remark shows that as the sample size (and the number of samples) increases, the relative absolute difference
decreases, and is going to eventually diminish, supporting the correctness of the results.
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APPENDIX

Proof of Lemma 1:

d /sh (Ax)s sty ()~ (Ax)s—2 (Ax)5—3 1
E(A_S) Li(s =Dty - (/15_—1) {(s DTG o=t ps—l}

-1 .
)Z G (—Aj)— jl)jpf -

Proof of Lemma 2:

s! S (Ax)s—j o s! (Ax)s—l (Ax)s_z Ax 1
(%) G- +(?){(s— Dipt T G- 2)1p? +'"+F+F}
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s—1

(s (Ax)s——1
SR (F)jzo G—j—-Dip
Proof of Lemma 3:

d 3 (L);s! x5 (1 — x)7
dx;‘:o (L);+1(5—f)!

oy Wset A =x) Wys!et (A=) (L5t (1= x)? 2(L)gs!xt (1~ x) (L)1s!x°(1 — x)st
- {S" 0 G T () MR TR () W) [N () N ) [ (O X ]
(s—=DW);s'x(1—x)52 s(L)s!x°(1 —x)s1
- (L) 1! - (L)5410! }

3 {( (L)ys! xSt B (L)ys!xs71 > N ((L)ls!xs_z(l - %) B 2(L)¢s!'x572(1 - x))
I\ =D @) (s — 1) (L)2(s = 2)! (L)3(s —2)!
((L)ls! x573(1 = x)? B 3(L)s!x573(1 — x)2> ((L)ls!x(l —x)572 (= DWys!x(1 - x)5_2>

@G - 3)! @)sGs - 3)! Wi 1! W), 1!
(L)1s'x°(1 =) s(L)ys!x%(1 — x)s1
( (L),0! B (L)5410! >}
3 (L)ys!xS71(1 —x)° (L)1s!'x572(1 — x) (L)1s!x573(1 = x)? (L)1s!'x(1 —x)s7t
= {(”1 N R T L N7 WS TR R 15 W oS TR O R () W T
(L)1s!'x°(1 — x)$
LA 7 W }
AN Waslx 0 -7 Wy N @Waslxt (1= 07
dey (Wjaals =) a1 —x Winls =)
Proof of Lemma 4:
zs: (L)1s'x577(1 — x)?
(L)j41(s — )
_ s {(L)ls! 711 —-x) i (L){s!'x572(1 — x)? 4 (L)1s!'x(1 —x)st 2 (L);s!'(1— x)s}
i ()20 — D! L)3G —2)! (D) 1! (L)s410!

- (L)1s!x57#(1 — x)?
(L);+1 (s 008

- (L)1s!' x5 (1 — x)? !
L)y (s =40

s

=1
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