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ABSTRACT

The generalized stable sets solution introduced by van Deemen (1991) as a generalization of the von Neumann and
Morgenstern stable sets solution for abstract systems. If such a solution concept exists, then it is equivalent to the admissible
set appeared in game theory literature by Kalai and Schmeidler (1977). The purpose of this note is to provide a
characterization for the existence of the generalized stable sets solution. (Minimal) undominated element, (Generalized)
Stable Set, Admissible set.
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1 Introduction

Von Neumann and Morgenstern in their classical work Theory of Games and Economic Behavior (1947) introduced the
Theory of Solutions and Standards of Behavior. This theory specifies that a set F of elements (imputations) is a Von
Neumann-Morgenstern solution when it possesses two properties: (a ) No elementinside F is dominated" by an element
inside F and (b ) Every element outside F is dominated by some elementinside F (see[5, Page 40)). Later, the term

Von Neumann and Morgenstern’s stable set solution has been used for F by many authors to avoid confusion with other
solution concepts. Von Neumann and Morgenstern give an interpretation of stable sets: A stable set is a characterization of
what may be acceptable or established as a“ standard of behavior” in society. The idea being that all the imputations in any
given stable set correspond to some mode of behavior while imputations in different stable sets correspond to different
modes of behavior. The core is contained in each Von Neumann-Morgenstern stable set. The Von Neumann-Morgenstern
stable sets will be empty in the case of odd cycles. To avoid this particular problem, Van Deemen introduced the notion of the
generalized stable set which is able to produce a solution for every possible cyclic binary relation.

Kalai and Schmeidler in [2] introduced the concept of the admissible set. The admissible set concept can be applied to a host
of game-theoretic situations, ranging from non-cooperative games, where a coalition consists of an individual player, to fully
cooperative games, where any coalition can be allowed to form. An equivalent definition of the concept of admissible set was
introduced by Schwartz in [3]. Andrikopoulos in [1, Theorem 22] showed that if a generalized stable set solution exists, the

union of all generalized stable sets of (X, R) is equivalent to the admissible set.

In this note, we prove that a feasible set’ has a generalized stable set with respect to a dominance relation, if and only if
every undominated set has a minimal undominated subset with respect to this relation. This is done in a general framework
on which “ dominance relation” means arbitrary binary relation defined in infinite set of alternatives. The approach that we
take consists of associating each game or social activity with an abstract system (i.e., an abstract set endowed with a binary
relation). For instance, Kalai and Schmeidler in [2] associate the mixed extension of a normal form game with an abstract
system using a binary relation that only accounts for profitable single deviations.

2 The Main Result

We consider a dominance relation, denoted by R, and a (finite or infinite) non-empty set of alternatives X . An abstract
system is a pair (X,R) where X is a set of alternatives and R is a dominance relation on X . We sometimes

abbreviate (X,Y)€R as XRy . The asymmetric part of R is defined as the binary relaton P(R) on X with
XP(R)y ifand onlyif XRy butnot YRX.Asubset D < X is R -undominated if and only ifforno X € D there s
aye X\D such that ny . This was also defined by Kalai and Schmeidler under the name of R - closed set (see [2,
Page 404]). An R -undominated set is minimal if none of its proper subsets has this property. The transitive closure of
R is R={(X,y)| there exist K eN and X e X € X such that [X:X0 and (inl,Xk)eR for all

ke{l,..,K} and i = y]} . The sequence X 2 X e X IS known as the R -path from X to Yy . The

transitive closure of R sometimes referred to as the path dominance relation of R . A subset F of X is called a
generalized stable set with respectto R (see [4, Page 257)) if (i) for no elementin F , an R -path starts toward another
element in F, and (i) for every X outside F, an R -path starts from some Yy in F terminating at X. The first

property is called internal stability of domination and the second property external stability of domination. In fact, F isa
generalized stable set of X if it is a stable set of X with respect to the R -path dominance relation. The generalized
stable sets solution for an abstract system (X, R) is the collection of all its generalized stable sets. The admissible set
for an abstract system (X, R) istheset A(X,R)={xe X |ye X and (y,X) e R implies (X, Yy) € R} (see[2,
Definition in Page 403]). The admissible set of (X, R) is equivalent to the union of all minimal R -undominated subsets
of X (see [2, Theorem 5]).

The following theorem gives a characterization of the generalized stable sets solution. Note that this result can be applied to
any dominance relation.

Theorem. Let (X,R) be an abstract system. Then, (X,R) has a generalized stable set if and only if every R

-undominated set has a minimal R -undominated subset.

! The notion of Domination or Superiority is defined in [5, Page 37]. It refers to any process of comparing entities in pairs in order to find
which pair is preferred, or has a greater amount of some quantitative property.
2 The feasible set is the set of all alternatives (commodity bundles or payoff outcomes) that are possible solutions.
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Proof. To prove the necessity of the theorem, assume that (X, R) has a generalized stable set, say F . Let D be the
family of all the R -undominated subsets of X . We first show that D # J . Suppose to the contrary that this is not the
case. Then, for each X € X the singleton set {X} is not R -undominated. Therefore, there exists Y € X satisfying

y*Rx. Without loss of generality we can assume that X € F. Since F satisfies internal stability of domination we
concludethat Y~ & F . Hence, there exists Z € F (because of external stability of domination) suchthat (z,y") € R. 1t
follows that (Z,X) € R. Since z,X € F this is impossible unless we have Z = X. Therefore, Y"RX and XRy".we

define aset D* as follows:
D" ={y e X | yRx and XRy}.

This set is non-empty, since y* e D*. we prove that D" is an R -undominated subset of X . Indeed, assume that
ARy for some A e X \D* and some ye D". It follows that (1,X) € R. Since X F , as in the case of Y"

above, we conclude that (X, A1) € R. Therefore, 4 € D" which is impossible. The last implication shows that D" is an
R -undominated subset of X andthus D # J, a contradiction to the hypothesis that D = J . Therefore, D= .

M

Let now D eD. We show that D has a minimal R -undominated subset D . First, we prove that DﬂF .

Indeed, let Xe D . If Xe F, then this is evident. Otherwise, for suppose X & F, there exists Y € F such that

(y, X) € R . Therefore, there exists a natural number N and alternatives Xl,XZ,...,X l,X such that
n-. n

nyl...X lRX RX. Since Xxe D, if X € X\ D we cannot have X RX. It then follows that X € D . Similarly,
n-— n n n n

X L € D, and an induction argument based on this logic yields ye D . Hence in any case DﬂF # & must be true.

n—
Letnow Z € DﬂF .If Z isan R -undominated element, then {Z} = DNI is aminimal R -undominated subset of D
. Otherwise, there exists W' € X such that (W',Z) e R < ﬁ Since F satisfies internal stability of domination we
conclude that W™ & F . Hence, there exists W € F such that (W, W) € R . It follows that (W,Z) € R . Since
W,zeF, we must have W = Z. It follows that (z,W') € R. Let D" ={we X |(w,2) eRand (z,w) eﬁ}
Since W' € DNI , DM # (J . We prove that DNI is a minimal R -undominated subset of X such that DNI cD.
To show that DNI is R -undominated, suppose that (S,W) € R gﬁ for some Se X\ DNI and We DNI : to
deduce a contradiction. It follows that (S,Z) € R which implies that S & F . Therefore, there exists s € F such that
(s,s)eR.Hence, (S,2)eR.Since S,z F thisisimpossible unless we have S = Z. It follows that (Z,S) € R
which jointly to (S, Z) €R leads to a contradiction with Se X \ D" . This contradiction implies that D" is R
-undominated. Since for each W e D’vI , the set DNI \{W} is not R -undominated, it follows that DNI is a minimal R
-undominated subset of X . It remains to prove that DNI C D . To see this, let We DNI . Then, it must be that

(w, 2) €R | ie, there exist Zl,Zz,...,Z such that WRZl...Z Rz . since D is R -undominated and z€ D, it
n

n
follows as above that We D .

For the sufficiency of the theorem, we suppose that every R -undominated set has a minimal R -undominated subset.
First, we prove that under this assumption (X, R) has atleast one minimal R -undominated subset. There are two cases

to consider: (i) There exists X & X such that for each Yy € X, (Y, Xo) & P(ﬁ); (ii) For every X € X there exists

y € X suchthat yP(ﬁ)x. Incase (i), if X isan R -undominated element then {Xo} is aminimal R -undominated
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subset of X . Otherwise, there exists y* € X such that (y~, Xo) eRcR. since (y", Xo) 2 P(ﬁ) we conclude

— —

that (Xo,y*)eﬁ. Let D={yeX |(y,x0)eﬁand (Xo,y)eﬁ}. Clearly, D # . We now showthat D is a

— —

minimal R-undominated set. Indeed, suppose to the contrary, that (z,y) € R for some ze X\D and yeD. It

— —

follows that (Z, Xo) eR. Since (z, Xo) ¢ P(F_Q) , we conclude that (X0 ,2) € R. Hence, z €D, a contradiction. D

is also minimal since none of its proper subsets is R -undominated. In case (i), let X € X . We define aset A as
X

follows:
A ={yeX|yPR)}.

It easy to check that A < X \{X} < X isan R -undominated setin X . By the assumption, there exists a minimal
X

— —

R -undominated set D suchthat D < A . In both cases, therefore, (X,R) has a minimal R -undominated set. To
X

prove that (X, R) has a generalized stable set, let D ={D, |i € I} be the family of all the minimal R -undominated
subsets of X . Since D €D, this set is non empty. For each iel, we choose a di (S Di . We show that
D={d, |iel} is ageneralized stable set of (X,R).We first show that D satisfies internal stability of domination.

Indeed, suppose to the contrary that (d i ,d j) € R forsome 1, j € | . Therefore, there exists a natural number N and

— — P

alternatives 51,52,...,5 1,5 such that di Ré‘l...é‘ 1R5 Rd ; - Then, since Dj is R -undominated, following
n- n n- n

—_— —_— —_—

the above reasoning, as X ,...,X , we get d, e Dj , a contradiction since DiﬁDj =@ (D, and Dj are
n

minimal R -undominated subsets of X ). Hence, (d i ,d j) ¢ R . To complete the proof it remains to prove that D
satisfies external stability of domination. Let W& X \D. We prove that (d, ,W) € R for some K € | . There are two

s e

cases to consider: (al) weD, forsome kel; (az) WéLJiel D, .

— —

Case (al).Since we X \D, itfollowsthat D, #{w}. Put BW ={seD, | (5, W) € R}. We have that BW %

, because otherwise, for each se D, , (s,W) ¢R implies that (S,W) & R, and hence {W}c D, isan R

—_— e~ ——

-undominated subset of X , a contradiction because of the minimal character of Dk . Let Dk = Dk \B . we now
w

e~ — ———

show that D, =(J. We proceed by contradiction. Assume that D, # . Then, for each S € D, andeach s€B

w

e~ e~ e~ ———

we have (S,S)¢& R for suppose otherwise, (S,S) € R implies that (S,W) € R contradicting S € D, . Therefore,
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—_— — —_—

B <D, isan R-undominated subsetof X ,again a contradiction. Hence, D, = .Itfollowsthat D, =B .But
w w

then, since d, € D, we conclude that (d, ,w) € R.

—

Case (@ ). Let we ) D, . wedefine

A ={reX|(r,w)eR}.

p—

We show that A is non-empty. Indeed, suppose to the contrary that for each e X , (r,w) & ﬁ Then, {W} = Di
w

—

for some | € |, a contradiction to Wel |ie| D, .Hence, A #(.since A is R -undominated, by the asumption,
w w
there exists a minimal R -undominated subset D, , K€l such that D, < A . It follows that (d, ,w) € R. The
w
last conclusion completes the proof.

The following result is an immediate corollary of the above theorem.

Corollary. [4, Theorem 3]. Let X be a nonempty finite set and R a non-empty asymmetric binary relation on X . Then
there exists a generalized stable set F suchthat F is non empty.

Considering [2, Theorem 5] which shows that the admissible set is equivalent to the the union of allits R -undominated sets
and [1, Theorem 22], we obtain that under the assumption that a generalized stable set exists, the union of all generalized

stable sets coincides with the union of all R -undominated sets. In this case, the two general solution conceps are identical.
But when the union of generalized stable sets is empty, that is not so, as the following example shows. Let

X ={x |1<n<N,N eN}LJ{y |meN}. Define the relation R as follows: X RX for each N >n and
n m n

n

y _Ry for each M >m. Then R is a partial order. Clearly, each subset of X violates external stability of
m m

domination. Thus, the family of generalized stable setsin X is empty. On the other hand, the admissible set is equal to the
singleton {XN}.
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