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ABSTRACT

In this paper we consider a pseudo- parabolic equation with a periodic boundary condition and we prove the stability of a
solution on the data. We give a numerical example for the stability of the solution on the data.
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INTRODUCTION

Consider the following mixed problem

U = Uy — EU + fx,tu),(x,0)eD ={0<x <7, 0<t<T} (1)
u(0,t) = u(m,t),te[0, T] )
u, (0,t) = u,(m,t),te[0,T] (3)
u(x,0) = p(x), xe[0, ] 4)

for a quasilinear parabolic equation with the nonlinear source term f(x,t,u). The functionse(x) and f(x,t,u) are given
functions on[0, ]] and D X (—oo,0) respectively.Let € > 0 is small parameter.

Denote the solution of the problem (1)-(4) by u = u(x, t, €).

The existence, uniqueness and convergence of the weak generalized solution the problem (1)-(4) are considered in [1].
The numerical solution of parabolic problem is consideredin [3].

In this study we prove the contiunous dependence of the solution u = u(x, t, &) upon the data ¢(x) and f(x,t,u).This kind
of conditions arise from many important applications in heat transfer, life sciences, etc. For example the periodic
conditions are used on lunar theory and in the system of rocket firing in [2]. Then we give a numerical example using the
method for the stability.

CONTINUOUS DEPENDENCE UPON THE DATA

In this section, we shall prove the contiunous dependence of the solution u = u(x, t,€) using an a iteration method.The
contiunous dependence upon the data for linear problems by different methods are shown.

Theorem: Under the following assumptions, the solution u = u(x, t, €) depends contiunously upon the data.

(A1) Let the function f(x,t,uw) is continuous with respect to all arguments in D X (—oo, ) and satisfies the following
condition

If (& x,u) — f(t,x,u)| < b(x, t)|u—ul,
Where b(x,t) € L*(D),b(x,t) = 0,
(A2) f(x,t,0) € C*[0,7], te[0, 7]
(As) p(x) € C*[0,7].
Proof:Let¢ = {¢, f} and ¢ = {®, f}be two sets of data which satisfy the conditions (A)-(As)
Letu = u(x,t, &) and v = v(x, t, €) the solutions of the problem (1)-(4) corresponding to the data ¢ and ¢ respectively and
If(t,x,0) — f(t,x,0)| < & fore = 0.

The solutions of (1)-(4) u = u(x, t, €) and v = v(x, t, €) in the following form, respectively,

uo(t,€) = @o+= [y Jy F(&7u(§ 7 8))dédr,

—@2k)%t -@2KA -7

U (L, &) = el + f f (&7, u(E t e))e 1+:C0? cos2kEdédr,

1+£(2k)? 0

—2k)%t —Qk)?(t—1)

t T
@ 1 2
= 1+ek)? 4 ———— | — 1+&(2k) 1
Ug, (t,8) = g e + 1 _I_S(Zk)zofnoff(f,r,u(f,r, €))e 7 sin2ké&dédr,

2 t
vo(t, €) = Po +Efff(f,‘r,v(f,t, £))dédr,
00

—2K% -2K%t-7)

Ver(t, €) = Pgei+e@o’ + f f f(&1,v(§18)e 1+:C07 cos2kEdédsr,

1+£(2k)2

—2k)% —Qk)?(t—1)

= @, el+te@k)? 1+e(2k)
vy (t, &) = Py elt + 1 +s(2k)2f ff(f T,v(§,1,€))e 1+:@? sin2kédEdr,
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From the condition of the theorem we have u'®(t,&) and v'®(t,€) € B. We will prove that the other sequentially
approximations satisfy this condition.

uM (it e) = ulPt, &) + = f f &1, uM (&1 6)dédr,

L9 ()

u® (it e) = u (t,£) + L2 f(enu™ (g te))e 1+:ao? coszkédidr, (5)

1+£(2k)? 70 70
27 —@k2(-1)
(N+1)(t €)= (0) 1 +£(2k)2fnff(§'.[' u(N)(f, T, g))e 1+e(2k)2 sin2kédédr,
0
2 t
o = vl e+ [ [ 6 n o™ @ v enagar,
00
(N+1 © t2 m Sl
)(t,e) =vD(t, &) + 1+£(2k)2 Jo= o f(f ., vM (¢, 1, s)) e 1+:@0? cos2kédédr, (6)

—@k)2(t-1)

v V(68 = v () + Ty oy (2k)2 f f F(60,vW & 1,6)) e 15:C7 sinzkédgds,

-kt -kt
where 1, (t, &) = (po,uck )(t, €)=, eTHCr?, (0)—(p L e1+:@7 | and
—@2k)%t — k)%t
(0)(t €)= (pO'vck (t €)= €1y ()(t €)=y, ey,

First of all , we write N = 0 in (5)-(6). we consider u(t, ) — v (¢, &)
UM (t,€) v (e, ) = L2 CDge [Pt e) v (8, )) coszhx + (ul (6, €) = v (&, )) sin2kx]
—(zk) t

=(@o = Po) + %fot I [f (f, 7,u®(§, 7, 8)) f (E T,vO(,T, s))] d&dt + (Qo — Py ) €1+@F

—@k)2 (1)

il 2l [ (8 100@ 1.0) - F (67,90 7, 0)| e 4@ cos2ksdgar %

—-(2k)%t —@k)?(t-1)

(P = P e THE07 + L2l (e ou@@re) -7 (6 1vOE ne)|e @ sinzkedéde

1+e(2k)?

Adding and subtracting

t T s
—QI)2(t-1)

1 2 —@2K)% -0 1
= £(2k) — 1+e(2k)2
1+ S(Zk)zbfnoff(f.‘[, 0)e 1+e@n)? COSZkfdde,l n S(Zk)zfn!f@ 7,0)e 1+ sin2kédéd,

N

: Of Of (67, 0)déd,

to both of side and applying Cauchy Inequality, Holder Inequality, Lipshitzs Condition and Bessel Inequality to the right
side of (7) respectively,we obtain:

@ @
@ (&, 8) v (g, 0)| < L2 s WDt e) — vt )] + [ul(e) — v @ )] < llg -
Y+ 37+76m0t 0w b 2§, rdédr1 2ulx, £+3T +7670t07rh 28 1dédr1 2v0t,

#PT ( (R[2(6,7,0) — f2(6,7, 0)Jdde)
where
Ay = llg = IS b Ol ® &, 2)| + DL [5G, 0[o (6.2 +# L - 7]

|</J0 @ol

IIga QDH =max—_— + Z?:llwck — Pk |+ |qosk — Pk [

ForN =1,
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u@(t,e)—v @ (t,e) 2 2 2 2
[u®(t,e) —vP(te)| < Q +Y0 1[|u( (t, &) — vt )(t e+ |u( Nt &) — vs(k)(t, 8] <

BT (o b2(s, T)dfdf) Ap + ”” (0 TR r)dfdr) 4r.
For N = 2,

B(t,6)—p®
[u®(t,e) — v (¢, 2)| < Ju (f'e) v o)

\/_+n (f f b2 (¢, D) |uP (¢, &) —v(z)(t 5)| dédr ) (f f B2, D)|u@(t, &) — v@(t, )| dfd'[) <

?” (f I RGNS bz(fhrl)dfldﬁ)d{d) + 2 (Gl HGLION b2(§,,7,)d€ dy )dédr)’ <
(C:T Tf[ INNEGRYE ] +(“;Z”) ATI[(f [ B2(¢, 1) dgdr) ]

In the same way, for a general value of N we have

[u+D(t, &) — v WD (¢t e)| <
N+1) N+1)
|u (t,e)-v e, Zk 1“ (NH)(t,E) (N+1)(t £)| +|u(N+1)(t,£) (N+1)(t £)|] <Aray <

2
ay(llp = @l + c@®) + My||f = 7l)

+Zk 1[|u(3)(t €) _v(3)(t £)| + |u(3)(t ) — (3)(t E)” <
\/_+T[

1

where

N =

N

ay = (%)N%W[(f(f [y b€ Ddédr) ] + (CZ”) T[( [¢ [T B2 (E v ded) ] ,

" (\/3_T+1T>
] ver )
(M =The sequence ay is convergent then we can write ay < N,VN)
It follows from the estimation ([3]) that limy_,., u™* (1) = u(t),
then let N — oo for last equation
lu(®) — v(®)| < Mllg — ¢l + MaIf = fII)
where M, = M.M ;.
If|IfF-fll <& llo — ¢l < ethen |u(®) —v(t)| < e
NUMERICAL PROCEDURE FOR THE NONLINEAR PROBLEM (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

(57) = (5) < () + f™™, pen ®
u™(0,t) = u™(@m,t), te[0,T] (9)
u, (0,t) = u,™(m,t), te[0,T] (10)
u™(x,0) = @), x € [0,m]. (11)
Let u®(x,t) = v(x,t) and f(x, t,u’?) = f(x,t). Then the problem (8)-(11) can be written as a linear problem:
()= (52 -eGa) +fwn woen 12
v(0,t) = v(mt), t €[0,T] (13)
v,(0,t) = v (mt), te€0,T] (14)
v(x,0) = @(x), x € [0,m]. (15)

We use the finite difference method to solve (12)-(15).

We subdivide the intervals [0,7] and [0,T] into M and N subintervals of equal lengths h = (r/M)and 7 = (T/N),
respectively.

Then, we add two lines x = 0 and x = (M + 1)mh to generate the fictitious points needed for dealing with the secondary
boundary condition.
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We choose the implicit scheme, which is absolutely stable and has a second order accuracy in h and a first order
accuracy in t.

The implicit monotone difference scheme for (12)-(15) is as follows:

W -v)_1

( ]+1 j+1
T T h?

z+1)_h2 UJH Zvin 1+1) (VL1_2U +VL+1)+f]+1

¢qu UM'U;{ 0= v)]c M
where0 <i <M and 1 <j < N are the indices for the spatial and time steps, respectively, v{ is the approximation to
V(xi:tj):fi,j = f(xi'tj)r b = o(x),x; = iht; = jt.
At the t = 0 level, adjustment should be made according to the initial condition and the compatibility requirements.
Numerical Example
In this section, we will consider an example of numerical solution of the problem (1)-(3).

This problem was solved by applying the iteration scheme and the finite difference scheme which were explained in the
Section 2. The condition

eTTOT(l ]) — ”ul (n+1) __ {(n)”w
with
error(i,j):= 1073
was used as a stopping criteria for the iteration process.

Example: Consider the problem

(@-) i (02—2) L g( o ) = 4(—cos2x + (sin2x)?)(1 — &)u, (x, t)eD

ot ox dx2ot

u(x,0) = exp(cos2x),x € [0, ],

u(0,t) = u(m,t), t€[0,T],u(0,t) =u,(mt), t E€[0,T].
It is easy to see that the analytical solution of this problem is

u(x,t) = exp(t + cos2x)

The comparisons between the analytical solution and the numerical finite difference solution for differente values when
T =1 are shown in Figure 1 and 2.

8 . . . . . .
B 7
\T{S] Y
kS /4
6F 14 /s 4
Y /i
\q /A
L % 4
5 \;\ﬂ ﬁff
y
134 \ /?‘f
= i \‘- / .
= N fff
A\
3t . y _
Y /A
\.
2t N /{d §
S 4
g //
1" z
D 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35

Figure 1 - The exact and numerical solutions of u(x,1)

The exact and numerical solutions of u(x,1) for €=0, the exact solution is shown with dashes line.
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Figure 2 -The exact and numerical solutions of u(x,1)
The exact and numerical solutions of u(x,1) for €=0.05, the exact solution is shown with dashes line.

In Figure3 we show that the analytical solution for e = 0 and the numerical solution fore = 0, = 0,1, = 0,05.

] 0.5 1 15 2 25 3 35

Figure 3 - The exact and numerical solutions of u(x,1)

The exact and numerical solutions of u(x,1), (-a) for €=0, (-) for €=0.05, (-*) for €=0.1, the exact solution is shown with
dashes line.

Relative errors obtained on different grids for different € are shown on Table 1.
Table 1. The relative errors for different grids for e =0,£=0.05 and € = 0.1.
h T e=0 £=005¢=0.1
0.1571 0.025 0.0142 0.0250 0.0553
0.1571 0.0125 0.0151 0.0269 0.0624
0.0785 0.025 0.0160 0.0334 0.0642
0.0785 0.0125 0.0179 0.0373 0.0720
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From Figure 3 and Table 1,2 and 3 when € approximates to zero the numerical solutions converge to the exact solution for
e = 0 like theoretical results .

REFERENCES

[1] Halilov H.,Ciftci(Baglan) 1. 2009.Fourier Method for a Qusilinear Pseudo-Parabolic Equation with Periodic Boundary
Condition.Hacettepe International Journal of Pure and Applied Mathematics. 52, 717-727.

[2] Hill GW. 1886 On the part of the motion of the lunar perigee which is a function ofthe mean motions of the sun and
moon. ActaMathematica .8, 1-36.

[3] Kanca F., Baglan I. 2013 Continuous dependence on data for a solution of the quasilinear parabolic equation with a
periodic boundary condition.Boundary Value Problems.28.

[4] Sakinc(Baglan) 1.2010 Numerical Solution of a Qusilinear Parabolic Problem with Periodic Boundary Condition.
HacettepeJournal of Mathematics and Statistics.39(2), 183-189.

745|Page Jan 6, 2014



