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ABSTRACT 

Approximate analytical solution of the matrix Riccati differential equation related to the linear quadratic optimal control 
problems, is the main goal of this paper which has a specific importance in the optimal control theory. To this end, a 
modification of the parametric iteration method is used. This modification reduces the time consuming repeated 
calculations and improves the convergence rate of the iterative algorithm. Comparison with the existent solutions and also 
with the numerical Runge-Kutta (RK78) method confirms the high accuracy of the method, whilst accessibility to the 
analytical solutions is the preference of the new technique. 
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1. INTRODUCTION 

Consider the following linear quadratic optimal control problem (LQ-OCP) 

𝑀𝑖𝑛 𝐽 =
1

2 
𝑥𝑇 𝑡𝑓  𝑆 𝑥(𝑡𝑓) +

1

2
   𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢  𝑑𝑡

𝑡𝑓

𝑡0

,

s. to: 𝑥 = 𝐴𝑥 + 𝐵𝑢  ,         𝑥 𝑡0 = 𝑥0 .                                

                                                          (1.1)   

Where 𝑥 𝑡 ∈ ℝ𝑛  and 𝑢 𝑡 ∈ ℝ𝑚  are the state and control vectors, respectively. 𝐴 ∈ ℝ𝑛×𝑛  and 𝐵 ∈ ℝ𝑛×𝑚  are constant 
matrix and 𝑥0 is an initial state. The LQ-OCP is to find a control law 𝑢 ∗(𝑡) which minimizes the above quadratic cost 
functional where 𝑆, 𝑄 ∈ ℝ𝑛×𝑛  are symmetric positive semi-definite matrices and 𝑅 ∈ ℝ𝑚×𝑚  is a symmetric positive definite 
matrix. 

The optimal control 𝑢 ∗(𝑡) for the above LQ-OCP is a linear feedback of the states as 𝑢∗ 𝑡 = −𝐾 𝑡 𝑥∗ 𝑡  with 𝐾 𝑡 =
𝑅−1𝐵𝑇𝑃 𝑡 , where the matrix 𝑃(𝑡) is the solution of the following matrix Riccati differential problem (RDP) [6] 

𝑃  𝑡 = −𝑃 𝑡 𝐴 − 𝐴𝑇𝑃 𝑡 + 𝑃 𝑡 𝐵𝑅−1𝐵𝑇𝑃 𝑡 − 𝑄,          𝑃 𝑡𝑓 = S                                                (1.2) 

In order to obtain the optimal control feedback we have to find the 𝑃(𝑡)from solving the RDP (1.2). A superseded 
alternative to find the solution 𝑃(𝑡) of the RDP (1.2) is solving the so–called Hamiltonian differential problem (HDP) [6] 

                                                            

 𝑋
 

𝑌 
 = 𝐻  

𝑋
𝑌
   𝑤𝑒𝑟𝑒  𝐻 =  

𝐴 −𝐵𝑅−1𝐵𝑇

−𝑄 −𝐴𝑇  ,

 
𝑋(𝑡𝑓)

𝑌(𝑡𝑓)
 =  

𝐼𝑛
𝑆
 .                                                         

                                                                   1.3  

Here 𝐼𝑛  is an 𝑛 × 𝑛 identity matrix. The following theorem states the precise relation between the solutions of the RDP 
(1.2) and those of the HDP (1.3) (the proof in [7]). 

Theorem 1.1Let  𝑋, 𝑌: (−∞, 𝑡𝑓] → ℝ𝑛×𝑛  be the solutions of the HDP (1.3). Then 

1. 𝑋(𝑡) is non-singular for all 𝑡 ∈ (−∞, 𝑡𝑓]. 

2. The solution 𝑃(𝑡) of the RDP (1.2) is 𝑃 𝑡 = 𝑌 𝑡 𝑋−1 𝑡  when 𝑡 ∈ (−∞, 𝑡𝑓]. 

This theorem provides us an analytical process to compute the solutions of the RDP (1.2) via the solutions of the HDP 
(1.3). This is theoretically good, but in practice, the solutions of the HDP (1.3) are 

                                                             
𝑋 𝑡 

𝑌 𝑡 
 = 𝑒𝐻 𝑡−𝑡𝑓  

𝐼𝑛
𝑆
                                                                                                      1.4  

 

and in general, there is no explicit way to express the exponential matrix 𝑒𝐻𝑡 . Therefore, some additionaltechniques have 
to be applied to establish the solutions. For instance, the so–called Davison–Maki numerical method[8] proposes a 
procedure by partitioning the exponential matrix. Besides, from the early 1970s, many of researchers (see e.g. [5,7,14]) 
have been centered on the attempt to characterize more explicit representations for the solutions of the RDP (1.2). 

One of the most general formulas which is introduced in [12], exploits the particular solutions of the associated algebraic 
Riccati equation. The authors established an explicit closed formulae for the solutions of the RDP (1.2) under some 
specific assumptions [12].Theoretically, they proved some important existence theorems but in practice, there doesn’t 
seem to be presented an easy to use computational procedure. Because, in order to solve the RDP (1.2), some lateral 
systems such as the Sylvester equations and the Lyapanov equations (same reference) have to be solved and then the 
general formula involving the exponential matrix can be employed. This states that such closed–form formulas may lead to 
time–consuming computations, except for certain special applications. 

During the last four decades, beside such analytical solutions, approximate methods have been applied for finding the 
solutions of the RDP, for example, the above mentioned Davison–Maki numerical method [8].Another typical sample is the 
numerical integration method [10].Although the numerical integration methods are flexible, but they have their 
weaknesses, for instance, they react quite sensitively on the selection of time-step size (see e.g. [16]). 

In recent times, due to the importance of the RDP in many fields of applied sciences, a vast amount of researches have 
been invested in the study of analytic approximate methods for solving the RDP [1-4,15]. Such methods expand the 
solution via a series or sequence of functions which provide better information of the solution in comparison with the 
numerical methods. Especially in the control theory, the numerical results may be not suitable for studying features like 
switching, limiting behavior of the solution and analysis of sensitivity of the solution in perturbations, which are 
fundamental arguments in both practical and theoretical viewpoints. 

However, the analytic approximate methods have their demerits, for instance, their successive iterations may be very 
complex such that resulting integrations in their iterative relations may be impossible toper form analytically. Moreover, 
their application to the RDP may lead to the calculation of repeated termsor the terms that are not needed, consequently 
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more time is consumed in unnecessary calculations. Finally, the convergence region of the series or sequence of the 
solution may be rather small. 

In this work, we aim to overcome the above mentioned difficulties by introducing a piecewise truncated parametric iteration 
method for solving the RDP (1.2). The numerical examinations confirm that this method provides an excellent 
approximations in a straightforward manner. 

2. IMPLEMENTATION OF THE METHOD 

The parametric iteration method (PIM) [9] is an analytic approximate method for solving linear and nonlinear problems. In 
this section, first, we introduce the PIM for solving the matrix Riccati differential problem (1.2), then, we explain a 
modification of the PIM to improve the accuracy of approximations. The idea of the PIM is simple. To explain the PIM, 
rewrite the matrix equation (1.2) as  

ℒ 𝑃 𝑡  + 𝒩 𝑃 𝑡  = 𝑔 𝑡 .                                                                                                                           (2.1) 

where ℒ with the property ℒ 𝑓 = 0 when 𝑓 = 0, denotes the so–called auxiliary linear differential operator with respect to 
𝑃, 𝒩is a nonlinear operator with respect to 𝑃and 𝑔(𝑡) is the source term. 

Because of the terminal condition of the RDP (1.2), it is straightforward to expand the solution via a set of basis functions 

as (𝑡 − 𝑡𝑓)𝑚 | 𝑚 = 0, 1, 2, . . .  . Each selection of ℒ will affect on the expression of the solution, therefore a natural choice for 

the auxiliary linear differential operator ℒ is ℒ 𝑃 𝑡  = 𝑃 (𝑡). 

Hence, a family of iterative formulas constructed by PIM [9,13] for the RDP (1.2) becomes  

𝑃𝑘+1 𝑡 = 𝑃𝑘 𝑡 +   𝐻(𝑠)[
𝑡𝑓

𝑡

𝑃𝑘
  𝑠 + 𝑃𝑘 𝑠 𝐴 + 𝐴𝑇𝑃𝑘 𝑠 − 𝑃𝑘 𝑠 𝐵𝑅−1𝐵𝑇𝑃𝑘 𝑠 + 𝑄]𝑑𝑠 ,    𝑘 = 0,1,2,…                   (2.2) 

Here 𝐻(𝑡) ≠ 0 is an auxiliary function which in view of the above solution expansion, is determined as 𝐻 𝑡 = 1. Also  ≠ 0 
is an accelerating factor [9] and as will be shown in the next section, a suitable value of , directly improves the 
convergence rate of the sequence of approximations. This is the main merit of the PIM over the methods in [1-4]. 

The first component 𝑃0(𝑡)as an initial approximation may be selected by the solution of the corresponding linear 

homogeneous equation ℒ[𝑃0(𝑡)] = 0. Here, according to the terminal condition in the RDP (1.2), we choose 𝑃0 𝑡 = 𝑆. 
Accordingly, the successiveapproximations 𝑃𝑘(𝑡);𝑘 ≥ 1 will be readily obtained satisfying the general property 

𝑃𝑘+1 𝑡 = 𝑃𝑘 𝑡 =. . . = 𝑃0 𝑡 = 𝑆.                                                                          (2.3) 

Finally, the exact solution may be obtained by using 

𝑃(𝑡)  =  lim
𝑘→∞

𝑃𝑘 𝑡 .                                                                                                        (2.4) 

The successive iterations of the PIM to solve the RDP (1.2) may be very complex, so the integrals in (2.2) may not be 
performed analytically. Also, the implementation of the PIM may lead to the calculation of unnecessary or repeated terms, 
which causes to consume more time. For these reasons, we utilize the truncated PIM [13] for solving the RDP (1.2). 
Therefore, we have 

𝑃𝑘+1 𝑡 = 𝑃𝑘 𝑡 +  𝛷𝑘 𝑠 
𝑡𝑓

𝑡

ds  ,       𝑘 = 0,1,2,…                                                                   2.5  

where 𝑃0(𝑡) is the initial approximation and 𝛷𝑘 𝑠 is obtained from the expansion of theintegrand of (2.2) in Taylor series as  

𝑃𝑘
  𝑠 + 𝑃𝑘 𝑠 𝐴 + 𝐴𝑇𝑃𝑘 𝑠 − 𝑃𝑘 𝑠 𝐵𝑅−1𝐵𝑇𝑃𝑘 𝑠 + 𝑄 = 𝛷𝑘 𝑠 + 𝑂   𝑠 − 𝑡𝑓 

𝑘+1
                                        (2.6) 

Unfortunately, this solution gives a good approximation to the exact solution only on a small region of 𝑡. An easy and 
reliable way to improve the approximations for large 𝑡 is todetermine the solution on a sequence of equidistant 

subintervals of 𝑡, i.e. 𝐼𝑁−𝑖 =  𝑡𝑁− 𝑖+1 , 𝑡𝑁−𝑖  ,   𝑖 = 0,1, … , 𝑁 − 1 where 𝑡𝑁 = 𝑡𝑓 . Therefore, on 𝑡𝑁− 𝑖+1 , 𝑡𝑁−𝑖 , we can 

constructthe following piecewise approximations of truncated PIM (2.5), which is called the piecewise truncated parametric 
iteration method (PTP) [13]  

𝑃𝑘+1,𝑁−(𝑖+1) 𝑡 = 𝑃𝑘 ,𝑁−(𝑖+1) 𝑡 +  𝛷𝑘 ,𝑁−(𝑖+1)(𝑠)
𝑡𝑁−𝑖

𝑡

ds = 𝑃𝑘𝑚𝑎𝑥 ,𝑁−(𝑖+1) 𝑡  ,

𝑃0,𝑁−(𝑖+1) 𝑡 = 𝑃𝑘𝑚𝑎𝑥 ,𝑁−𝑖 𝑡𝑁−𝑖 = 𝑆𝑁−𝑖 ,     𝑘 = 0,1, … , 𝑘𝑚𝑎𝑥 − 1,  𝑖 = 0, …𝑁 − 1.

                                              (2.7) 

 

where 𝛷𝑘 ,𝑁− 𝑖+1 (𝑠) is as mentioned in (2.6) and 𝑃𝑘𝑚𝑎𝑥 ,𝑁 𝑡𝑁 = 𝑆𝑁 = 𝑆. Now, the analytic approximatesolution of the RDP 

(1.2) on the entire interval [𝑡0 , 𝑡𝑓  ] can easily be obtained and all solutions on  𝑡𝑁− 𝑖+1 , 𝑡𝑁−𝑖  are continuous at the end 

points of the each subinterval. 
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Remark 2.1 In the case of failure of convergence of the PTP algorithm, the presence of the parameter could play an 
important role in the frame of the method. Although we can find a valid region of  for every physical problem by plotting 
the solution or its derivatives versus the parameter  in somepoints [11,13], but an optimal value of  can be determined at 
the order ofapproximation by the residual error 

𝑅𝑘
𝑁−𝑖 𝑁−𝑖 =  {ℒ 𝑃𝑘 𝑡; 𝑁−𝑖  + 𝒩 𝑃𝑘 𝑡; 𝑁−𝑖  

𝑡𝑁−𝑖

𝑡𝑁− 𝑖+1 

− g t }2dt,         i = 0, 1, 2, . . . , N − 1.                   2.8  

One can easily minimize (2.8) by imposing the requirement 
𝜕𝑅𝑘

𝑁−𝑖 𝑁−𝑖 

𝜕𝑁−𝑖
= 0 which gives an approximateoptimal  in the 

interval  𝑡𝑁− 𝑖+1 , 𝑡𝑁−𝑖  for 𝑖 = 0, 1, 2, . . . , 𝑁 − 1. 

3. NUMERICAL EXPERIMENTS 

3.1. An illustrative example 

In this section, an example will be solved in details by the presented method. Consider the following optimal control 
problem from [17]  

                                          

𝑀𝑖𝑛 𝐽 =
1

2
   𝑥𝑇 𝑡  

0 0
0 4

 𝑥 𝑡 + 𝑢2 𝑡   𝑑𝑡
𝜋

2
0

,              

s. to: 𝑥  𝑡 =  
0 0
1 0

 𝑥 𝑡 +  
1
0
 𝑢 𝑡 .                                

                                                               3.1  

According to (1.1), we have 𝑡0 = 0, 𝑡𝑓 =
𝜋

2
  and 

𝐴 =  
0 0
1 0

 , 𝐵 =  
1
0
 ,   𝑆 = 0,    𝑄 =  

0 0
0 4

 ,   𝑅 = 1. 

Then the matrix Riccati differential equation is 

𝑃  𝑡 = −𝑃 𝑡  
0 0
1 0

 −  
0 1
0 0

 𝑃 𝑡 + 𝑃 𝑡  
1 0
0 0

 𝑃 𝑡 −  
0 0
0 4

 ,        𝑃  
𝜋

2
 = 0.                (3.2) 

or 

 
  
 

  
 𝑃 11 𝑡 = −𝑃12 − 𝑃21 + 𝑃11

2,                      𝑃11  
𝜋

2
 = 0

𝑃 12 𝑡 = −𝑃22 + 𝑃11𝑃12 ,                             𝑃12  
𝜋

2
 = 0

𝑃 21 𝑡 = −𝑃22 + 𝑃11𝑃21 ,                            𝑃21  
𝜋

2
 = 0

𝑃 22 𝑡 = 𝑃12𝑃21 − 4,                          𝑃22  
𝜋

2
 = 0 

                                                                      (3.3) 

To show the influence of  on the solutions obtained via the PTP algorithm, we have listed the maximum absolute error of 
the components 𝑃(𝑡) for various orders in Table 3.1. The results illustrate that the error decreases as the order of 
approximations increases for each considered value of . This means that the corresponding sequences are convergent 
for all mentioned , although some among them converge faster than others.  

  

Table 3.1The maximum absolute error of the 𝑷(𝒕) components using the PTP algorithm in solving (3.3) 

  

 

 

 

 

 

 

 

The approximate optimal h obtained for the second order PTP solutions, according to (2.8), in all subintervals 𝐼𝑁−𝑖  when   

N = 100 and 𝑖 = 0,1,… , 𝑁 − 1can be observed in Figure 3.1. 

 

              𝒉 

Order 
-0.75 -0.80 -0.90 -1.00 -1.10 -1.20 -1.25 

2 1E-1 9E-2 2E-2 4E-4 3E-2 1E-1 2E-1 

3 4 E-2 2 E-2 3 E-3 4 E-6 3 E-3 2 E-2 4 E-2 

4 9 E-3 4 E-3 3 E-4 5 E-8 3 E-4 4 E-3 1 E-2 

5 2 E-3 8 E-4 3 E-5 8 E-10 3 E-5 9 E-4 3 E-3 
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Figure 3.1 Approximate optimal 𝒉 in 𝑵 = 𝟏𝟎𝟎 subintervals obtained by the residual error (2.8) 

3.2. Comparison with variational iteration method and RK78 

In order to show the accuracy of the PTP method, we compare the obtained solutions of the PTP algorithm and those of 

the Maple RK78 solver. The absolute error (i.e. 𝐸𝑗  𝑡 =  𝑃𝑗
𝑅𝐾78 (𝑡) − 𝑃𝑗

𝑃𝑇𝑃(𝑡)  ,   𝑗 = 11,12,21,22  ) for the elements of the 

matrix 𝑃(𝑡) with 𝐾𝑚𝑎𝑥 = 4 and 𝑁 = 100 is shown in Figure 3.2 and Figure 3.3. More completed report is presented in 
Table 3.2. 

 

 

Figure 3.2 The absolute error of 𝑷𝟏𝟏(𝒕)(dot) and 𝑷𝟏𝟐(𝒕)(dash) of the PTP algorithm when 𝑲𝒎𝒂𝒙 = 𝟒 and 𝑵 = 𝟏𝟎𝟎. 
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Figure 3.3 The absolute error of 𝑷𝟐𝟏(𝒕)(dot) and 𝑷𝟐𝟐(𝒕)(dash) of the PTP algorithm when 𝑲𝒎𝒂𝒙 = 𝟒and𝑵 = 𝟏𝟎𝟎. 

Table 3.2 The maximum absolute error of the 𝑷(𝒕) components for various number of subintervals 

iterations 10 intervals 50 intervals 100 intervals 

2 4.0 E-2 1.6 E-3 3.8 E-4 

3 4.3 E-3 3.6 E-5 4.5 E-6 

4 5.3 E-4 7.7 E-7 4.8 E-8 

5 6.4 E-5 2.1 E-8 8.3 E-10 

 

In view of optimal control problems, using the computed matrix 𝑃(𝑡) as the solution of the matrix RDP(3.3), the main factor 

of the linear feedback 𝑢∗ 𝑡 = −𝐾 𝑡 𝑥∗ 𝑡  i.e. 𝐾 𝑡 is available via 𝐾 𝑡 = 𝑅−1𝐵𝑇𝑃 𝑡 . A good criterion to check the validity 
and the accuracy of the obtained𝐾 𝑡  is its exact value, which is fortunately, existent. From [17], we have 

 

𝐾 𝑡 =  
sinh 𝜋 − 2𝑡 − 𝑠𝑖𝑛 𝜋 − 2𝑡 

𝑐𝑜𝑠2 𝜋 − 2𝑡 /2 + 𝑐𝑜𝑠2 𝜋 − 2𝑡 /2
  ,

𝑐𝑜𝑠 𝜋 − 2𝑡 − 𝑐𝑜𝑠 𝜋 − 2𝑡 

𝑐𝑜𝑠2 𝜋 − 2𝑡 /2 + 𝑐𝑜𝑠2 𝜋 − 2𝑡 /2
                                                  (3.4) 

 

The authors of [17] found 𝐾(𝑡) by solving the corresponding HDP (1.3) according tothe theorem 1.1 by He’s variational 

iteration method. The best reported error of 𝐾(𝑡) was about 10−4 on a very small region[1.4, 1.7], whiles, such an accuracy 

is available just in 2 iterates on the entire interval[0,
𝜋

2
] as shown in Figure3.4. This confirms the preference of the PTP 

algorithm over the He’s variational iteration method. 
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                        Figure 3.4 The absolute error of 𝑲(𝒕) of the PTP algorithm when 𝑲𝒎𝒂𝒙 = 𝟐 and 𝑵 = 𝟏𝟎𝟎. 

𝑬𝒌𝟏  𝒕 : error in first coordinate (dot), 𝑬𝒌𝟐 (𝒕):error in second coordinate (dash). 

These results for 𝐾𝑚𝑎𝑥 =  2, essentially emphasize that the convergence rate is rather high. But, in order to obtain more 
precise approximations, one can increase 𝐾𝑚𝑎𝑥, For instance to earn the accuracy of the maple RK78 solver i.e. about 

10−10, it is sufficient to take 𝐾𝑚𝑎𝑥 =  5 as shown in Figure 3.5. Here we plot the absoluteerror of approximate 𝐾(𝑡) 
obtained from the PTP algorithm and the RK78 method in comparison with the exact 𝐾(𝑡) obtained from formula (3.4). As 
seen in the Figure 3.5 by 𝐾𝑚𝑎𝑥 =  5 the accuracy of the PTP algorithm is about that of the classic numerical RK78 
method used in Maple, but It should be emphasized that the analyticalrepresentation of the solutions is the main 
preference of this method over the classic RK78 method. 

Finally, we would like to mention that the analytical representation of the solutions is really worthwhile, especially in control 
theory, because, analysis of the nature of a dynamical system via the numerical solutions may lead to the incorrect or 
wrong consequents. Therefore, such analytic solutions are more desirable. Of course, in some problems we have to use 
the numerical methods, but we must remember that lack of a good theoretical method is its main reason. As the famous 
psychologist KourtLewin said:” There is nothing applicable as a good theory.” 

 

Figure 3.5 The absolute error of 𝑲(𝒕)from the RK78 method: (left); from the PTP algorithm when 𝑲𝒎𝒂𝒙 = 𝟓 
and  𝑵 = 𝟏𝟎𝟎: (right).  

𝑬𝒌𝟏 (𝒕):error in first coordinate (dot), 𝑬𝒌𝟐 (𝒕): error in second coordinate (dash). 
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4. CONCLUTION 

In this article, in order to solve the matrix Riccati differential equation arising from the LQ optimal control problems, a 
modification of the parametric iteration method was utilized. The piecewise truncated PIM was proposed to reduce the 
repeated computations and to improve the accuracy of the PIM for a rather large time domain. Gaining High accuracy in 
less than five iterations is a worthwhile property of the method. Furthermore analytic representation of the solutions is a 
valuable consequent of the method which could be applied for solving LQ optimal control problems. In fact, using these 
solutions of the matrix RDE, we can obtain the analytic linear feedback of the optimal control. The accuracy of the method 
is about that of theRK78and ability to represent analytical solutions is the preference of this method over the classic RK78 
method. The presented method will be applicable for engineers of various branches such electronics, automatic control, 
signal processing, mechanics, etc. 
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