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ABSTRACT 

In this paper, we recall some basic concepts, properties of the spaces and some types of iteration approaches. Also, we 
give algorithm - fixed point iteration scheme and examples. Finally, we obtain the solution of nonlinear equations of the 

form fAx =  using Mann iteration.  
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INTRODUCTION  

Let X  be a nonempty set and XXT :  a self-mapping. We say that Xx  is a fixed point of T  if xxT =)(  and 

denote the set of all fixed points of T  by }=)(:{= xxTXxFT   or by .FixT  

Example 1.1 

1-  If RX =  and 4,5=)( 2  xxxT then 2};{= TF  

2-  If RX =  and ,=)( 2 xxxT   then {0,2};=TF  

3-  If RX =  and 2,=)( xxT  then ;=TF  

4-  If RX =  and ,=)( xxT  then .= RFT  

Now we introduce some basic definitions and results on the spaces considered throughout this paper such as, metric 
spaces, normed spaces, Hilbert spaces and Banach spaces. We begin with the following definitions: 

Definition 1.1 [11] A metric space is a pair ),,( dM  where M  is a set and d  is a metric on M  if for all ,,, Mzyx    

)( 1M  d is real-valued function on ,MM   finite and nonnegative, i.e.,  <),(0 yxd  for all ;, Myx    

)( 2M  ;=0=),( yxyxd   

 )( 3M  ),(=),( xydyxd (Symmetry); 

 )( 4M  ),(),(<),( yzdzxdyxd  (Triangle inequality). 

Definition 1.2 [2] A sequence }{ nx  in a metric space ),( dM  converges to x  if for all 0,>  there exists 

:=()(0 NNn   the set of all positive integers) such that ),( xxd n  for all ).(0 nn   

Definition 1.3 [11] The sequence }{ nx  in a metric space ),( dM  is called a Cauchy sequence iff 0),( nm xxd  as 

,, nm  i.e., for every 0,>  there exists )(N  such that <),( mn xxd  for all )(>, Nmn . 

Definition 1.4 [11] A metric space ),( dM  is said to be complete if every Cauchy sequence in M  converge to a point 

in .M  

Definition 1.5 [11] A normed space E  is a vector space with a norm defined on it. Here, a norm on a (real or complex) 

vector space E  is a real-valued function on E  whose valued at an element Ex  is denoted by || ||x  and has the 

following properties:  

1( ) || || 0;N x    

2( ) || ||= 0 = 0;N x x
 

3( ) || ||=| ||| ||;N x x 
 

4( ) || || || || || ||N x y x y    (triangle inequality);  where y  is an arbitrary vector in E  and   is any scalar. A 

norm on E  defines a metric d  on E  where 

,,,||=),( Eyxyxyxd    

and is called the metric induced by the norm. The normed space always denoted by )..,( E  

Definition 1.6 [11] A Banach Space is a complete normed space. 

Definition 1.7 [11] Let V  be a vector space. The inner product  yx,  of Vyx ,  is defined as a function from VV   

into a field K  (where K is real or complex R  or C ) satisfying the following axioms: ;,=,)( 1  xyyxI  

;,,=,)( 2  zyzxzyxI   0,)( 3  xxI  and 0=,  xx  iff 0;=x  for all Vzyx ,,  and 
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., K  An inner product defines a norm on V  and a metric d  as the following given by 

Vxxxx  ,,=||   

Definition 1.8 [11] A Hilbert space is a complete inner product space. 

Definition 1.9 [11] (Strong convergence) A sequence )( nx  in a normed space E  is said to be strongly convergent (or 

convergent in the norm) if there is an Ex  such that 

0.=||lim xxn
n




 

This can be written as follows 

xxn
n

=lim


 

or simply 

.xxn   

x  is called the strong limit of ),( nx  and we say that )( nx  converges strongly to .x  

Weak convergence is defined in terms of bounded linear functionals on E  as follows. 

Definition 1.10 [11] (Weak convergence) A sequence )( nx  in a normed space E  is said to be weakly convergent if 

there is an Ex  such that for every ,*Ef   

xxf n
n

=)(lim


 

This can be written as follows 

.xxn  

The element x  is called the weak limit of ),( nx  and we say that )( nx  converges weakly to .x  

Theorem 1.1 [25] (Brouwer’s Theorem) Every continuous map of a closed bounded convex in 
nR  into itself has a fixed 

point. 

Definition 1.11 Suppose ),( dM  is a complete metric space and MMT :  is any mapping. The mapping T  is 

said to satisfy a Lipschitz condition with a real number L  if 

),(),( yxLdTyTxd   

holds for all Myx ,  such mapping T  is called a contraction if 1<L  and a nonexpansive if 1=L . We call T  

contractive if for all Myx ,  and yx = , we have 

),(<),( yxdTyTxd  

Remark 1.1 Observe that contraction   contractive   nonexpansive   Lipschitz, and a mapping satisfying any of 

these conditions is continuous (see [4, 25]). 

We now give the important theorem which known as Banach fixed point theorem ( see [3]). 

Theorem 1.2 (Banach fixed point theorem). Let T  be a contraction mapping of a complete metric space M  into itself. 

Then T  has a unique fixed point .x  Moreover, If 0x  is any point in M  and the sequence }{ nx  is defined iteratively by 

the formula 

.=limthen1,2,...,=,= 1 xxnTxx n
n

nn   

In 1930, J. Schauder gave the generalization of Brouwer’s fixed point theorem which as follows: 

Theorem 1.3 ([25])(Schauder’s fixed point theorem) A continuous mapping T  that transforms a compact convex set K  in 



 ISSN 2347-1921 

726 | P a g e                                                               J a n  6 ,  2 0 1 4  

a Banach space X  into itself has a fixed point. 

named Computer Modern Roman. On a Macintosh, use the font named Times.  Right margins should be justified, not 
ragged. 

2  Some iterative methods 

 In this section, we recall some iterative methods and we give some references using these methods to obtain fixed point 
theorems. 

Consider the equation .= Txx  This equation is called fixed point equation, where T  is a continuous linear operator on a 

set M  and x  is an unknown element in .M  One of the prevalent methods for finding the solutions of the equation 

Txx =  is so-called a method of successive approximations or Picard iteration. To describe this method, we introduce the 

definition:  

Definition 2.1 ([4]) (Picard iteration): 

Let )),( dM  be a metric space, MD  a closed subset of M  (we often have MD = ) and DDT :  a self 

map possessing at least one fixed point .TFp  For a given Mx 0  we consider the sequence of iterates 


0=}{ nnx  

determined by the successive iteration method  

 1,2,...=,= 1 nTxx nn   

This sequence is known as Picard iteration.  

 All the next fixed point iteration schemes are defined in a real normed space )..,( E   

Definition 2.2 [4] (Krasnoselskii iteration )  

Let EET :  be a normed space, Ex 0  and [0,1].  The sequence }{ nx  given by  

 0,1,2,...=,)(1=1 nTxxx nnn    

will be called the Krasnoselskii iteration.  

 The Mann iterative scheme was invented in 1953 (see [13]) and was used to obtain convergence to a fixed point for many 
classes of mappings see ([1, 4, 5, 6, 10, 16, 17, 19, 20] and others). 

Form the next example the idea of considering fixed point iteration procedures with errors comes from practical numerical 
computations. This topic of research plays important role in the stability problem of fixed point iterations. In 1995, Liu [12] 
initiated a study of fixed point iterations with errors. Several authors have proved some fixed point theorems for Mann type 
iteration with errors using several classes of mappings (see [6, 7, 8, 9, 14, 15, 24, 26] and others).   

Definition 2.3 [4, 13] (Mann iteration) 

The Mann iteration starting from Ex 0  , is the sequence 


0=}{ nnx  defined by  

 0,1,2,...=,)(1=1 nTxaxax nnnnn   

where 


0=}{ nna  [0,1]  satisfies certain appropriate conditions.  

3  Algorithm - Fixed Point Iteration Scheme 

 Let the initial guess be 0x  such that  

 )(=1 ii xTx   

Numerical Example  

Example 3.1 Find a root of 0=104  xx  

Proof:  Consider 
1)(

10
=)(

3 x
xT  and the fixed point iterative scheme  
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 0,1,2,...,=,
1)(

10
=

31 i
x

x
i

i



 

let the initial guess 0x  be 2.0 

 

  

i 0 1 2 3 4 5 6 7 8 

ix  2 1.429 5.214 0.071 -10.004 -0.009 -10 -0.00999 -10 

 

Table  1: Example 3.1 

 So the iterative process with T  gone into an infinite loop without converging. 

Example 3.2 Suppose 
x

x
xT

2

1

10)(
=)(


 and the fixed point iterative scheme  

 0,1,2,...=,
10)(

=
2

1

1 i
x

x
x

i

i
i


  

 let the initial guess 0x  be 1.8,  

  

  i 0   1   2   3   4  5 6 98  

ix  1.8   1.908   1.808   1.900   1.8152  1.8935  1.8212  1.8555 

                                                                     

Table  2: Example 3.2 

Example 3.3 Find the root of 0=xxecosx  

Proof:  Consider 
xe

cosx
xT =)(  The graph of )(xT  and x  are given in the figure. let the initial guess 0x  be 2  

  

  i 0   1   2   3   4  5 6 7 8 9 10 31 32  

ix  1   0.199   0.803   0.311   0.698  0.381  0.634  0.427 0.594 0.458 0.567 0.518 0.518 

 

Table  3: Example 3.3 

That is for 
xe

cosx
xT =)(  the iterative process is converged to 0.518. 

4  Iterative solution of the equation Ax=f 

 Let X  be a a real Banach space and 
*X  its dual. For ,<<1 p  the duality mapping. ,2:

*X

p XJ   is defined 

by  

 .},=,=,:{=)( 1)(**** XxxfxfxXfxJ ppp

p    

Where .,.  denotes the generalized duality pairing between X  and .*X  Recall that a map XXA :  is said to be 
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accretive if )()()(, yxJyxjADyx pp   such that  

 0)(,  yxjAyAx p  (1) 

 and is said to be strongly accretive if kIA  is accretive where (0,1)k  is a constant and I  denotes the identity 

operator on .X  Let  }=:)({=)( ** fAxADxTS  denote the solution set of the equation .= fAx   

Theorem 4.1 Let X  be a real p uniformly smooth Banach space and let XXADA )(:  be locally Lipschitz 

and strongly quasi-accretive operator with open domain )(AD  in X  such that the equation fAx =  has a solution 

)(* ADx   for )(ARf   arbitrary but fixed. Define XADA )(:  by  

 )()(= ADxfAxxxA   

Then there exist a neighbourhood B  of 
*x  and a real number (0,1)  such that starting with an arbitrary Bx 0  the 

Mann sequence }{ nx  generated by  

 nnnnn Axxx   )(1=1  (2) 

 remains in B  and converges strongly to 
*x  with convergence being at least as fast as geometric progression.  

   Proof:  Since A  is locally Lipschitz, there is an 0>r  such that A  is Lipschitz on 

)(}:{=)(= *

0 ADrxxXxxBB r    let (0,1)k  and 1>L  denote the strong accretivity and Lipschitz 

constant of A  respectively. Observe that .= *Axf  Pick an arbitrary ,0 Bx   choose  

 
1

1

)(= p

p

pn
CL

k
  

and generate the sequence 0}{ nnx  as in (1). We now prove that 0.,  nBxn  Suppose that .Bxn   Then  

 
p

nnnn

p

n xAxxxx  **

1 ))(1=    

 
p

nnnnn xfAxxx  *)]([)(1=    

 
p

nnnnn xAxAxxx  **)]([)(1=    

 
p

nnn xAxAxx  **)(=    

  **** )(,= AxAxCxxJAxAxpxx np

pp

nnpnn

p

n    

 
p

np

pp

n

p

n xxCLpk  *)(1=    

 
p

nn

p

np

p xxCLpk  *1 )))(((1     

 .))(1)((1= *1

1

pp

n

p

p

p
rxx

CL

k
kp     

 Hence, since Bx 0  by choice of the initial guess, it follows by the inductive hypothesis that the sequence }{ nx  

remains in .B  set  

 
pp

p

pCL

k
kpw

1

1

1

])(1)([1=   
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and observe that (0,1)w  since 

 

 




<<1,
1

1)(

<

1

p

p

p
p

LC
k

p

p
 

Hence, iterating further from (9), we obtain  

 
p

n

npp

n xxwxx  ** )(   

or, equivalntly,  

  ** xxwxx n

n

n   

since 0nw  as n  the assertions of the theorem follows and the proof is complete. 
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