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ABSTRACT 

This paper introduces one-leg hybrid methods for solving ordinary differential equations (ODEs) and differential algebraic 
equations (DAEs). The order of convergence of these methods are determined and compared to the order of convergence 
of their twin hybrid multistep methods. The G-stability of these methods are studied. Finally, the methods are tested by 
solving DAEs. 
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1 INTRODUCTION 

This paper focuses on solving the initial value problems of the form: 

f(x
.
(t); x(t); t) = 0; t  [t0 ; T]                                                    (1.1a) 

         x(t0) - a = 0;                                                                     (1.1b) 

where a  R
m

 is a consistent initial value for (1.1) and the function f : R
m

 x R
m

 x [t0; T]  R
m

 is assumed to be sufficiently 

smooth. If (f/x
.
) is nonsingular, then it is possible to formally solve (1.1a) for x

.
 in order to obtain an ordinary differential 

equation. However, if (f/x
.
) is singular, it is no longer possible and the solution x has to satisfy certain algebraic 

constraints therefore, equations (1.1) are referred to as differential algebraic equations. 

Many applications of physics, engineering and circuit analysis need solutions of systems of DAEs. Some systems can be 
reduced to ODE system and can be solved by numerical ODE methods after reduction. Other systems in which reduction 

to an explicit differential systems is of the form x
.
 = f(x; t) are either impossible or impractical, that is because the problem 

is more naturally posed in the form: 

f(t , x
. , x , y) = 0 ;                                                                     (1.2a) 

     G(t , x , y) = 0 ;                                                                    (1.2b) 

and a reduction might reduce the sparseness of Jacobian matrices. These systems are then solved directly, [17]. 

M. Ebadi and M.Y. Gokhale [9,10,11] have presented class 2+1 hybrid BDF-like methods, hybrid BDF methods (HBDF), 
and new hybrid methods for the numerical solution of IVPs. This provides the methods with wide stability regions and good 
performance in solving CPU time compared to the extended BDF (EBDF) and modified extended BDF (MEBDF) 
methods,[3]. 

The author presents two classes of hybrid methods which have better stability regions, [15]. 

The first hybrid class takes the form: 

                                                     (1.3) 

                                      (1.4) 

where fn+s = f(tn+s; yn+s) ; tn+s = tn + sh ; -1 < s < 1 and s, n-j , j = 1; 2, … , k; are parameters to be determined as 

functions of s and * .The method with step k has order p = k and yn+s has order k – 1. To evaluate the value of yn+s at 

off-step point, i.e. tn+s, consider the nodes tn (double node ), tn-1 , … , tn-k (simple nodes). For these data points the 

following scheme of divided differences has been used: 

                 

Applying Newton’s interpolation formula for this data gives the following scheme: 
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                   (1.5) 

Differentiate (1.5) with respect to t 

                                  (1.6) 

 

Using (1.5) and (1.6) to evaluate yn+s and fn+s gives, 

                        (1.7) 

 

                         (1.8) 

where f (or f(t, y)) is considered as a derivative of the solution y(t), yn = yn – yn-1. 

The second hybrid class takes the form: 

                                   (1.9) 

                           (1.10) 

where 0 < s < 1 and s, n+1-j , j = 1, 2 , … , k; are parameters to be determined as functions of s and *: The method with 

step k has order p = k and yn+s has order k – 1. 

Using the above divided differences with the nodes tn+1 to be double node, and tn, tn-1,… , tn-k+1 to be simple nodes and 

applying Newton’s interpolation, y(tn + sh) takes the form: 
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            (1.11) 

One-Leg Methods 

Suppose that a linear k-step method: 

                                    (1.12) 

is given, and that the characteristic equations:   

                                              (1.13) 

have real coefficients and no common divisor. There is also the assumption throughout the normalization that: 

(1) = 1;                                                                      (1.14) 

then the associated one-leg methods is defined by: 

                                (1.15) 

In the one-leg methods, the derivative f is evaluated at one point only, which makes it easier to analyze. The one-leg 
method (1.15) may have stronger nonlinear stability properties, such as G-stability, [12,16]. On the other hand, it is known 

that to obtain a one-leg method of high order, the parameters i, i have to satisfy more constraints than that for linear 

multistep methods see,[7,8]. 

G-Stability 
If the differential equation satisfies the one-sided Lipschitz condition: 

                                     (1.16) 
with  = 0; then the exact solutions are contractive. Consider the multistep method as a mapping R

n.k 
R

n.k
. Let Ym = 

(ym+k-1, … , ym)
T
 and consider inner product norms on R

n.k
 

 

                                     (1.17) 
where . , . is the inner product on R

n
 used in (1.16) and k-dimensional matrix G = (gij )i, j=1, … ,k is assumed to be real, 

symmetric and positive definite. 

Definition 1 [5], The one-leg method (1.15) is called G-stable, if there exists a real, symmetric and positive definite 

matrix G, such that for two numerical solutions {ym} and { y
^
m} we have: 

                                        (1.18) 
 

for all step sizes h > 0 and for all differential equations satisfying (1.16) with  = 0: 

Theorem 2 [2] G-stability implies A-stability. 

Theorem 3 [12] Consider a method (, ). If there exists a real, symmetric and positive definite matrix G, and real 

numbers a0 , … , ak ; such that: 

          (1.19) 



   ISSN 2347-1921 

715 | P a g e                                                               J a n  4 ,  2 0 1 4  

then the corresponding one-leg method is G-sable. 

Theorem 4 [6]. If  and  have no common divisor, then the method ( , ) is A-stable if and only if the corresponding 

one-leg method is G-stable. 

In sections 2, 3 the one-leg twin of the two classes of hybrid methods mentioned above with step 2 and 3 are studied 
respectively. Then their orders of convergence and G-stability will be investigated. 

In section 4, test problems are presented. Conclusions are presented in section 5. 

2 ONE- LEG METHOD FOR THE FIRST HYBRID CLASS 

Here, the one-leg twin of the first class is studied when k = 2 and k = 3. 

In the case of k = 2, the method takes the form: 

               (2.1a) 

                                        (2.1b) 

where  

 

Method (2.1) has order 2, its truncation error takes the form: 

                                                             

The one-leg twin of (2.1) takes the form: 

                                         (2.2) 

and has order 2 and its truncation error takes the form: 

   

If 

               

then, method (2.2) has order 3 and its truncation error becomes: 

   

G- Stability Analysis 

To discuss G- Stability of (2.2), using (1.8),  

fn+s = fn; 

Substitute fn+s in equation (2.1a), it becomes: 

      

The corresponding characteristic equations are: 

      

Applying theorem 3, the variables ai , i = 0, 1, 2 and gij ; i , j = 1; 2 satisfy the relations 
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Choosing *= 0.3 and s = - 0.1 makes a0 = - 0.583636, 

       

Therefore, the matrix G is positive definite and method (2.2) is G-Stable. 

In the case of k = 3 the method takes the form: 

      (2.3a) 

                                   (2.3b) 

where 

      

Method (2.3) has order 3 and its truncation error takes the form: 

 

 

The one-leg twin of (2.3) takes the form: 

           (2.4) 

and has order 2, its truncation error takes the form: 

 

G- Stability Analysis 

To discuss G- Stability of (2.4), using (1.8), 

 

Substitute fn+s in equation (2.3a), it becomes: 

 

The corresponding characteristic equations are: 

   

Applying theorem 3, the variables ai , i = 0, 1, 2, 3 and gij ; i, j = 1, 2, 3 satisfy the relations: 
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Choosing s = - 0.3 and *= 0.2 makes a0 = - 0.231455; 

    

Therefore, the matrix G is positive definite and method (2.4) is G-Stable. 

3 ONE-LEG METHOD FOR THE SECOND HYBRID CLASS 

Here, the one-leg twin of the second class is studied when k = 2 and k = 3. 

In the case of k = 2, the method takes the form: 

                     (3.1a) 

                                  (3.1b) 

where 

  

Method (3.1) has order 2, its truncation error takes the form: 

          

The one-leg twin of (3.1) takes the form: 

            (3.2) 

and has order 2, its truncation error takes the form: 

    

if s = - (-1+*)/3; then, method (3.2) has order 3 and its truncation error takes the form: 

  

G- Stability analysis 
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To discuss G- Stability of (3.2), using (1.11), it’s easy to show that  

fn+s = fn+1  

Substitute fn+s in equation (3.1a), it becomes: 

 

The corresponding characteristic equations are: 

 

Applying theorem 3, the variables ai ,  i = 0, 1, 2 and gij , i, j = 1,2 satisfy the relations: 

     

Choosing *= 0.4 and s = 0.5 makes a0 = -1.15365; 

 

Therefore, the matrix G is positive definite and method (3.2) is G-Stable. 

In the case of k = 3 the method takes the form: 

              (3.3a) 

                     (3.3b) 

where 

       

 

Method (3.3) has order 3 and its truncation error takes the form: 

          

The one-leg method of (3.3) takes the form: 

      (3.4) 

and has order 2, its truncation error takes the form: 

 

G-Stability analysis 

To discuss G- Stability of (3.4), using (1.11) 
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Substitute fn+s in equation (3.3a), it becomes: 

 

The corresponding characteristic equations are: 

 

Applying theorem 3, the variables ai , i = 0, 1, 2, 3 and gij , i, j = 1, 2, 3 satisfy the relations: 

 

Choosing s = 0.1 and * = - 0.6 makes a0 = 0.278598; 

   

Therefore, the matrix G is positive definite and method (3.4) is G-Stable. 

Remark 5 If s = 0 in the first class or s = 1 in the second class, then the parameter class [14] 

                                (3.5) 

is obtained and its one-leg twin is G-stable for k = 2: 

4 NUMERICAL TESTS 

Here, some numerical results are presented to evaluate the performance of the proposed technique,[4,1,13]. 

Test 1 

Consider the differential algebraic equations: 

y’1(t) - t y’2 (t) + t
2 

y’3 (t) + y1(t) - (t + 1) y2(t) + (t
2
 + 2t) y3(t) = 0; 

y’2(t) - t y’3 (t) - y2(t) + (t - 1) y3(t) = 0; 

y3(t) = sin(t); 

with the initial condition y1(0) = 1; y2(0) = 1; y3(0) = 0;and the exact solution is y1(t) = exp(-t) + t exp(t); y2(t) = exp(t) + t 

sin(t); y3(t) = sin(t): 

Test 2 

Consider the differential algebraic equations: 

x’1(t) = ( - 12-t )x1(t) + (2 - t)  z(t) + (3-t) / (2-t) ; 
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x’2(t) = (1-) / (t-2) x2(t) + ( - 1) z(t) + 2 exp(t); 

       0 = (t + 1)x1(t) + (t
2
 - 4)x2(t) - (t

2 
+ t -2) exp(t); 

with the initial condition x1(0) = 1; x2(0) = 1; z(0) = -1/2 ; and the exact solution is x1(t) = exp(t); x2(t) = exp(t) , z(t) = -

exp(t)/(2-t) ; where  is a parameter and   1. 

Test 3 

Consider the differential algebraic equations: 

       x’(t) = 2(1 -y) sin(y) + x (1-y) ; 

            0 = x
2
 + (y - 1) cos2(y); 

with the initial condition x(1) = 1; y(1) = 0; and the exact solution is x(t) = t cos(1 - t
2
), y(t) = 1 - t

2
: 

Test 4 

Consider the differential algebraic equations: 

   x’(t) = f(x; t) - B(x; t)y; 

        0 = g(x; t); 

Where x’(t) = (x1 , x2)
T
; f(x; t) = ( 1+(t-1/2 ) exp(t)  , 2t + (t

2
-1/4 ) exp(t))

T ; B(x; t) = (x’1,x’2)
T
; g(x; t) = ½(x

2
1 + x

2
2 - (t -1/2 

)
2
 - (t

2
 – 1/4 )

2
); with the initial condition x1(0) = -1/2 ; x2(0) = -1/4 ; and the exact solution is x1(t) = (t – 1/2 ); x2(t) = t

2 – 

1/4 ; y(t) = exp(t): 

The above tests are solved by the one-leg twin of the two classes with k = 2 at different values of t. In the first method, * 

= -0.4, s = - 0.3 and in the second method, * = 0.4, s = 0.4: The errors of solutions of tests 1, 2, 3 and 4 are tabulated in 

Tables 1, 2, 3, and 4, respectively. 

 

Table 1: The error of the first test 
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Table 2: The error of the second test 

     

Table 3: The error of the third test 

      

        Table 4: The error of the fourth test 

          

 

5 CONCLUSION 

In this paper, the one leg twin of two hybrid classes presented is studied for k = 2 and k = 3. In the first class, for k = p = 2 

the one-leg twin has order 2 except when s = ⅓  (-3+3(1 -2 * + *
2
)) it has order 3. For k = p = 3 the one-leg twin has 

order 2 and if * = 0, which leads to one leg hybrid BDF, or s = 1, which leads to the parameters class (3.5), it has order 3. 

In the second class, for k = p = 2 the one-leg twin has order 2 except when s = - (-1+*) / 3 it has order 3. For k = p = 3 

the one-leg twin has order 2 and if * = 0, which leads to one leg hybrid BDF, or s = 0, which leads to the parameters class 
(3.5), it has order 3. The corresponding one-leg twin of the two classes is G-stable for k = 2 and k = 3. The numerical tests 
show that the first class gives better results than the second. 
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