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ABSTRACT

This paper introduces one-leg hybrid methods for solving ordinary differential equations (ODESs) and differential algebraic
equations (DAES). The order of convergence of these methods are determined and compared to the order of convergence
of their twin hybrid multistep methods. The G-stability of these methods are studied. Finally, the methods are tested by
solving DAEs.
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1 INTRODUCTION

This paper focuses on solving the initial value problems of the form:
fxX(®); x(t); ) = 0; t € [to; T] (1.1a)
X(tg) - a=0; (1.1b)

where a € R" is a consistent initial value for (1.1) and the function f : R™xR™ x [to; T] — R™ is assumed to be sufficiently
smooth. If (6f/0x’) is nonsingular, then it is possible to formally solve (1.1a) for x" in order to obtain an ordinary differential
equation. However, if (of/ox’) is singular, it is no longer possible and the solution x has to satisfy certain algebraic
constraints therefore, equations (1.1) are referred to as differential algebraic equations.

Many applications of physics, engineering and circuit analysis need solutions of systems of DAEs. Some systems can be
reduced to ODE system and can be solved by numerical ODE methods after reduction. Other systems in which reduction

to an explicit differential systems is of the form x" = f(x; t) are either impossible or impractical, that is because the problem
is more naturally posed in the form:

fit,x, x,y)=0; (1.2a)
G(t,x,y)=0; (1.2b)
and a reduction might reduce the sparseness of Jacobian matrices. These systems are then solved directly, [17].

M. Ebadi and M.Y. Gokhale [9,10,11] have presented class 2+1 hybrid BDF-like methods, hybrid BDF methods (HBDF),
and new hybrid methods for the numerical solution of IVPs. This provides the methods with wide stability regions and good
performance in solving CPU time compared to the extended BDF (EBDF) and modified extended BDF (MEBDF)
methods,[3].

The author presents two classes of hybrid methods which have better stability regions, [15].

The first hybrid class takes the form:

k—2
Unte =h [t fat Y Vnej Ynj
i=0 1.3)
k
Yn + Zan—j Yn—j = h 35 (.fﬂ-i-s - .3*-fn—1)~
J=1 (1.4)
where fn+s = f(th+s; Yn+s) ; th+s = th + sh; -1 <s<landBs, anj,j=1; 2, ..., k; are parameters to be determined as
functions of s and B* .The method with step k has order p = k and yn+s has order k — 1. To evaluate the value of yn+s at
off-step point, i.e. th+s, consider the nodes tn (double node ), tn-1 , ... , th-k (Simple nodes). For these data points the
following scheme of divided differences has been used:
t?t. yﬂ.
!
Yn
hy! —V
tﬂ. yﬂ. _yﬂhg—%
Vi by =Vyn—3Vyn
I 2TRT .
t TSEJ'- hy:,_—?’yn—%vgy,._—rj'
n—1 Yn—1 MNh2 _ I
vyn—l VY E,-_
h o2 31A7
tn—2 Yn—2 2?:3_1
Tyr.—E
h

Applying Newton'’s interpolation formula for this data gives the following scheme:
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_ _ (hyl, — Vyn
y(t} = Un + {t - tn)y:r. + {t - tnjz{ynhigy) +
. (hyl, — Vyn — 3V7yn)
2 \ " n 3 T
+(t—tn) (t—tn_1) 33 +

{hy:r, - Vy, —
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7 Vi yn
%ngn - )

—|—{t—tn)2(f —fn_‘l){t _tn—2) ETE

$ 4

(1.5)
Differentiate (1.5) with respect to t
hy, —V
hyl, — Vy, — 2V
20— )t — tams) + (¢ — 1)) 0 2T )
+(2(t - tﬂ)(t - tn—'l }(t - tn—E) + {t - tn,}z{t - tn—?) +
7
hyly, — Viyn — 1V yn — 2=
+(t—tﬂ,)?{t—tn_j))( In 29n = A }+....
3lh (1.6)
Using (1.5) and (1.6) to evaluate yn+s and fp+s gives,
Ytn+5h) = yn+sh futs’(h fo—Vyn) +
2 (s+1 1
+%{h fn - vyn - 5\72@,‘71) +
2 1)(s+2 1 iy,
w(h fn._vyn__vgyn_ Y )+
3! 2 3 (1.7)
. hfn —Viyn
Fltars) = fot 2T
. (hfn —Vyn — %vzynj
+5(2 4 3s) 51 +
(hfn — Vyn — 3V — Tf=
+3(4+93+45?){ f Y f Y ) + ...
3lh (1.8)
where f (or f(t, y)) is considered as a derivative of the solution y(t), Vy¥n = Yn — Yn-1-
The second hybrid class takes the form:
k—2
Unis =R pt foi1 + Z'Tn-ﬁ-]—j Unt+1—j -
J=0 (1.9)
k
Yn+1 + Zan—‘l—j Un+1—5 = h 35 {fn.+s - .SI‘fn),
J=1 (1.10)
where 0 <s <landfs, an+1-j,j=1,2, ..., k; are parameters to be determined as functions of s and *: The method with

step k has order p = k and yn+s has order k — 1.

Using the above divided differences with the nodes tn+1 to be double node, and tp, tn-1,... , th-k+1 to be simple nodes and

applying Newton’s interpolation, y(tn + sh) takes the form:
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y(_tn + 5h) = Yn+1t (5 —1)h fre1 + (5 - ])2 (h fo+1 — vy‘n.+1) +
(s —1)%s 1
+%(h fns1 = Vi — §V?yn+1) +
(s —1)%s(s+1) 1_, 1_,
+- . h n+ -V n+ -5V n -5V n + ...
a1 (h fn+1 Ynt1 =5V ¥nt1 — 3 V'Y +1) (1.11)

One-Leg Methods

Suppose that a linear k-step method:

i k
ZO"‘E Yn+i = h 231 f{tn—i:yn+i)a
=0 i=0 (1.12)

is given, and that the characteristic equations:

k k
p(€) = ot o(6)=) B
i=0 1=0

(1.13)
have real coefficients and no common divisor. There is also the assumption throughout the normalization that:
o(1) = 1; (1.14)
then the associated one-leg methods is defined by:
k k k
D i ynri=h f(Y Bitnsi, Y Biynsi)-
i=0 i=0 i=0 (1.15)

In the one-leg methods, the derivative f is evaluated at one point only, which makes it easier to analyze. The one-leg
method (1.15) may have stronger nonlinear stability properties, such as G-stability, [12,16]. On the other hand, it is known

that to obtain a one-leg method of high order, the parameters a, Bj have to satisfy more constraints than that for linear
multistep methods see,[7,8].

G-Stability
If the differential equation satisfies the one-sided Lipschitz condition:
P . _ 2
{f{"r*y}_f(‘xq]"y_q} =V | y—= | 1 (1.16)

with v = 0; then the exact solutions are contractive. Consider the multistep method as a mapping Rn'k SR™ Let Ym =

(Ym+k-1s --- » ym)T and consider inner product norms on RMK
k ok
s 2
| }‘m | = ZZQ’;‘é {ym+i—1;y?11+3'—1 ::' 3
1=15=1 (117)

where (. , .) is the inner product on R" used in (1.16) and k-dimensional matrix G = (gjj )i, j=1, ... ,k iS assumed to be real,
symmetric and positive definite.

Definition 1 [5], The one-leg method (1.15) is called G-stable, if there exists a real, symmetric and positive definite
matrix G, such that for two numerical solutions {ym} and { y m} we have:

. o . o
| }'m+‘l —) m+1 |G£| }m —1 m |G

(1.18)

for all step sizes h > 0 and for all differential equations satisfying (1.16) with v = 0:
Theorem 2 [2] G-stability implies A-stability.

Theorem 3 [12] Consider a method (p, o). If there exists a real, symmetric and positive definite matrix G, and real
numbers ag, ..., ak; such that:
1 k k k
£ o) . i-1, j—1 , ¢ \ i
3lplfl olw)+plw) g(&))=(fw—1) Z Gi& W Lo [Zaff‘;(Zajw--'J.
i,j=1 i=0 Jj=0 (119)

714|Page Jan 4, 2014



L

then the corresponding one-leg method is G-sable.

Theorem 4 [6]. If p and ¢ have no common divisor, then the method (p , o) is A-stable if and only if the corresponding
one-leg method is G-stable.

In sections 2, 3 the one-leg twin of the two classes of hybrid methods mentioned above with step 2 and 3 are studied
respectively. Then their orders of convergence and G-stability will be investigated.

In section 4, test problems are presented. Conclusions are presented in section 5.

2 ONE- LEG METHOD FOR THE FIRST HYBRID CLASS

Here, the one-leg twin of the first class is studied when k=2 and k = 3.

In the case of k = 2, the method takes the form:

Gy Un + Cp 1 Yn—1 T 0n_3 Y2 = h 3.5 l::fn—e - Sffﬂ,—'l]-

(2.1a)
Unts =Yn+ 8 R fn, (2.1b)
where
3425—F" —2{1+5)
O = zF_]—E:J] . Qpo1 = Troge
—(—1—25—8")
Cn_2 = = gri—gey— and 8, = =gy
Method (2.1) has order 2, its truncation error takes the form:
24+3s5(2+3s)+ 3"
= : = he " ().
6B—14+ 5
The one-leg twin of (2.1) takes the form:
Cip Yn = Cn—1 Yn—1 + Cn—2 Yn—2 = h f:.g_g. trnts — 33 Sitﬁ—l ). 2.2)
and has order 2 and its truncation error takes the form:
_ 1 (1+35)?
Tﬁ‘ — [‘ 3 y”."[‘ﬂj.

6 2(—1+8%)%

s = 1-3+V3/1-258 +8%)
then, method (2.2) has order 3 and its truncation error becomes:

_ 1-3
T

4,,(4)
1= ————h"y'"" (7).
36v3,/(1— 3 )°

G- Stability Analysis
To discuss G- Stability of (2.2), using (1.8),

frts = fn;

Substitute fn+s in equation (2.1a), it becomes:
Qplfn + Cn—1 Yn—1+ Q32 Yn—2 = h 33 '::fn - jffﬂ—lj-

The corresponding characteristic equations are:

P':E] = apf +on 18+ an_s
o(€) = B.(& -3¢

Applying theorem 3, the variables aj, i =0, 1, 2 and gjj; i, j = 1; 2 satisfy the relations
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i

911 = 4y,

_ —4{14a)—daga{—1+871+87 (—3—2s+ 8"
g:" - _1__'|+J"|""

34+23—j"
g2z = —aj + I—ITFTT

Choosing *= 0.3 and s = - 0.1 makes ag = - 0.583636,

a1 = 1.54524, a; = —0.9616, g1 > 0 and Det [( g 912 ﬂ -~ 0.
. 9211 gro

Therefore, the matrix G is positive definite and method (2.2) is G-Stable.

In the case of k = 3 the method takes the form:

O YUn + Cn1 Yn—1+ Cn_2 Yn—2+ Cn_3 Yn—3="h 3_5 (frts — S'fn—] R

(2.3a)
Unts=Yn+5h fn+s” “1 fo—Un + Un ;' (2.3b)
where
__ 11+412a43s*—25"° _ —{f+10s+357+57)
Cn = G6(1—5") » Gn—_1 = 3(1—5"]
(3+8s+35"+28") —(2+65+3s" +8"
Cp_2 = %;1—_5'_;7..—" e Efl 5 ) and 3 = _:.1_1 =y
Method (2.3) has order 3 and its truncation error takes the form:
(3+2s)(1+=(3+2))+8" , o,
Ty = = Ry ().
12(—-1+ 5%
The one-leg twin of (2.3) takes the form:
i W¥n 7™ Qp_1 Mo + Cip—2 Wn—2 + Qp_3 Un—3z = h f{Ss ﬁ'r1—:s - 33 'ﬂrtﬂ—'l ] (2 4)

and has order 2, its truncation error takes the form:

_ (1+3s)%5 Koy

ITi=———" __h
: (182" (n)-

G- Stability Analysis
To discuss G- Stability of (2.4), using (1.8),

h fn—e = h _.fn + 25 '::h fﬂ — Un + yﬂ—l.;';
Substitute fn+s in equation (2.3a), it becomes:

Cn Yn T Cn 1 Un1 T Qn 2 Un2F@n a¥n3= B, (A fa+25 (R fo—Un+¥n1)) —h 5 fa1)
The corresponding characteristic equations are:
plf) = (an+235 B8) +(0n1—238,) +an_2E+an_3,
al€) = (1+2s)8, & —3"3, &

Applying theorem 3, the variables aj, i =0, 1, 2, 3 and gjj; i, j = 1, 2, 3 satisfy the relations:
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912 = g21 = QpQa;

e __ 12aga2(—148" ) —8"(2+33(2+3)+8")
913 =91 = T2(—1+8°)7 ’

—3(1+23)(6+5(14+35))—12a2az{—1+8")?

Z= £ +8"(—14—35(10+5)+28")
923 = 932 = 12.-___1__3.:’_ 5

922 = aj +af,

_ 2 2, 2ai(=1+8") —B8"(6+3(14+33)+8")
933 =Gp+ @]+ 2(—1+8")2 ;

Choosing s = - 0.3 and p*= 0.2 makes ag = - 0.231455;
ay = 0.613677, a, = —0.53299, a; = 0150767, g1 = 0

g g 11 1z s
et K o o )] - 0 and Det gn g2 23 = 0.
g211 g2
an g3 Q33

Therefore, the matrix G is positive definite and method (2.4) is G-Stable.

3 ONE-LEG METHOD FOR THE SECOND HYBRID CLASS

Here, the one-leg twin of the second class is studied when k = 2 and k = 3.

In the case of k = 2, the method takes the form:

Qi1 Ynd1 —+ iy Un —+ i1 Un—1 = h .33 (fn—.s — g*fn\.h

(3.1a)
Ynts =YUnt1+(5—1) R fryq, (3.1b)
where
k1 = %‘E‘Z‘T and 3, = 1_]5,.
Method (3.1) has order 2, its truncation error takes the form:
T, = (3 + grg e Y ()
The one-leg twin of (3.1) takes the form:
Ont1lntl — 0n Yn + 0n—1 Yn—1=Ah f':gc.- tnts — B, 8ts), (3.2)

and has order 2, its truncation error takes the form:
= 1 5
Ts=(=——————) h¥ /" (n),
5=(g T 3*}3] ¥ (n)
if s = - (-1+p*)/\3; then, method (3.2) has order 3 and its truncation error takes the form:

Ty Bl l.‘-lle 3

363 -
G- Stability analysis
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To discuss G- Stability of (3.2), using (1.11), it's easy to show that
fn+s = fn+1
Substitute fp+s in equation (3.1a), it becomes:
Cipt1lnsl + 0n Un + Gn_l Yno1 = h 33 Ef:l!,—l - 3'fn:|;

The corresponding characteristic equations are:

Car

ol

ol
] = Ct‘i".‘.-—l'-f LE ﬂnE -— On—1 ,
2
al

* "

> - I

oy

Applying theorem 3, the variables aj, i =0, 1, 2 and gjj, i, j = 1,2 satisfy the relations:

.
g11 = a5,
= _ dag0ad(—1+8") 4+ 87 (—142s+8")
g1z = g1 = =11 :
— 2 1 =
912 = —0y + 535 + a5

Choosing p*= 0.4 and s = 0.5 makes ag = -1.15365;

a; = 1.39443, a, = —0.240781, g, > 0and Det |[ 97 912 )| ~ 0.
S21 Ha2

Therefore, the matrix G is positive definite and method (3.2) is G-Stable.

In the case of k = 3 the method takes the form:

Ciptl Ynel T Op Yn + Cn_1 Yn—1 + An_2 Yn_2 = R 33 '::_.f:l!,—e — 3+fn]-

(3.33)
Units = Ynstl + (8 — 1;'"1 fﬁ—'l + ':3 -1 ]Z(h f:l!.—] — Ynsl + I.ml
(3.3b)
where
__ 24+fs+357—28" _ [—1+4s+357+87) _ —2+3s43s" 428"
Onil = Tegn 0 T T a0 1T T g
—(—1+3s7+8")
Q2 = Tﬁ;‘-:’ and 3; = '|_]§' -
Method (3.3) has order 3 and its truncation error takes the form:
1 s(—24+5(13+83)) 4 4y
Ty=(-+ : )Ry ().
9 45(—-14+3")
The one-leg method of (3.3) takes the form:
Cn41 Un+1 + i Un + e Un—1 + (2 Un—2 = h f{ 3.5 fnis — 33 j‘tﬁ-]-. (3 4)
and has order 2, its truncation error takes the form:
2 -
— g 3 3 g
T = ——,h.- .
3 TR RE ¥ ()

G-Stability analysis
To discuss G- Stability of (3.4), using (1.11)

b fars=h fas1 + 2(5 - 1]'::h frs1 — ¥nna +Fﬁ]-.
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Substitute fp+s in equation (3.3a), it becomes.
Cingtl Yntl +Cn Yo+ Cn—1 Yn—1+Qn—2 Yn—2 = 3, '::h fn+1 +2{5_1:'|:h frsl —Ynt1 +I||'n] —h Si.fn\.l-.

The corresponding characteristic equations are:

p6) = (ens1+2(s—1)8, )8 +(an—2(s—1)3, ) €2+ an_1 £+ an_s
a(€) = (2s—1)8, & —83, £7).

Applying theorem 3, the variables aj, i =0, 1, 2, 3 and gjj , i, j = 1, 2, 3 satisfy the relations:
2
g11 = qg,
912 = g21 = apQa,

N _ 12apaa(—1+8")*—8"(=1+3s+8")
913 = 931 = 12(—1+87)2 )

(—=3({—1+235){—b+38(8+33))—12ara3(—1+05" }*+05"{13—-33(8+3)+20")
_ _ 3(—1=+2 b S+3 12 1+87)2+8"(13—-33(8 23
g23 = g32 = 12(—1+87)2 2

2, .2, 203(=1+8")*—B8"(—b+3(8+35)+5")
933 = Qp T a3 — N—1+8" )" :

Choosing s = 0.1 and B* = - 0.6 makes ag = 0.278598;

a1 = —0.70395, a; = 0.572106, az = —0.146754. . g1; = 0.

g1 Jiz Gz
Det {( g g1z j:| = [ and Det g1 g2 g23 = 0.
gn g2
: ‘ 931 32 Gaz

Therefore, the matrix G is positive definite and method (3.4) is G-Stable.

Remark 5 If s = 0 in the first class or s = 1 in the second class, then the parameter class [14]

ke
D i Ynti =h By (fark—8" fasr1),
=0 (3.5)
is obtained and its one-leg twin is G-stable for k = 2:
4 NUMERICAL TESTS
Here, some numerical results are presented to evaluate the performance of the proposed technique,[4,1,13].
Test 1
Consider the differential algebraic equations:
Y10 - ty2 O +2y3 0 +ya0) - ¢+ 1) y2@ + (* + 20 yo() = O
Y2(t) -ty's(®) - y2(0 + (- 1) ya®) = 0;
y3(t) = sin(t);
with the initial condition y1(0) = 1; y2(0) = 1; y3(0) = 0;and the exact solution is y1(t) = exp(-t) + t exp(t); y2(t) = exp(t) +t
sin(t); ya(t) = sin(t):
Test 2

Consider the differential algebraic equations:

X'1(t) = (A - 128 )xq(t) + (2 - t) & z(t) + (3-t) / (2-1) ;
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with the initial condition x1(0) = 1; x2(0) = 1; z(0) = -1/2 ; and the exact solution is x1(t) = exp(t); xa(t) = exp(t) , z(t) = -
exp(t)/(2-t) ; where A is a parameter and A > 1.

Test 3

Consider the differential algebraic equations:

X'2(t) = (1-1) / (t:2) x2(t) + (0 - 1) 2(t) + 2 exp(t);

0= (t+ 1)xa(t) + (£ - 4)xa(t) - (% + t -2) exp(t);

X (t) = 2( -y) sin(y) + x V(L) ;
0= x2 + (y - 1) cos2(y);
with the initial condition x(1) = 1; y(1) = 0; and the exact solution is x(t) =t cos(1 - t2), yt) =1- t2:
Test 4
Consider the differential algebraic equations:
X(t) = f(x; t) - B(x; O)y;
0=g(xt);
VN s o o 2 T . Py 5 INF " 1 2 2
Where X'(f) = (X1, x2) ; f(x; t) = (1+(t-1/2 ) exp(t) , 2t + (t-1/4 ) exp(t)) ;B ) = (X 1,X2) ; g0 t) = ¥2(x"1 + x“2- (t-1/2

)2 - ¢ = 1/4)%): with the initial condition x1(0) = -1/2 : x2(0) = -1/4 ; and the exact solution is x1(t) = (t — 1/2 ); xa(t) = t* —
1/4 ; y(t) = exp(t):

The above tests are solved by the one-leg twin of the two classes with k = 2 at different values of t. In the first method, g*
=-0.4, s =- 0.3 and in the second method, * = 0.4, s = 0.4: The errors of solutions of tests 1, 2, 3 and 4 are tabulated in

Tables 1, 2, 3, and 4, respectively.

Table 1: The error of the first test

720|Page

t h Er(y, (1)) Er(y,(t))
First class | 05 0.01 5.28505E-6  1.12337E-6
1 0.0 1.20835E-5  6.13777E-6
05 0.001 4 49556E-8 2 44675E-8
1 0001 901651ES  S565919E S
05 00001 441506E-10 2.58117E-10
1 0.0001 5.70240E-10 5.91808E-10
Second class | 05 0.01 39544E5  T.65775E5
1 0.0 163652E-4  2.06115E-4
05 0001 339108E-7  T7.74572E-7
1 0001 165445E-6  2.06791E-6
05 00001 335952E-9  7.75027E-9
1 00001  1683TE-9  2.06515E-§
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5 CONCLUSION

In this paper, the one leg twin of two hybrid classes presented is studied for k = 2 and k = 3. In the first class, fork =p =2
the one-leg twin has order 2 except when s = V3 (-3+V3(1 -2 p* + B*Z)) it has order 3. For k = p = 3 the one-leg twin has
order 2 and if B* = 0, which leads to one leg hybrid BDF, or s = 1, which leads to the parameters class (3.5), it has order 3.
In the second class, for k = p = 2 the one-leg twin has order 2 except when s = - (-1+p*) / V3 it has order 3. Fork=p = 3

the one-leg twin has order 2 and if B* = 0, which leads to one leg hybrid BDF, or s = 0, which leads to the parameters class
(3.5), it has order 3. The corresponding one-leg twin of the two classes is G-stable for k = 2 and k = 3. The numerical tests

Table 2: The error of the second test

ISSN 2347-1921

t h Er(x, (1)) Er(xz,(t)) Er{z(t))
Firat class 0.5 0.01 2.93401E-6 3.01949E-6 9.71676E-6
1 0.01 1.87239E-6 3.49243E-6 4. 454T9E-5
0.5 0.001 1.99122E-8 2.TT252E-8 9.12335E-8
1 0.001 4 90379E-8 2 0546E-8 4 166861 E-7
0.5 0.0001 8910E-10 2 T4695E-10 9.06293E-10
1 0.0001 5 2066TE-10 191101E-10 4 13514E-9
Second clasa | 0.5 0.01 T 43874E-5 3.87634E-5 T.88274E-5
1 0.01 2 52305E-4 1.325386E-5 2 8T441E-4
0.5 F}.ﬂm T.60642E-T 3.9439TE-T 2.03064E-T
1 0.001 2 55296E-6 1.34249E-6 2.91945E-6
0.5 0.0001 T.62364E-9 3.95129E-9 2.04354E-9
1 0.0001 2 55605E-8 1.34427E-8 2.92401E-3

Table 3: The error of the third test

R 22 0N )N 223 OX )
First class 11 0.01 8. 7T614E-6 1.7784E-6
15 0.01 3.77352E-5 7.17592E-6
11 0.01 9 5h8427E-8 2 30181E-8
15 0,001 7.02189E-8 3.00459E-7
1.1 00001 967034E-10 2.35144E-10
1.5 0.0001 3.73525E-9 6.91022E-10
Second class | 1.1 0.01 1.59186E-5 9.93562E-5
15 0.01 4.03698E-5 4 83147E-4
11 0.001 1.46259E-7 1.06048E-7
15 0,001 6.14548E-6 4 56487TE-7
1.1 0.0001 1.4471E-9 1.06687E-8
1.5 0.0001 1.15152E-8 6.00619E-8

Table 4: The error of the fourth test

show that the first class gives better results than the second.
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t h Er(a",(tn Er(z,(t)) Er(y(t))
First class | 0.1 001 0924202E-8  530509E-8  1.12236E-6 |
04 001 1.13936E-6 2 82323E-7  166416E-4
01 0001 131307E-9  237976E-0  3.06106E-8
04 0001 2851655E-S  9.139S6E-9  3.75713E-6
01 00001 155239E-11 265254E-11 4 .26026E-10
04 00001 299535E-10 104284E-12  3.97991E-8 |
Second class | 0.1  0.01 485324E-6  198275E-5  2.1733E-4
04 001 1.41946E-4 211608E-4 1.92433E-2
01 0001 627{47E8  2.06874E-7  2.53104E-6 |
04 0001  163364E-6 3 S17E-7 2.2275E-4
01 00001 643586E-10 207603E-9 2 56685E-8
04 00001 165085E-S 305427E-0  2.24951E-6
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