# Characterizations of stability of first order linear Hahn difference equations 

Alaa E. Hamza ${ }^{\dagger}$, A. S. Zaghrout ${ }^{* 1}$, S. M. Ahmed ${ }^{* 2}$<br>${ }^{\dagger}$ Mathematics Department, Faculty of Science, Cairo Univ. , Giza, Egypt. hamzaaeg2003@yahoo.com<br>*Mathematics Department, Faculty of Science, Al-Azhar Univ. , Cairo, Egypt.<br>'afaf211@yahoo.com<br>²samah_moh_eg@yahoo.com


#### Abstract

Hahn introduced the difference operator $D_{q, \omega} f(t)=(f(q t+\omega)-f(t)) /(t(q-1)+\omega)$ in 1949, where $0<q<1$ and $\omega>0$ are fixed real numbers. This operator extends the classical difference operator $\Delta_{\omega} f(t)=(f(t+\omega)-f(t)) / \omega$ as well as Jackson $q$-difference operator $D_{q} f(t)=(f(q t)-f(t)) /(t(q-1))$. In this paper, our objective is to establish characterizations of many types of stability, like (uniform, uniform exponential, $\psi-$ ) stability of linear Hahn difference equations of the form $D_{q, \omega} x(t)=p(t) x(t)+f(t)$. At the end, we give two illustrative examples.


Keywords: Hahn difference operator; Jackson $q$ - difference operator.

# Council for Innovative Research 

Peer Review Research Publishing System
Journal: Journal of Advances in Mathematics

Vol 5, No. 2<br>editor@cirworld.com<br>www.cirworld.com, member.cirworld.com

## Introduction and Preliminaries

Hahn introduced his difference operator which is defined by

$$
D_{q, \omega} f(t)=\frac{f(q t+\omega)-f(t)}{t(q-1)+\omega}, t \neq \theta
$$

where $0<q<1$ and $\omega>0$ are fixed real numbers, $\theta=\omega /(1-q)$ [9, 10]. This operator unifies and generalizes two well-known difference operators. The first is Jackson $q$-difference operator defined by

$$
D_{q} f(t)=\frac{f(q t)-f(t)}{t(q-1)}, t \neq 0
$$

where $q$ is fixed. Here $f$ is supposed to be defined on a $q$ - geometric set $A \subset \mathrm{R}$ for which $q t \in A$ whenever $t \in A$, see [1, 2, 4, 7, 8, 13, 15, 16]. The second operator is the forward difference operator

$$
\Delta_{\omega} f(t)=\frac{f(t+\omega)-f(t)}{\omega}
$$

where $\omega>0$ is fixed, see [ $5,6,14,17]$. Fine mathematicians applied Hahn's operator to construct families of orthogonal polynomials and to investigate some approximation problems, see [18, 19, 20]. Recently, Annaby et al. established a calculus based on this operator, see [3]. An essential function $h(t)=q t+\omega$, which is normally taken to be defined on an interval $I$ which containing the number $\theta$, plays an important role in this calculus. One can see that the $k$-th order iteration of $h(t)$ is given by

$$
h^{k}(t)=q^{k} t+\omega[k]_{q}, t \in I
$$

Here $[k]_{q}$ is defined by

$$
[k]_{q}=\frac{1-q^{k}}{1-q}
$$

The sequence $h^{k}(t)$ is uniformly convergent to $\theta$ on $I$. They defined the $q, \omega$-integral of a function $f$ from $I$ to a Banach space $X$ on an interval $[a, b] \subset I$ by

$$
\int_{a}^{b} f(t) d_{q, \omega} t=\int_{\theta}^{b} f(t) d_{q, \omega} t-\int_{\theta}^{a} f(t) d_{q, \omega} t
$$

where

$$
\int_{\theta}^{x} f(t) d_{q, \omega} t=(x(1-q)-\omega) \sum_{k=0}^{\infty} q^{k} f\left(h^{k}(x)\right), \quad x \in I
$$

provided that the series converges at $x=a$ and $x=b$. As indicated in [3], if $f: I \rightarrow X$ is continuous at $\theta$, then the following statements are true.
(i) $\quad\left\{f\left(h^{k}(s)\right)\right\}_{k \in \mathrm{~N}}$ converges uniformly to $f(\theta)$ on $I$.
(ii) $\quad \sum_{k=0}^{\infty} q^{k}\left|f\left(h^{k}(s)\right)\right|$ is uniformly convergent on $I$ and consequently $f$ is $q, \omega$-integrable over $I$.
(iii) The function $F$ defined by

$$
F(x)=\int_{\theta}^{x} f(t) d_{q, \omega} t, \quad x \in I
$$

is continuous at $\theta$. Furthermore, $D_{q, \omega} F(x)$ exists for every $x \in I$ and

$$
D_{q, \omega} F(x)=f(x)
$$

Conversely

$$
\int_{a}^{b} D_{q, \omega} f(t) d_{q, \omega} t=f(b)-f(a) \quad \text { for all } \quad a, b \in I
$$

Throughout this paper $I$ is any interval of R containing $\theta$ and $X$ is a Banach space. The following theorem gives us the required conditions to insure the existence of solutions of linear Hahn difference equations, see [11].

Theorem 1.1. Assume the functions $a_{j}(t): I \rightarrow C, 1 \leq j \leq n$, and $b(t): I \rightarrow X$ satisfy the following conditions:
(i) $\quad a_{j}(t), j=1, \ldots, n$, and $b(t)$ are continuous at $\theta$ with $a_{0}(t) \neq 0 \quad \forall t \in I$.
(ii) $\quad a_{j}(t) / a_{0}(t)$ is bounded on $I, j \in\{1, \ldots, n\}$.

Then, for any elements $y_{r} \in X$, the equation

$$
\begin{align*}
& a_{0}(t) D_{q, \omega}^{n} x(t)+a_{1}(t) D_{q, \omega}^{n-1} x(t)+\ldots+a_{n}(t) x(t)=b(t), \\
& D_{q, \omega}^{i-1} x(\theta)=y_{i}, \quad i=1, \ldots, n \tag{1.1}
\end{align*}
$$

has a unique solution on a subinterval $J \subset I$ containing $\theta$.
Definition 1.2 [4] The exponential functions $e_{p}(t)$ and $E_{p}(t)$ are defined by
and

$$
\begin{equation*}
e_{p}(t)=\frac{1}{\prod_{k=0}^{\infty}\left(1-p\left(h^{k}(t)\right) q^{k}(t(1-q)-\omega)\right)} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
E_{p}(t)=\prod_{k=0}^{\infty}\left(1+p\left(h^{k}(t)\right) q^{k}(t(1-q)-\omega)\right) \tag{1.3}
\end{equation*}
$$

whenever the first product is convergent to a nonzero number for every $t \in I$. It is worth noting that the two products are convergent since $\sum_{k=0}^{\infty}\left|p\left(h^{k}(t)\right)\right| q^{k}(t(1-q)-\omega)$ is convergent.

Now, we state various stability types that will be examined in Section 2. These concepts involve the boundedness of solutions of Hahn difference equation

$$
\begin{equation*}
D_{q, \omega} x(t)=F(t, x), x(\tau)=x_{\tau} \in X, t, \tau \in I \tag{1.4}
\end{equation*}
$$

where $F$ is assumed to satisfy all conditions such that (4) has a unique solution.
Definition 1.3. Equation (1.4) is called stable if for every $\tau \in I$ and every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon, \tau)>0$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of Equation (1.4), we have for all

$$
\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\delta \Rightarrow\|x(t)-\hat{x}(t)\|<\varepsilon \text { for all } t \geq \tau, t, \tau \in I .
$$

Definition 1.4. Equation (1.4) is called uniformly stable if for every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of Equation (1.4), we have

$$
\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\delta \Rightarrow\|x(t)-\hat{x}(t)\|<\varepsilon \text { for all } t \geq \tau, t, \tau \in I
$$

Definition 1.5. Equation (1.4) is called asymptotically stable if it is stable and there exists $\gamma=\gamma(\tau)>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of Equation (1.4), we have

$$
\left\|x_{\tau}\right\|<\gamma \Rightarrow \lim _{t \rightarrow \infty}\|x(t)\|=0
$$

Definition 1.6. Equation (1.4) is called uniformly asymptotically stable if it is uniformly stable and there exists $\gamma>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of Equation (1.4), we have

$$
\left\|x_{\tau}\right\|<\gamma \Rightarrow \lim _{t \rightarrow \infty}\|x(t)\|=0
$$

Definition 1.7. Equation (1.4) is called globally asymptotically stable if it is stable and for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of Equation (1.4) , we have

$$
\lim _{t \rightarrow \infty}\|x(t)\|=0
$$

Definition 1.8. Equation (1.4) is called exponentially stable if there exist finite constants $\alpha>0$ and $\gamma=\gamma(\tau)>0$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of $(1.4)$, we have

$$
\|x(t)-\hat{x}(t)\| \leq \gamma\left\|x_{\tau}-\hat{x}_{\tau}\right\| e_{-\alpha}(t, \tau) \text { for all } t \geq \tau, t, \tau \in I
$$

where the exponential function $e_{p}(t, \tau)$ is given by $e_{p}(t, \tau)=e_{p}(t) / e_{p}(\tau)$.
Definition 1.9. Equation (1.4) is called uniformly exponentially stable if $\gamma$ is independent on $\tau \in I$.
Definition 1.10. Equation (1.4) is called $\psi$-stable if there exists a finite constant $\gamma=\gamma(\tau)>0$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of $(1.4)$, we have

$$
\|\psi(t)(x(t)-\hat{x}(t))\| \leq \gamma\left\|\psi(\tau)\left(x_{\tau}-\hat{x}_{\tau}\right)\right\| \text { for all } t \geq \tau, t, \tau \in I .
$$

Definition 1.11. Equation (1.4) is called $\psi$-uniformly stable if $\gamma>0$ is independent on $\tau \in I$.
Remark 1.12. If $\psi(t)=e_{\alpha}(\tau, t)$, then $\psi$ - uniform stability coincides with uniform exponential stability. Thus, $\psi-$ uniform stability is an extension of uniform exponential stability.

## Main results

In this section, we are concerned with obtaining many results about characterizations of stability of linear Hahn difference equations of the form

$$
C P(0): D_{q, \omega} x(t)=p(t) x(t), x(\tau)=x_{\tau} \in X, t \geq \tau, t, \tau \in I
$$

and

$$
C P(f): D_{q, \omega} x(t)=p(t) x(t)+f(t), x(\tau)=x_{\tau} \in X, t \geq \tau, t, \tau \in I
$$

where $p: I \rightarrow \mathbb{C}, f: I \rightarrow X$ are continuous at $\theta$ and $p\left(h^{k}(t)\right) q^{k}(t(1-q)-\omega) \neq 1$ for all $k \in \mathbb{N}, t \in I$ Simple computations show that $C P(0)$ and $C P(f)$ have the unique solutions

$$
\begin{equation*}
x(t)=e_{p}(t, \tau) x_{\tau} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=e_{p}(t, \tau)\left(x_{\tau}+\int_{\tau}^{t} f(s) e_{p}(\tau, h(s)) d_{q, \omega} s\right) \tag{2.2}
\end{equation*}
$$

respectively.
Theorem 2.1. The following statements are equivalent
(i) $\quad C P(0)$ is stable.
(ii) For every $\tau \in I$ and every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon, \tau)$ such that for any solution

$$
x(t)=x\left(t, \tau, x_{\tau}\right) \text { of } C P(0), \text { we have }\left\|x_{\tau}\right\|<\delta \Rightarrow\|x(t)\|<\varepsilon
$$

(iii) $\quad C P(f)$ is stable.
(iv) For every $\tau \in I,\left\{\left|e_{p}(t, \tau)\right|\right\}_{t \geq \tau, t \in I}$ is bounded.
(v) For every $\tau \in I$, there exist $\gamma(\tau)>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$ (resp. $C P(f)$ ), we have

$$
\|x(t)\| \leq \gamma(\tau)\left\|x_{\tau}\right\|, t \geq \tau, t \in I
$$

Proof. (i) $\Rightarrow$ (ii) Assume that $C P(0)$ is stable. Let $\varepsilon>0$. Then, there exists $\delta=\delta(\varepsilon, \tau)$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of $C P(0)$ with initial values $x_{\tau}, \hat{x}_{\tau} \in X$ respectively, we have

$$
\begin{equation*}
\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\delta \Rightarrow\|x(t)-\hat{x}(t)\|<\varepsilon, t \geq \tau \tag{2.3}
\end{equation*}
$$

Now, let $x(t)=x\left(t, \tau, x_{\tau}\right)$ be any solution of $C P(0)$ such that $\left\|x_{\tau}\right\|<\delta$. Suppose that $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ be the zero solution subject to the initial value $x_{\tau}=0$. Hence, we obtain $\|x(t)\|<\varepsilon \quad$ (from (3) ).
(ii) $\Rightarrow$ (iii) Let $\varepsilon>0$ and $\tau \in I$. There exists $\delta=\delta(\varepsilon, \tau)$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$, we have $\left\|x_{\tau}\right\|<\delta \Rightarrow\left\|e_{p}(t, \tau) x_{\tau}\right\|<\varepsilon$. Let $x_{f}(t)=x_{f}\left(t, \tau, x_{\tau}\right)$ and $\hat{x}_{f}(t)=\hat{x}_{f}\left(t, \tau, \hat{x}_{\tau}\right)$ be two solutions for $C P(f)$ with initial values $x_{\tau}, \hat{x}_{\tau} \in X$ respectively such that $\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\delta$. Then, we have $\left\|x_{f}-\hat{x}_{f}\right\|=\left\|e_{p}(t, \tau)\left(x_{\tau}-\hat{x}_{\tau}\right)\right\|<\varepsilon \quad\left(\right.$ since $x_{f}-\hat{x}_{f}$ is a solution of $\left.C P(0)\right)$
Therefore, $C P(f)$ is stable.
(iii) $\Rightarrow(i v)$ Assume that $C P(f)$ is stable. Let $\varepsilon=1$. There is $\delta>0$ such that for any two solutions $x_{f}(t)=x_{f}\left(t, \tau, x_{\tau}\right)$ and $\hat{x}_{f}(t)=\hat{x}_{f}\left(t, \tau, \hat{x}_{\tau}=0\right)$, we have

$$
\left\|x_{\tau}\right\|<\delta \Rightarrow\left\|e_{p}(t, \tau) x_{\tau}\right\|<1 \quad \forall t \geq \tau, t \in I
$$

Let $0 \neq x_{0} \in X$. Take $x_{\tau}=\delta x_{0} /\left(2\left\|x_{0}\right\|\right)$. Since $\left\|x_{\tau}\right\|<\delta$, then $\left\|e_{p}(t, \tau) \delta x_{0} /\left(2\left\|x_{0}\right\|\right)\right\|<1 \quad$ i.e. $\left\|e_{p}(t, \tau) x_{0}\right\|<2\left\|x_{0}\right\| / \delta, t \geq \tau, t \in I$. Thus, for all $x_{0} \in X,\left\{\left\|e_{p}(t, \tau) x_{0}\right\|\right\}_{t \geq \tau, t \in I}$ is bounded. By the Uniform Boundedness Theorem, $\left\{\left|e_{p}(t, \tau)\right|\right\}_{t \geq \tau, t \in I}$ is bounded.
$(i v) \Rightarrow(v)$ Suppose that $\left\{\left|e_{p}(t, \tau)\right|\right\}_{t \geq \tau, t \in I}$ is bounded for every $\tau \in I$. Then, there exists a positive constant $\gamma$ which is dependent on $\tau$ such that $\left|e_{p}(t, \tau)\right| \leq \gamma(\tau)$ for every $t \in I, t \geq \tau$. Consequently, for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$, we have

$$
\|x(t)\|=\left\|e_{p}(t, \tau) x_{\tau}\right\| \leq \gamma(\tau)\left\|x_{\tau}\right\|, t \geq \tau, t, \tau \in I
$$

$(v) \Rightarrow(i)$ Assume that for every $\tau \in I$ there exists $\gamma(\tau)>0$ such that $\|x(t)\| \leq \gamma(\tau)\left\|x_{\tau}\right\|, t \in I$. Let $\varepsilon>0$, $\tau \in I$. Take $\delta=\frac{\varepsilon}{\gamma(\tau)}$. For any $x_{\tau}, \hat{x}_{\tau} \in X$ such that $\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\delta$, we have

$$
\|x(t)-\hat{x}(t)\| \leq \gamma(\tau)\left\|x_{\tau}-\hat{x}_{\tau}\right\|=\frac{\varepsilon}{\delta}\left\|x_{\tau}-\hat{x}_{\tau}\right\|<\varepsilon, t \geq \tau, t, \tau \in I
$$

Similarly, we can prove the following theorem.

Theorem 2.2. The following statements are equivalent
$C P(0)$ is uniformly stable,
(i) For every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$, we have $\left\|x_{\tau}\right\|<\delta \Rightarrow\|x(t)\|<\varepsilon$,
(ii) $\quad C P(f)$ is uniformly stable,
(iii) $\quad\left\{\left|e_{p}(t, \tau)\right|: t, \tau \in I, t \geq \tau\right\}$ is bounded.
(iv) There is $\gamma>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$ (resp. $C P(f)$ ), we have

$$
\begin{equation*}
\|x(t)\| \leq \gamma\left\|x_{\tau}\right\|, t \geq \tau, t \in I \tag{2.4}
\end{equation*}
$$

Theorem 2.3. The following statements are equivalent
(i) $\quad C P(0)$ is asymptotically stable.
(ii) $\quad \lim _{t \rightarrow \infty} P e_{p}(t, \tau) x P=0$ for every $x \in X$ and every $\tau \in I$.
(iii) $\quad C P(0)$ is globally asymptotically stable.

Proof. $\quad$ (i) $\Rightarrow$ (ii) Suppose that $C P(0)$ is asymptotically stable. Then, there exists $\gamma>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$, with initial value $x_{\tau}$, we have

$$
\left\|x_{\tau}\right\|<\gamma \Rightarrow \lim _{t \rightarrow \infty}\|x(t)\|=0
$$

Let $0 \neq x \in X$. Put $\quad x_{\tau}=\gamma x /(2\|x\|)$. Then, $\quad \lim _{t \rightarrow \infty}\left\|e_{p}(t, \tau) \gamma x /(2\|x\|)\right\|=0$. Consequently, $\lim _{t \rightarrow \infty}\left\|e_{p}(t, \tau) x\right\|=0$.
(ii) $\Rightarrow$ (iii) By condition (ii) and the Uniform Boundedness Theorem, we insure the boundedness of $\left\{\left|e_{p}(t, \tau)\right|\right\}_{t \geq \tau, t \in I}$. Consequently, $C P(0)$ is stable (by Theorem(2.1)). Thus by our assumption, $C P(0)$ is globally asymptotically stable.

$$
(i i i) \Rightarrow(i) \text { is clear. }
$$

Theorem 2.4. Assume that

$$
F(t)=\int_{\tau}^{t} f(s) E_{-p}(h(s)) d_{q, \omega} s
$$

is bounded for any $\tau \in I$. Then, $C P(0)$ is globally asymptotically stable if and only if $C P(f)$ is globally asymptotically stable.

Proof. Assume that $C P(0)$ is globally asymptotically stable. Then, $\lim _{t \rightarrow \infty} e_{p}(t, \tau)=0$. Consequently, $\lim _{t \rightarrow \infty} e_{p}(t)=0$. Now, let $x_{f}(t)$ be a solution of $C P(f)$. Hence, it has the form

$$
\begin{aligned}
x_{f}(t) & =e_{p}(t, \tau)\left(x_{\tau}+\int_{\tau}^{t} f(s) e_{p}(\tau, h(s)) d_{q, \omega} s\right) \\
& =e_{p}(t, \tau) x_{\tau}+\left(e_{p}(t) \int_{\tau}^{t} f(s) E_{-p}(h(s)) d_{q, \omega} s\right)
\end{aligned}
$$

Thus, $\lim _{t \rightarrow \infty} x_{f}(t)=0$ which is the desired result.
For the converse, take $x_{\tau}=0$, to obtain

$$
\lim _{t \rightarrow \infty} e_{p}(t, \tau) \int_{\tau}^{t} f(s) e_{p}(\tau, h(s)) d_{q, \omega} s=0
$$

Consequently, $C P(0)$ is globally asymptotically stable.
Theorem 2.5. The following statements are equivalent
(i) $\quad C P(0)$ is exponentially stable.
(ii) There exist $\alpha>0$ and $\gamma=\gamma(\tau)>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$ with initial value $x_{\tau} \in X$, we have

$$
\|x(t)\| \leq \gamma\left\|x_{\tau}\right\| e_{-\alpha}(t, \tau) \text { for all } t \geq \tau
$$

(iii) There exist $\alpha>0$ and $\gamma=\gamma(\tau)>0$ such that

$$
\left|e_{p}(t, \tau)\right| \leq \gamma e_{-\alpha}(t, \tau) \text { for all } t \geq \tau
$$

(iv) $\quad C P(f)$ is exponentially stable.

Proof.
(i) $\Rightarrow$ (ii) Assume that $C P(0)$ is exponentially stable. There exists $\gamma=\gamma(\tau)>0$ such that for any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of $C P(0)$ with initial values $x_{\tau}, \hat{x}_{\tau} \in X$ respectively, we have

$$
\|x(t)-\hat{x}(t)\|=\left\|e_{p}(t, \tau)\left(x_{\tau}-\hat{x}_{\tau}\right)\right\| \leq \gamma\left\|x_{\tau}-\hat{x}_{\tau}\right\| e_{-\alpha}(t, \tau) \text { for all } t \geq \tau
$$

Let $x(t)=x\left(t, \tau, x_{\tau}\right)$ be any solution of $C P(0)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ be the zero solution corresponding to the initial value $\hat{x}_{\tau}=0$. Then, we obtain our desired result.
(ii) $\Rightarrow$ (iii) Let $x(t)$ be any nontrivial solution corresponding to the initial value $x_{\tau} \neq 0$. Then, we have
$\|x(t)\| \leq \gamma e_{-\alpha}(t, \tau)\left\|x_{\tau}\right\|$. Consequently, we have $\left\|e_{p}(t, \tau) x_{\tau}\right\| \leq \gamma e_{-\alpha}(t, \tau)\left\|x_{\tau}\right\|$ and thereby $\left|e_{p}(t, \tau)\right| \leq \gamma e_{-\alpha}(t, \tau)$.
(iii) $\Rightarrow(i v)$ Let $x_{f}(t)=x_{f}\left(t, \tau, x_{\tau}\right)$ and $\hat{x}_{f}(t)=\hat{x}_{f}\left(t, \tau, \hat{x}_{\tau}\right)$ be two solutions for $C P(f)$ with initial values $x_{\tau}, \hat{x}_{\tau} \in X$ respectively. We deduce that

$$
\left\|x_{f}-\hat{x}_{f}\right\|=\left\|e_{p}(t, \tau)\left(x_{\tau}-\hat{x}_{\tau}\right)\right\|=\left|e_{p}(t, \tau)\right|\left\|x_{\tau}-\hat{x}_{\tau}\right\| \leq \gamma e_{-\alpha}(t, \tau)\left\|x_{\tau}-\hat{x}_{\tau}\right\| \text { for } t \geq \tau
$$

Hence, $C P(f)$ is exponentially stable.
$(i v) \Rightarrow(i)$ There exist $\alpha>0$ and $\gamma=\gamma(\tau)>0$ such that for two solutions $x_{f}(t)=x_{f}\left(t, \tau, x_{\tau}\right)$ and $\hat{x}_{f}(t)=\hat{x}_{f}\left(t, \tau, \hat{x}_{\tau}\right)$ of $C P(f)$, the inequality

$$
\left\|x_{f}(t)-\hat{x}_{f}(t)\right\| \leq \gamma e_{-\alpha}(t, \tau)\left\|x_{\tau}-\hat{x}_{\tau}\right\| \text { for } t \geq \tau
$$

holds. For any two solutions $x(t)=x\left(t, \tau, x_{\tau}\right)$ and $\hat{x}(t)=\hat{x}\left(t, \tau, \hat{x}_{\tau}\right)$ of $C P(0)$, we conclude that

$$
\|x(t)-\hat{x}(t)\|=\left\|x_{f}(t)-\hat{x}_{f}(t)\right\| \leq \gamma e_{-\alpha}(t, \tau)\left\|x_{\tau}-\hat{x}_{\tau}\right\| \text { for } t \geq \tau
$$

Hence, $C P(0)$ is exponentially stable.
Similarly, we can prove the following theorem.
Theorem 2.6. The following statements are equivalent
(i) $\quad C P(0)$ is uniformly exponentially stable.
(ii) There exist $\alpha>0$ and $\gamma>0$ independent on $\tau$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of
$C P(0)$ with initial value $x_{\tau} \in X$, we have

$$
\|x(t)\| \leq \gamma\left\|x_{\tau}\right\| e_{-\alpha}(t, \tau) \text { for all } t \geq \tau \text {. }
$$

(iii) There exist $\alpha>0$ and $\gamma>0$ independent on $\tau$ such that

$$
\left|e_{p}(t, \tau)\right| \leq \gamma e_{-\alpha}(t, \tau) \quad \text { for all } t \geq \tau \text {. }
$$

(iv) $\quad C P(f)$ is uniformly exponentially stable.

The following results concerning $\psi$-stability and $\psi$ - unifom stability are more general than Theorems 2.5, 2.6 replacing the exponential function $e_{-\alpha}$ by $|\psi|$. The proofs are similar, so they will be omitted.

Theorem 2.7. The following statements are equivalent
(i) $\quad C P(0)$ is $\psi-$ stable.
(ii) There is $\gamma(\tau)>0$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$ with initial value $x_{\tau} \in X$, we have

$$
\|\psi(t) x(t)\| \leq \gamma\left\|\psi(\tau) x_{\tau}\right\| \text { for all } t \geq \tau
$$

(iii) There exist $\gamma>0$ such that

$$
\left|\psi(t) e_{p}(t, \tau)\right| \leq \gamma|\psi(\tau)| \text { for all } t \geq \tau
$$

(iv) $\quad C P(f)$ is $\psi-$ stable.

Theorem 2.8. The following statements are equivalent
(i) $\quad C P(0)$ is $\psi-$ uniformly stable.
(ii) There is $\gamma>0$ independent on $\tau$ such that for any solution $x(t)=x\left(t, \tau, x_{\tau}\right)$ of $C P(0)$ with initial value $x_{\tau} \in X$, we have

$$
\|\psi(t) x(t)\| \leq \gamma\left\|\psi(\tau) x_{\tau}\right\| \text { for all } t \geq \tau \text {. }
$$

(iii) There exist $\gamma>0$ independent on $\tau$ such that

$$
\left|\psi(t) e_{p}(t, \tau)\right| \leq \gamma|\psi(\tau)| \text { for all } t \geq \tau
$$

(iv) $\quad C P(f)$ is $\psi$ - uniformly stable.

## Numerical Examples

In this section we give some numerical examples about the various types of stability for solutions of Hahn difference equations.
Example 3.1. The Hahn difference equation

$$
\begin{equation*}
D_{q, \omega} x(t)=0, x(\tau)=c \in X, t, \tau \in I \tag{3.1}
\end{equation*}
$$

where $c \neq 0$ is uniformly stable but it is not asymptotically stable.
Examaple 3.2. Let $I=[\theta, \infty[$. Consider the Hahn difference equations of the form

$$
\begin{equation*}
D_{q, \omega} x(t)=-r(t) x(t)+f(t), x(\tau)=x_{\tau} \in X, t, \tau \in I \tag{3.2}
\end{equation*}
$$

where $r$ is a non-negative function and continuous at $\theta$.

Equation (3.2) is
(i) Stable since

$$
\begin{aligned}
\left|e_{-r}(t, \tau)\right| & =\frac{e_{-r}(t)}{e_{-r}(\tau)} \\
& =\frac{\prod_{k=0}^{\infty}\left(1+r\left(h^{k}(\tau)\right) q^{k}(\tau(1-q)-\omega)\right)}{\prod_{k=0}^{\infty}\left(1+r\left(h^{k}(t)\right) q^{k}(t(1-q)-\omega)\right)} \\
& \leq \frac{1}{e_{-r}(\tau)}=E_{r}(\tau) \text { forallt } \geq \tau .
\end{aligned}
$$

Consequently, for every $\tau \in I, \quad\left\{\left|e_{p}(t, \tau)\right|\right\}_{t \geq \tau, t \in I}$ is bounded.
(ii) Exponentially stable when $\alpha=\inf _{t \in I} r(t)>0$. Indeed, if we take $\gamma(\tau) \geq \frac{e_{-\alpha}(\tau)}{e_{-r}(\tau)}$, then

$$
\begin{aligned}
\left|e_{-r}(t, \tau)\right| & =\frac{e_{-r}(t)}{e_{-r}(\tau)} \\
& \leq \gamma(\tau) e_{-\alpha}(t, \tau) \quad \text { for all } t \geq \tau
\end{aligned}
$$

(iii) Globally asymptotically stable if $f$ has the form $f(t)=e_{p}(t) g(t)$ where $\int_{\tau}^{t} g(t) d_{q, \omega} t$ is bounded for every $\tau \in I$ and $\alpha=\inf _{t \in I} r(t)>0$. In fact, the homogeneous equation associated with the above liner Hahn difference equation is globally asymptotically stable. Indeed, we have

$$
\begin{aligned}
\left|e_{-r}(t, \tau)\right| & =\frac{1}{e_{-r}(\tau)} \times \frac{1}{\prod_{k=0}^{\infty}\left(1+r\left(h^{k}(t)\right) q^{k}(t(1-q)-\omega)\right)} \\
& <\frac{1}{e_{-r}(\tau)} \times \frac{1}{1+\alpha q^{k}(t(1-q)-\omega)}
\end{aligned}
$$

$$
\text { Consequently, } \lim _{t \rightarrow \infty}\left|e_{-r}(t, \tau)\right|=0
$$

(iv) $\psi-$ Stable for any function $\psi(t)$ such that $|\psi(t)|$ is decreasing function because

$$
\begin{aligned}
\left|\psi(t) e_{-r}(t, \tau)\right| & =\left|\psi(t) e_{-r}(t) / e_{-r}(\tau)\right| \\
& \leq\left|\psi(t) / e_{-r}(\tau)\right| \quad \text { for all } t \geq \tau . \\
& \leq \gamma(\tau)|\psi(\tau)| \quad
\end{aligned}
$$

where $\gamma(\tau)=\frac{1}{e_{-r}(\tau)}$.

## References

[1] M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail, and Z. S. Mansour, Linear $q$ - difference equations, Z.f. Anal. Anwend, 26(2007), 481-494.
[2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
[3] M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn Difference operator and Associated Jackson-Nörlund Integrals, Journal of optimization theory and application, 154(2012), 133-153.
[4] M. H. Annaby, Z. S. Mansour, $q$ - Taylor and interpolation series for Jackson $q$ - difference operator, J. Math. Anal. Appl. 344, 1(2008), 472-483.
[5] M. T. Bird, On generalizations of sum formulas of the Euler-Maclaurin type, Amer. J. Math. , 58(1936), 487-503.
[6] G. D. Birkhoff, General theory of linear difference equations, Trans. Amer. J.Math. Soc., 12(1911), 243-284.
[7] R. D. Carmichael, Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc., 12(1911), 99-134.
[8] R. D. Carmichael, On the theory of linear difference equations, Amer. J. Math., 35(1913), 163-182.
[9] W. Hahn, Über orthogonalpolynome, die $q$-differenzenlgleichungen genügen, Math. Nachr., 2(1949), 4-34.
[10] W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math., 95(1983), 19-24.
[11] A. E. Hamza and S. M. Ahmed, Existence and Uniqueness of solutions of Hahn difference equations, J. of Advances in difference equations, 2013, 2013:316.
[12] A. E. Hamza and S. M. Ahmed, Theory of Linear Hahn difference equations. To appear in J. of advances in mathematics (2013).
[13] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia Math. Appl., vol.98, Cambridge Univ. Press, Cambridge, 2005.
[14] D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000.
[15] F. H. Jackson, Basic integration, Quart. J. Math., (Oxford), 2(1951), 1-16.
[16] F. H. Jackson, On $q$ - functions and a certain difference operator, Trans. Roy. soc. Edin., 46(1908), 253-281.
[17] C. Jordan, Calculus of Finite Differences, Chelsea, New York, 1965.
[18] K. H. Kwon, D. W. Lee, S. B. Park and B. H. Yoo, Hahn Class orthogonal polynomials, Kyungpook Math. J. , 38(1998), 259-281.
[19] P. A. Lesky, Eine Charakterisierung der klassischen kontinuierlichen, diskretenund $q$ - Orthgonalpolynome, Shaker Verlag, Aachen 2005.
[20] J. Petronilho, Generic formulas for the values at the singular points of some special monic classial $H_{q, \omega}$ - orthogonal polynomials, J. Comput. Appl. Math. , 205(2007), 314-324.

