

Characterizations of stability of first order linear Hahn difference equations

Alaa E. Hamza[†], A. S. Zaghrout^{*1}, S. M. Ahmed^{*2}

[†] Mathematics Department, Faculty of Science, Cairo Univ., Giza, Egypt.

hamzaaeg2003@yahoo.com

* Mathematics Department, Faculty of Science, Al-Azhar Univ., Cairo, Egypt.

afaf211@yahoo.com

2 samah_moh_eg@yahoo.com

Abstract

Hahn introduced the difference operator $D_{q,\omega}f(t)=(f(qt+\omega)-f(t))/(t(q-1)+\omega)$ in 1949, where 0 < q < 1 and $\omega > 0$ are fixed real numbers. This operator extends the classical difference operator $\Delta_{\omega}f(t)=(f(t+\omega)-f(t))/\omega$ as well as Jackson q – difference operator $D_qf(t)=(f(qt)-f(t))/(t(q-1))$. In this paper, our objective is to establish characterizations of many types of stability, like (uniform, uniform exponential, ψ -) stability of linear Hahn difference equations of the form $D_{q,\omega}x(t)=p(t)x(t)+f(t)$. At the end, we give two illustrative examples.

Keywords: Hahn difference operator; Jackson q – difference operator.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 5, No. 2 editor@cirworld.com www.cirworld.com, member.cirworld.com

678 | Page Dec 23, 2013

Introduction and Preliminaries

Hahn introduced his difference operator which is defined by

$$D_{q,\omega}f(t) = \frac{f(qt+\omega) - f(t)}{t(q-1) + \omega}, t \neq \theta,$$

where 0 < q < 1 and $\omega > 0$ are fixed real numbers , $\theta = \omega/(1-q)$ [9, 10]. This operator unifies and generalizes two well-known difference operators. The first is Jackson q – difference operator defined by

$$D_q f(t) = \frac{f(qt) - f(t)}{t(q-1)}, t \neq 0,$$

where q is fixed. Here f is supposed to be defined on a q – geometric set $A \subset \mathbb{R}$ for which $qt \in A$ whenever $t \in A$, see [1, 2, 4, 7, 8, 13, 15, 16]. The second operator is the forward difference operator

$$\Delta_{\omega} f(t) = \frac{f(t+\omega) - f(t)}{\omega},$$

where $\omega > 0$ is fixed, see [5, 6, 14, 17]. Fine mathematicians applied Hahn's operator to construct families of orthogonal polynomials and to investigate some approximation problems, see [18, 19, 20]. Recently, Annaby $et\ al.$ established a calculus based on this operator, see [3]. An essential function $h(t) = qt + \omega$, which is normally taken to be defined on an interval I which containing the number θ , plays an important role in this calculus. One can see that the k-th order iteration of h(t) is given by

$$h^{k}(t) = q^{k}t + \omega[k]_{a}, t \in I.$$

Here $[k]_a$ is defined by

$$[k]_q = \frac{1 - q^k}{1 - q}.$$

The sequence $h^k(t)$ is uniformly convergent to θ on I. They defined the q, ω -integral of a function f from I to a Banach space X on an interval $[a,b] \subset I$ by

$$\int_{a}^{b} f(t)d_{q,\omega}t = \int_{\theta}^{b} f(t)d_{q,\omega}t - \int_{\theta}^{a} f(t)d_{q,\omega}t,$$

where

$$\int_{\theta}^{x} f(t)d_{q,\omega}t = (x(1-q)-\omega)\sum_{k=0}^{\infty} q^{k} f(h^{k}(x)), \quad x \in I,$$

provided that the series converges at x=a and x=b. As indicated in [3], if $f:I\to X$ is continuous at θ , then the following statements are true.

- (i) $\{f(h^k(s))\}_{k\in\mathbb{N}}$ converges uniformly to $f(\theta)$ on I .
- (ii) $\sum_{k=0}^{\infty} q^k |f(h^k(s))|$ is uniformly convergent on I and consequently f is q, ω -integrable over I .
- (iii) The function F defined by

$$F(x) = \int_{a}^{x} f(t)d_{q,\omega}t, \quad x \in I.$$

is continuous at θ . Furthermore, $D_{q,\omega}F(x)$ exists for every $x\in I$ and

$$D_{q,\omega}F(x) = f(x).$$

Conversely,

$$\int_{a}^{b} D_{q,\omega} f(t) d_{q,\omega} t = f(b) - f(a) \quad \text{for all} \quad a, b \in I.$$

Throughout this paper I is any interval of R containing θ and X is a Banach space. The following theorem gives us the required conditions to insure the existence of solutions of linear Hahn difference equations, see [11].

Theorem 1.1. Assume the functions $a_i(t): I \to \mathbb{C}$, $1 \le j \le n$, and $b(t): I \to X$ satisfy the following conditions:

(i)
$$a_j(t), j=1,...,n$$
, and $b(t)$ are continuous at θ with $a_0(t) \neq 0 \quad \forall \ t \in I$.

(ii)
$$a_{j}(t)/a_{0}(t)$$
 is bounded on $I, j \in \{1,...,n\}$.

Then, for any elements $y_r \in X$, the equation

$$a_{0}(t)D_{q,\omega}^{n}x(t) + a_{1}(t)D_{q,\omega}^{n-1}x(t) + \dots + a_{n}(t)x(t) = b(t),$$

$$D_{q,\omega}^{i-1}x(\theta) = y_{i}, \quad i = 1,\dots, n.$$

$$(1.1)$$

has a unique solution on a subinterval $J \subset I$ containing θ .

Definition 1.2 [4] The exponential functions $e_p(t)$ and $E_p(t)$ are defined by

$$e_{p}(t) = \frac{1}{\prod_{k=0}^{\infty} (1 - p(h^{k}(t))q^{k}(t(1-q) - \omega))}$$
(1.2)

and

$$E_p(t) = \prod_{k=0}^{\infty} (1 + p(h^k(t))q^k(t(1-q) - \omega)), \tag{1.3}$$

whenever the first product is convergent to a nonzero number for every $t \in I$. It is worth noting that the two products are convergent since $\sum_{k=0}^{\infty} |p(h^k(t))| q^k(t(1-q)-\omega)$ is convergent.

Now, we state various stability types that will be examined in Section 2. These concepts involve the boundedness of solutions of Hahn difference equation

$$D_{q,\omega}x(t) = F(t,x), x(\tau) = x_{\tau} \in X, t, \tau \in I$$
(1.4)

where $\,F\,$ is assumed to satisfy all conditions such that (4) has a unique solution.

Definition 1.3. Equation (1.4) is called stable if for every $\tau \in I$ and every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon, \tau) > 0$ such that for any two solutions $x(t) = x(t, \tau, x_{\tau})$ and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ of Equation (1.4), we have for all

$$\left\|x_{\tau} - \hat{x}_{\tau}\right\| < \mathcal{S} \Longrightarrow \left\|x(t) - \hat{x}(t)\right\| < \varepsilon \quad \text{for all} \quad t \geq \tau, t, \tau \in I.$$

Definition 1.4. Equation (1.4) is called uniformly stable if for every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for any two solutions $x(t) = x(t, \tau, x_{\tau})$ and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ of Equation (1.4), we have

$$\left\|x_{\tau} - \hat{x}_{\tau}\right\| < \mathcal{S} \Longrightarrow \left\|x(t) - \hat{x}(t)\right\| < \varepsilon \quad \text{for all } t \geq \tau, t, \tau \in I.$$

Definition 1.5. Equation (1.4) is called asymptotically stable if it is stable and there exists $\gamma = \gamma(\tau) > 0$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of Equation (1.4), we have

$$||x_{\tau}|| < \gamma \Longrightarrow \lim_{t \to \infty} ||x(t)|| = 0.$$

Definition 1.6. Equation (1.4) is called uniformly asymptotically stable if it is uniformly stable and there exists $\gamma > 0$ such that for any solution $x(t) = x(t, \tau, x_z)$ of Equation (1.4), we have

$$||x_{\tau}|| < \gamma \Longrightarrow \lim_{t \to \infty} ||x(t)|| = 0.$$

Definition 1.7. Equation (1.4) is called globally asymptotically stable if it is stable and for any solution $x(t) = x(t, \tau, x_{\tau})$ of Equation (1.4), we have

$$\lim_{t\to\infty} ||x(t)|| = 0.$$

Definition 1.8. Equation (1.4) is called exponentially stable if there exist finite constants $\alpha > 0$ and $\gamma = \gamma(\tau) > 0$ such that for any two solutions $x(t) = x(t, \tau, x_{\tau})$ and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ of (1.4), we have

$$||x(t) - \hat{x}(t)|| \le \gamma ||x_{\tau} - \hat{x}_{\tau}||e_{-\alpha}(t,\tau)$$
 for all $t \ge \tau, t, \tau \in I$.

where the exponential function $e_n(t,\tau)$ is given by $e_n(t,\tau) = e_n(t)/e_n(\tau)$.

Definition 1.9. Equation (1.4) is called uniformly exponentially stable if γ is independent on $\tau \in I$.

Definition 1.10. Equation (1.4) is called ψ – stable if there exists a finite constant $\gamma = \gamma(\tau) > 0$ such that for any two solutions $x(t) = x(t, \tau, x_{\tau})$ and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ of (1.4), we have

$$\|\psi(t)(x(t)-\hat{x}(t))\| \le \gamma \|\psi(\tau)(x_{\tau}-\hat{x}_{\tau})\|$$
 for all $t \ge \tau, t, \tau \in I$.

Definition 1.11. Equation (1.4) is called ψ – uniformly stable if $\gamma > 0$ is independent on $\tau \in I$.

Remark 1.12. If $\psi(t) = e_{\alpha}(\tau, t)$, then ψ – uniform stability coincides with uniform exponential stability. Thus, ψ – uniform stability is an extension of uniform exponential stability.

Main results

In this section, we are concerned with obtaining many results about characterizations of stability of linear Hahn difference equations of the form

$$CP(0): D_{q,\omega}x(t) = p(t)x(t), x(\tau) = x_{\tau} \in X, t \ge \tau, t, \tau \in I,$$

and

$$CP(f): D_{q,\omega}x(t) = p(t)x(t) + f(t), x(\tau) = x_{\tau} \in X, t \ge \tau, t, \tau \in I,$$

where $p:I\to\mathbb{C}$, $f:I\to X$ are continuous at θ and $p(h^k(t))q^k(t(1-q)-\omega)\neq 1$ for all $k\in\mathbb{N}, t\in I$ Simple computations show that CP(0) and CP(f) have the unique solutions

$$x(t) = e_p(t,\tau)x_{\tau} \tag{2.1}$$

and

$$x(t) = e_{p}(t,\tau)(x_{\tau} + \int_{\tau}^{t} f(s)e_{p}(\tau,h(s))d_{q,\omega}s)$$
 (2.2)

respectively.

Theorem 2.1. The following statements are equivalent

- (i) CP(0) is stable.
- (ii) For every $\tau \in I$ and every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon, \tau)$ such that for any solution

- $x(t) = x(t, \tau, x_{\tau})$ of CP(0), we have $||x_{\tau}|| < \delta \Rightarrow ||x(t)|| < \varepsilon$.
- (iii) CP(f) is stable.
- (iv) For every $\tau \in I$, $\{|e_p(t,\tau)|\}_{t \geq \tau, t \in I}$ is bounded.
- (v) For every $\tau \in I$, there exist $\gamma(\tau) > 0$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of CP(0) (resp. CP(f)), we have

$$||x(t)|| \le \gamma(\tau) ||x_{\tau}||, t \ge \tau, t \in I.$$

Proof. $(i) \Rightarrow (ii)$ Assume that CP(0) is stable. Let $\varepsilon > 0$. Then, there exists $\delta = \delta(\varepsilon, \tau)$ such that for any two solutions $x(t) = x(t, \tau, x_{\tau})$ and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ of CP(0) with initial values $x_{\tau}, \hat{x}_{\tau} \in X$ respectively, we have

$$\|x_{\tau} - \hat{x}_{\tau}\| < \delta \Rightarrow \|x(t) - \hat{x}(t)\| < \varepsilon, t \ge \tau. \tag{2.3}$$

Now, let $x(t) = x(t, \tau, x_{\tau})$ be any solution of CP(0) such that $\|x_{\tau}\| < \delta$. Suppose that $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ be the zero solution subject to the initial value $x_{\tau} = 0$. Hence, we obtain $\|x(t)\| < \varepsilon$ (from (3)).

 $\begin{array}{ll} (ii) \Longrightarrow (iii) \quad \text{Let } \varepsilon > 0 \quad \text{and } \ \tau \in I \ . \ \text{There exists} \quad \delta = \delta(\varepsilon,\tau) \quad \text{such that for any solution} \quad x(t) = x(t,\tau,x_\tau) \quad \text{of} \quad CP(0) \ , \quad \text{we have} \quad \left\| x_\tau \right\| < \delta \Longrightarrow \left\| e_p(t,\tau) x_\tau \right\| < \varepsilon \ . \ \text{Let} \quad x_f(t) = x_f(t,\tau,x_\tau) \quad \text{and} \quad \hat{x}_f(t) = \hat{x}_f(t,\tau,\hat{x}_\tau) \quad \text{be two solutions for} \quad CP(f) \quad \text{with initial values} \quad x_\tau,\hat{x}_\tau \in X \quad \text{respectively such that} \quad \left\| x_\tau - \hat{x}_\tau \right\| < \delta \ . \quad \text{Then, we have} \quad \left\| x_f - \hat{x}_f \right\| = \left\| e_p(t,\tau)(x_\tau - \hat{x}_\tau) \right\| < \varepsilon \quad \text{(since } x_f - \hat{x}_f \text{ is a solution of} \quad CP(0) \end{array}$

Therefore, CP(f) is stable.

(iii) \Rightarrow (iv) Assume that CP(f) is stable. Let $\varepsilon=1$. There is $\delta>0$ such that for any two solutions $x_f(t)=x_f(t,\tau,x_\tau)$ and $\hat{x}_f(t)=\hat{x}_f(t,\tau,\hat{x}_\tau=0)$, we have

$$||x_{\tau}|| < \delta \Rightarrow ||e_{p}(t,\tau)x_{\tau}|| < 1 \quad \forall t \ge \tau, t \in I.$$

Let $0 \neq x_0 \in X$. Take $x_\tau = \delta x_0 / (2\|x_0\|)$. Since $\|x_\tau\| < \delta$, then $\|e_p(t,\tau)\delta x_0 / (2\|x_0\|)\| < 1$ i.e. $\|e_p(t,\tau)x_0\| < 2\|x_0\| / \delta, t \geq \tau, t \in I$. Thus, for all $x_0 \in X$, $\{\|e_p(t,\tau)x_0\|\}_{t \geq \tau, t \in I}$ is bounded. By the Uniform Boundedness Theorem, $\{\|e_p(t,\tau)\|\}_{t \geq \tau, t \in I}$ is bounded.

 $(iv) \Longrightarrow (v) \text{ Suppose that } \left\{ |e_p(t,\tau)| \right\}_{t \ge \tau, t \in I} \text{ is bounded for every } \tau \in I \text{ . Then, there exists a positive constant } \gamma$ which is dependent on τ such that $|e_p(t,\tau)| \le \gamma(\tau)$ for every $t \in I, t \ge \tau$. Consequently, for any solution $x(t) = x(t,\tau,x_\tau)$, we have

$$||x(t)|| = ||e_p(t,\tau)x_\tau|| \le \gamma(\tau)||x_\tau||, t \ge \tau, t, \tau \in I.$$

 $(v) \Longrightarrow (i) \ \, \text{Assume that for every} \ \, \tau \in I \ \, \text{there exists} \ \, \gamma(\tau) > 0 \ \, \text{such that} \, \, \left\| x(t) \right\| \leq \gamma(\tau) \left\| x_\tau \right\|, t \in I \, . \, \text{Let} \, \, \varepsilon > 0 \, ,$ $\tau \in I \, . \, \text{Take} \, \, \delta = \frac{\varepsilon}{\gamma(\tau)} \, . \, \text{For any} \, \, x_\tau, \hat{x}_\tau \in X \ \, \text{such that} \, \, \left\| x_\tau - \hat{x}_\tau \right\| < \delta \, , \, \text{we have}$

$$||x(t) - \hat{x}(t)|| \le \gamma(\tau) ||x_{\tau} - \hat{x}_{\tau}|| = \frac{\varepsilon}{\delta} ||x_{\tau} - \hat{x}_{\tau}|| < \varepsilon, t \ge \tau, t, \tau \in I.$$

Similarly, we can prove the following theorem.

Theorem 2.2. The following statements are equivalent

CP(0) is uniformly stable,

- (i) For every $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon)$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of CP(0), we have $\|x_{\tau}\| < \delta \Rightarrow \|x(t)\| < \varepsilon$,
- (ii) CP(f) is uniformly stable,
- (iii) $\{|e_n(t,\tau)|: t, \tau \in I, t \ge \tau\}$ is bounded.
- (iv) There is $\gamma > 0$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of CP(0) (resp. CP(f)), we have

$$||x(t)|| \le \gamma ||x_{\tau}||, t \ge \tau, t \in I. \tag{2.4}$$

Theorem 2.3. The following statements are equivalent

- (i) CP(0) is asymptotically stable.
- (ii) $\lim_{t\to\infty} Pe_p(t,\tau)xP=0$ for every $x\in X$ and every $\tau\in I$.
- (iii) CP(0) is globally asymptotically stable.

Proof. $(i) \Rightarrow (ii)$ Suppose that CP(0) is asymptotically stable. Then, there exists $\gamma > 0$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of CP(0), with initial value x_{τ} , we have

$$||x_{\tau}|| < \gamma \Longrightarrow \lim_{t \to \infty} ||x(t)|| = 0.$$

Let $0 \neq x \in X$. Put $x_\tau = \gamma x/(2\|x\|)$. Then, $\lim_{t \to \infty} \left\| e_p(t,\tau) \gamma x/(2\|x\|) \right\| = 0$. Consequently, $\lim_{t \to \infty} \left\| e_p(t,\tau) x \right\| = 0$.

 $(ii) \Rightarrow (iii)$ By condition (ii) and the Uniform Boundedness Theorem, we insure the boundedness of $\{|e_p(t,\tau)|\}_{t\geq \tau,t\in I}$. Consequently, CP(0) is stable (by Theorem(2.1)). Thus by our assumption, CP(0) is globally asymptotically stable.

 $(iii) \Rightarrow (i)$ is clear.

Theorem 2.4. Assume that

$$F(t) = \int_{-\pi}^{t} f(s) E_{-p}(h(s)) d_{q,\omega} s$$

is bounded for any $\tau \in I$. Then, CP(0) is globally asymptotically stable if and only if CP(f) is globally asymptotically stable.

Proof. Assume that CP(0) is globally asymptotically stable. Then, $\lim_{t\to\infty}e_p(t,\tau)=0$. Consequently, $\lim_{t\to\infty}e_p(t)=0$. Now, let $x_f(t)$ be a solution of CP(f). Hence, it has the form

$$x_{f}(t) = e_{p}(t,\tau)(x_{\tau} + \int_{\tau}^{t} f(s)e_{p}(\tau,h(s))d_{q,\omega}s)$$

= $e_{p}(t,\tau)x_{\tau} + (e_{p}(t)\int_{\tau}^{t} f(s)E_{-p}(h(s))d_{q,\omega}s).$

Thus, $\lim_{t\to\infty} x_f(t) = 0$ which is the desired result.

For the converse, take $x_{\tau} = 0$, to obtain

$$\lim_{t\to\infty} e_p(t,\tau) \int_{\tau}^t f(s) e_p(\tau,h(s)) d_{q,\omega} s = 0.$$

Consequently, CP(0) is globally asymptotically stable.

Theorem 2.5. The following statements are equivalent

- (i) CP(0) is exponentially stable.
- (ii) There exist $\alpha>0$ and $\gamma=\gamma(\tau)>0$ such that for any solution $x(t)=x(t,\tau,x_{\tau})$ of CP(0) with initial value $x_{\tau}\in X$, we have

$$||x(t)|| \le \gamma ||x_{\tau}|| e_{-\alpha}(t,\tau)$$
 for all $t \ge \tau$.

(iii) There exist $\alpha > 0$ and $\gamma = \gamma(\tau) > 0$ such that

$$|e_p(t,\tau)| \le \gamma e_{-\alpha}(t,\tau)$$
 for all $t \ge \tau$.

(iv) CP(f) is exponentially stable.

Proof.

 $(i) \Longrightarrow (ii) \ \, \text{Assume that} \ \, CP(0) \ \, \text{is exponentially stable. There exists} \ \, \gamma = \gamma(\tau) > 0 \ \, \text{such that for any two solutions} \\ x(t) = x(t,\tau,x_\tau) \ \, \text{and} \ \, \hat{x}(t) = \hat{x}(t,\tau,\hat{x}_\tau) \ \, \text{of} \ \, CP(0) \ \, \text{with initial values} \ \, x_\tau,\hat{x}_\tau \in X \ \, \text{respectively, we have} \\$

$$||x(t) - \hat{x}(t)|| = ||e_p(t, \tau)(x_\tau - \hat{x}_\tau)|| \le \gamma ||x_\tau - \hat{x}_\tau|| e_{-\alpha}(t, \tau) \text{ for all } t \ge \tau.$$

Let $x(t) = x(t, \tau, x_{\tau})$ be any solution of CP(0) and $\hat{x}(t) = \hat{x}(t, \tau, \hat{x}_{\tau})$ be the zero solution corresponding to the initial value $\hat{x}_{\tau} = 0$. Then, we obtain our desired result.

 $(ii) \Rightarrow (iii) \text{ Let } x(t) \text{ be any nontrivial solution corresponding to the initial value } x_{\tau} \neq 0. \text{ Then, we have } \\ \|x(t)\| \leq \gamma e_{-\alpha}(t,\tau) \|x_{\tau}\|. \text{ Consequently, we have } \|e_p(t,\tau)x_{\tau}\| \leq \gamma e_{-\alpha}(t,\tau) \|x_{\tau}\| \text{ and thereby } |e_p(t,\tau)| \leq \gamma e_{-\alpha}(t,\tau).$

 $(iii) \Rightarrow (iv)$ Let $x_f(t) = x_f(t, \tau, x_\tau)$ and $\hat{x}_f(t) = \hat{x}_f(t, \tau, \hat{x}_\tau)$ be two solutions for CP(f) with initial values $x_\tau, \hat{x}_\tau \in X$ respectively. We deduce that

$$\left\| x_f - \hat{x}_f \right\| = \left\| e_p(t,\tau)(x_\tau - \hat{x}_\tau) \right\| = \left| e_p(t,\tau) \right| \left\| x_\tau - \hat{x}_\tau \right\| \le \gamma e_{-\alpha}(t,\tau) \left\| x_\tau - \hat{x}_\tau \right\| \text{ for } t \ge \tau.$$

Hence, CP(f) is exponentially stable.

 $(iv) \Rightarrow (i)$ There exist $\alpha > 0$ and $\gamma = \gamma(\tau) > 0$ such that for two solutions $x_f(t) = x_f(t, \tau, x_\tau)$ and $\hat{x}_f(t) = \hat{x}_f(t, \tau, \hat{x}_\tau)$ of CP(f), the inequality

$$||x_f(t) - \hat{x}_f(t)|| \le \gamma e_{-\alpha}(t, \tau) ||x_\tau - \hat{x}_\tau||$$
 for $t \ge \tau$.

holds. For any two solutions $x(t)=x(t,\tau,x_{\tau})$ and $\hat{x}(t)=\hat{x}(t,\tau,\hat{x}_{\tau})$ of CP(0), we conclude that

$$\left\|\boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t)\right\| = \left\|\boldsymbol{x}_f(t) - \hat{\boldsymbol{x}}_f(t)\right\| \leq \gamma e_{-\alpha}(t,\tau) \left\|\boldsymbol{x}_\tau - \hat{\boldsymbol{x}}_\tau\right\| \text{ for } t \geq \tau.$$

Hence, CP(0) is exponentially stable.

Similarly, we can prove the following theorem.

Theorem 2.6. The following statements are equivalent

- (i) CP(0) is uniformly exponentially stable.
- (ii) There exist $\alpha > 0$ and $\gamma > 0$ independent on τ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of

CP(0) with initial value $x_{\tau} \in X$, we have

$$||x(t)|| \le \gamma ||x_{\tau}|| e_{-\alpha}(t,\tau)$$
 for all $t \ge \tau$.

(iii) There exist $\alpha > 0$ and $\gamma > 0$ independent on τ such that

$$|e_{p}(t,\tau)| \le \gamma e_{-\alpha}(t,\tau)$$
 for all $t \ge \tau$.

(iv) CP(f) is uniformly exponentially stable.

The following results concerning ψ – stability and ψ – unifom stability are more general than Theorems 2.5, 2.6 replacing the exponential function $e_{-\alpha}$ by $|\psi|$. The proofs are similar, so they will be omitted.

Theorem 2.7. The following statements are equivalent

- (i) CP(0) is ψ stable.
- (ii) There is $\gamma(\tau) > 0$ such that for any solution $x(t) = x(t, \tau, x_{\tau})$ of CP(0) with initial value $x_{\tau} \in X$, we have

$$\|\psi(t)x(t)\| \le \gamma \|\psi(\tau)x_{\tau}\|$$
 for all $t \ge \tau$.

(iii) There exist $\gamma > 0$ such that

$$|\psi(t)e_{p}(t,\tau)| \leq \gamma |\psi(\tau)|$$
 for all $t \geq \tau$.

(iv) CP(f) is ψ – stable.

Theorem 2.8. The following statements are equivalent

- (i) CP(0) is ψ uniformly stable.
- (ii) There is $\gamma>0$ independent on τ such that for any solution $x(t)=x(t,\tau,x_{\tau})$ of CP(0) with initial value $x_{\tau}\in X$, we have

$$\|\psi(t)x(t)\| \le \gamma \|\psi(\tau)x_{\tau}\|$$
 for all $t \ge \tau$.

(iii) There exist $\gamma > 0$ independent on τ such that

$$|\psi(t)e_p(t,\tau)| \le \gamma |\psi(\tau)|$$
 for all $t \ge \tau$.

(iv) CP(f) is ψ – uniformly stable.

Numerical Examples

In this section we give some numerical examples about the various types of stability for solutions of Hahn difference equations.

Example 3.1. The Hahn difference equation

$$D_{a,o}x(t) = 0, x(\tau) = c \in X, t, \tau \in I,$$
 (3.1)

where $c \neq 0$ is uniformly stable but it is not asymptotically stable.

Example 3.2. Let $I = [\theta, \infty[$. Consider the Hahn difference equations of the form

$$D_{q,\omega}x(t) = -r(t)x(t) + f(t), x(\tau) = x_{\tau} \in X, t, \tau \in I,$$
(3.2)

where $\,r\,$ is a non-negative function and continuous at $\, heta\,$.

Equation (3.2) is

(i) Stable since

$$\begin{split} |\,e_{-r}(t,\tau)\,| &= \frac{e_{-r}(t)}{e_{-r}(\tau)} \\ &= \frac{\displaystyle\prod_{k=0}^{\infty} (1 + r(h^k(\tau)) q^k(\tau(1-q) - \omega))}{\displaystyle\prod_{k=0}^{\infty} (1 + r(h^k(t)) q^k(t(1-q) - \omega))} \\ &\leq \frac{1}{e_{-r}(\tau)} = E_r(\tau) \; for all t \geq \tau. \end{split}$$

Consequently, for every $\tau \in I$, $\{|e_p(t,\tau)|\}_{t \geq \tau, t \in I}$ is bounded.

(ii) Exponentially stable when $\alpha = \inf_{t \in I} r(t) > 0$. Indeed, if we take $\gamma(\tau) \geq \frac{e_{-\alpha}(\tau)}{e_{-r}(\tau)}$, then

$$\begin{split} |\,e_{_{-r}}(t,\tau)\,| &= \frac{e_{_{-r}}(t)}{e_{_{-r}}(\tau)} \\ &\leq \gamma(\tau)e_{_{-\alpha}}(t,\tau) \quad \text{for all } t \geq \tau. \end{split}$$

(iii) Globally asymptotically stable if f has the form $f(t) = e_p(t)g(t)$ where $\int_{\tau}^{t} g(t)d_{q,\omega}t$ is bounded for every $\tau \in I$ and $\alpha = \inf_{t \in I} r(t) > 0$. In fact, the homogeneous equation associated with the above liner Hahn difference equation is globally asymptotically stable. Indeed, we have

$$|e_{-r}(t,\tau)| = \frac{1}{e_{-r}(\tau)} \times \frac{1}{\prod_{k=0}^{\infty} (1 + r(h^{k}(t))q^{k}(t(1-q) - \omega))} < \frac{1}{e_{-r}(\tau)} \times \frac{1}{1 + \alpha q^{k}(t(1-q) - \omega)}.$$

Consequently, $\lim_{t\to\infty} |e_{-r}(t,\tau)| = 0$.

(iv) ψ – Stable for any function $\psi(t)$ such that $|\psi(t)|$ is decreasing function because

$$\begin{split} |\,\psi(t)e_{_{-r}}(t,\tau)\,| &= \!|\,\psi(t)e_{_{-r}}(t)\,/\,e_{_{-r}}(\tau)\,| \\ &\leq \!|\,\psi(t)\,/\,e_{_{-r}}(\tau)\,| \\ &\leq \gamma(\tau)\,|\,\psi(\tau)\,| \end{split} \qquad \text{for all } t\geq \tau.$$

where
$$\gamma(\tau) = \frac{1}{e_{-r}(\tau)}$$
.

References

[1] M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail, and Z. S. Mansour, Linear q – difference equations, Z.f. Anal. Anwend, 26(2007), 481-494.

- [2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
- [3] M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn Difference operator and Associated Jackson-Nörlund Integrals, Journal of optimization theory and application, 154(2012), 133-153.
- [4] M. H. Annaby, Z. S. Mansour, q Taylor and interpolation series for Jackson q difference operator, J. Math. Anal. Appl. 344, 1(2008), 472-483.
- [5] M. T. Bird, On generalizations of sum formulas of the Euler-Maclaurin type, Amer. J. Math., 58(1936), 487-503.
- [6] G. D. Birkhoff, General theory of linear difference equations, Trans. Amer. J.Math. Soc., 12(1911), 243-284.
- [7] R. D. Carmichael, Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc., 12(1911), 99-134.
- [8] R. D. Carmichael, On the theory of linear difference equations, Amer. J. Math., 35(1913), 163-182.
- [9] W. Hahn, Über orthogonalpolynome, die q differenzenlgleichungen genügen, Math. Nachr., 2(1949), 4-34.
- [10] W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math., 95(1983), 19-24.
- [11] A. E. Hamza and S. M. Ahmed, Existence and Uniqueness of solutions of Hahn difference equations, J. of Advances in difference equations, 2013, 2013:316.
- [12] A. E. Hamza and S. M. Ahmed, Theory of Linear Hahn difference equations. To appear in J. of advances in mathematics (2013).
- [13] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia Math. Appl., vol.98, Cambridge Univ. Press, Cambridge, 2005.
- [14] D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000.
- [15] F. H. Jackson, Basic integration, Quart. J. Math., (Oxford), 2(1951), 1-16.
- [16] F. H. Jackson, On q functions and a certain difference operator, Trans. Roy. soc. Edin., 46(1908), 253-281.
- [17] C. Jordan, Calculus of Finite Differences, Chelsea, New York, 1965.
- [18] K. H. Kwon, D. W. Lee, S. B. Park and B. H. Yoo, Hahn Class orthogonal polynomials, Kyungpook Math. J., 38(1998), 259-281.
- [19] P. A. Lesky, Eine Charakterisierung der klassischen kontinuierlichen, diskretenund q Orthgonalpolynome, Shaker Verlag, Aachen 2005.
- [20] J. Petronilho, Generic formulas for the values at the singular points of some special monic classial $H_{q,\omega}$ orthogonal polynomials, J. Comput. Appl. Math. , 205(2007), 314-324.

687 | Page Dec 23, 2013