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Abstract 

Hahn introduced the difference operator , ( ) = ( ( ) ( )) / ( ( 1) )qD f t f qt f t t q       in 1949, where 0 < <1q  and 

0>  are fixed real numbers. This operator extends the classical difference operator  ))/()((=)( tftftf   

as well as Jackson q difference operator 1))())/(()((=)(  qttfqtftfDq . In this paper, our objective is to 

establish characterizations of many types of stability, like (uniform, uniform exponential,  -) stability of linear Hahn 

difference equations of the form )()()(=)(, tftxtptxDq  . At the end, we give two illustrative examples.  

Keywords: Hahn difference operator; Jackson q difference operator. 
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Introduction and Preliminaries  

Hahn introduced his difference operator which is defined by  

 ,,
1)(

)()(
=)(, 




 




t

qt

tfqtf
tfDq  

where 1<<0 q  and 0>  are fixed real numbers , )/(1= q  [9, 10]. This operator unifies and generalizes two 

well-known difference operators. The first is Jackson q difference operator defined by  

 0,,
1)(

)()(
=)( 
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qt

tfqtf
tfDq  

where q  is fixed. Here f  is supposed to be defined on a q geometric set RA  for which Aqt  whenever 

At , see [1, 2, 4, 7, 8, 13, 15, 16]. The second operator is the forward difference operator  

 ,
)()(

=)(





tftf
tf


  

where 0>  is fixed, see [5, 6, 14, 17]. Fine mathematicians applied Hahn’s operator to construct families of orthogonal 

polynomials and to investigate some approximation problems, see [18, 19, 20]. Recently, Annaby et al. established a 

calculus based on this operator, see [3]. An essential function qtth =)( , which is normally taken to be defined on an 

interval I  which containing the number  , plays an important role in this calculus. One can see that the k th order 

iteration of )(th  is given by  

 .,][=)( Itktqth q

kk   

Here qk][  is defined by  

 .
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The sequence )(thk
 is uniformly convergent to   on I . They defined the ,q integral of a function f  from I  to 

a Banach space X  on an interval Iba ],[  by  

 ,)()(=)( ,,, tdtftdtftdtf q
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where  

 ,)),(())(1(=)(
0=

, Ixxhfqqxtdtf kk
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provided that the series converges at ax =  and bx = . As indicated in [3], if XIf :  is continuous at  , then the 

following statements are true.  

(i) Nk

k shf ))}(({  converges uniformly to )(f  on I .  

(ii) ))((
0=

shfq kk

k


 is uniformly convergent on I  and consequently f  is ,q -integrable over I .  

(iii) The function F  defined by  

 .,)(=)( , IxtdtfxF q

x

 


 

                is continuous at  . Furthermore, )(, xFDq   exists for every Ix  and  

 ).(=)(, xfxFDq   
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 Conversely,  

 .,)()(=)( ,, IbaallforafbftdtfD qq

b

a
 

 

Throughout this paper I  is any interval of R containing   and X  is a Banach space. The following theorem gives us 

the required conditions to insure the existence of solutions of linear Hahn difference equations, see [11].  

Theorem 1.1. Assume the functions ,,1:)( njIta j C  and XItb :)(  satisfy the following conditions:  

(i) ,1,...,=),( njta j  and )(tb  are continuous at   with Itta  0)(0 . 

(ii)  )()/( 0 tata j  is bounded on }{1,...,, njI  . 

Then, for any elements Xyr  , the equation  
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 (1.1) 

has a unique solution on a subinterval IJ   containing  .  

Definition 1.2 [4] The exponential functions )(tep  and )(tEp  are defined by  

 

)))(1())(((1

1
=)(
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 and  

 )),)(1())(((1=)(
0=




qtqthptE kk

k

p  (1.3) 

whenever the first product is convergent to a nonzero number for every It . It is worth noting that the two products are 

convergent since ))(1(|))((|
0=




qtqthp kk

k
 is convergent.  

Now, we state various stability types that will be examined in Section 2. These concepts involve the boundedness of 
solutions of Hahn difference equation  

 ItXxxxtFtxDq    ,,=)(),,(=)(,  (1.4) 

 where F  is assumed to satisfy all conditions such that (4) has a unique solution.  

Definition 1.3. Equation (1.4)  is called stable if for every I  and every 0> , there exists 0>),(=   such 

that for any two solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of Equation (1.4) , we have for all 

 ˆ ˆ< ( ) ( ) <x x x t x t       for all , , .t t I    

Definition 1.4. Equation (1.4)  is called uniformly stable if for every 0> , there exists 0>)(=   such that for any 

two solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of Equation (1.4) , we have  

 ˆ ˆ< ( ) ( ) <x x x t x t       for all , , .t t I    

Definition 1.5. Equation (1.4)  is called asymptotically stable if it is stable and there exists 0>)(=   such that for 

any solution ),,(=)(  xtxtx  of Equation (1.4) , we have  
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 < ( ) = 0.lim
t

x x t 


  

Definition 1.6. Equation (1.4)  is called uniformly asymptotically stable if it is uniformly stable and there exists 0>  

such that for any solution ),,(=)(  xtxtx  of Equation (1.4) , we have  

 < ( ) = 0.lim
t

x x t 


  

Definition 1.7. Equation (1.4)  is called globally asymptotically stable if it is stable and for any solution ),,(=)(  xtxtx  

of Equation (1.4) , we have  

 ( ) 0.lim
t

x t


  

Definition 1.8. Equation (1.4)  is called exponentially stable if there exist finite constants 0>  and 0>)(=   

such that for any two solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of (1.4) , we have  

 ˆ ˆ( ) ( ) ( , )x t x t x x e t     
 
for all

 
, , .t t I    

where the exponential function ),( tep  is given by ).()/(=),(  ppp etete   

Definition 1.9. Equation (1.4)  is called uniformly exponentially stable if   is independent on I .  

Definition 1.10. Equation (1.4)  is called  stable if there exists a finite constant 0>)(=   such that for any two 

solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of (1.4) , we have    

                               
ˆ ˆ( )( ( ) ( )) ( )( )t x t x t x x       for all , , .t t I    

Definition 1.11. Equation (1.4)  is called  uniformly stable if 0>  is independent on I .  

Remark 1.12. If ),(=)( tet   , then  uniform stability coincides with uniform exponential stability. Thus, 
uniform stability is an extension of uniform exponential stability.  

Main results 

In this section, we are concerned with obtaining many results about characterizations of stability of linear Hahn difference 
equations of the form  

 ,,,,=)(),()(=)(:(0) , IttXxxtxtptxDCP q     

and  

 ,,,,=)(),()()(=)(:)( , IttXxxtftxtptxDfCP q     

where :p I  , XIf :  are continuous at   and ( ( )) ( (1 ) ) 1k kp h t q t q     for all ,k t I 
Simple computations show that (0)CP  and )( fCP  have the unique solutions  

  xtetx p ),(=)(  (2.1) 

 and  

 )))(,()()(,(=)( , sdshesfxtetx qp

t

p 


    (2.2) 

respectively.  

Theorem 2.1. The following statements are equivalent  

(i) (0)CP  is stable.  

(ii) For every I  and every 0> , there exists ),(=   such that for any solution 
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),,(=)(  xtxtx  of (0)CP , we have < ( ) <x x t   .  

(iii) )( fCP  is stable.  

(iv) For every I , Ittp te  ,|}),({|   is bounded.  

(v) For every I , there exist 0>)(  such that for any solution ),,(=)(  xtxtx  of (0)CP  (resp. 

)( fCP ), we have  

 ( ) ( ) , , .x t x t t I       

Proof.  )()( iii   Assume that (0)CP  is stable. Let 0> . Then, there exists ),(=   such that for any two 

solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of (0)CP  with initial values Xxx 
ˆ,  respectively, we have 

 ˆ ˆ< ( ) ( ) < , .x x x t x t t         (2.3) 

Now, let ),,(=)(  xtxtx  be any solution of (0)CP  such that <x  . Suppose that )ˆ,,(ˆ=)(ˆ  xtxtx  be the 

zero solution subject to the initial value 0=x . Hence, we obtain ( ) <x t   (from (3) ). 

)()( iiiii   Let 0>  and I . There exists ),(=   such that for any solution ),,(=)(  xtxtx  of 

(0)CP , we have < ( , ) <px e t x    . Let ),,(=)(  xtxtx ff  and )ˆ,,(ˆ=)(ˆ
 xtxtx ff  be two 

solutions for )( fCP  with initial values Xxx 
ˆ,  respectively such that ˆ <x x   . Then, we have 

ˆ ˆ= ( , )( ) <f f px x e t x x     (since ˆ
f fx x is a solution of (0)CP ) 

Therefore, )( fCP  is stable.  

   )()( iviii   Assume that )( fCP  is stable. Let 1= . There is 0>  such that for any two solutions 

),,(=)(  xtxtx ff  and 0)=ˆ,,(ˆ=)(ˆ
 xtxtx ff , we have  

 < ( , ) <1 , .px e t x t t I        

Let Xx  00 . Take 0 0= / (2 )x x x  . Since <x  , then 0 0( , ) / (2 ) <1pe t x x   i.e. 

0 0( , ) < 2 / , ,pe t x x t t I    . Thus, for all 0 0 ,,{ ( , ) }p t t Ix X e t x     is bounded. By the Uniform 

Boundedness Theorem, Ittp te  ,|}),({|   is bounded.  

   )()( viv   Suppose that Ittp te  ,|}),({|   is bounded for every I . Then, there exists a positive constant   

which is dependent on   such that )(|),(|  tep  for every  tIt , . Consequently, for any solution 

),,(=)(  xtxtx , we have  

 ( ) = ( , ) ( ) , , , .px t e t x x t t I         

   )()( iv   Assume that for every I  there exists 0>)(  such that ( ) ( ) ,x t x t I   . Let 0> , 

I . Take 
)(

=



 . For any Xxx 

ˆ,  such that ˆ <x x   , we have  

 ˆ ˆ ˆ( ) ( ) ( ) = < , , , .x t x t x x x x t t I   


    


       

Similarly, we can prove the following theorem.  
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Theorem 2.2. The following statements are equivalent  

 

(0)CP  is uniformly stable,  

(i) For every 0> , there exists )(=   such that for any solution ),,(=)(  xtxtx  of (0)CP , we 

have < ( ) <x x t   ,  

(ii) )( fCP  is uniformly stable,  

(iii) },,|:),({|   tIttep  is bounded.  

(iv) There is 0>  such that for any solution ),,(=)(  xtxtx  of (0)CP  (resp. )( fCP ), we have  

 ( ) , , .x t x t t I     (2.4) 

 Theorem 2.3. The following statements are equivalent  

(i) 
    

(0)CP  is asymptotically stable.  

(ii) 
    

( , ) = 0limt pPe t xP  for every Xx  and every I .  

(iii) 
    

(0)CP  is globally asymptotically stable.  

Proof.   )()( iii   Suppose that (0)CP  is asymptotically stable. Then, there exists 0>  such that for any solution 

),,(=)(  xtxtx  of (0)CP , with initial value x , we have  

 < ( ) = 0.lim
t

x x t 


  

Let Xx0 . Put = / (2 )x x x  . Then, ( , ) / (2 ) = 0limt pe t x x  . Consequently, 

( , ) = 0limt pe t x . 

 )()( iiiii   By condition )(ii  and the Uniform Boundedness Theorem, we insure the boundedness of 

Ittp te  ,|}),({|  . Consequently, (0)CP  is stable (by Theorem(2.1)). Thus by our assumption, (0)CP  is globally 

asymptotically stable.  

      )()( iiii   is clear.  

Theorem 2.4. Assume that  

 sdshEsftF qp

t




,))(()(=)(   

is bounded for any I . Then, (0)CP  is globally asymptotically stable if and only if )( fCP  is globally asymptotically 

stable.  

Proof. Assume that (0)CP  is globally asymptotically stable. Then, 0=),(lim tept  . Consequently, 

0=)(lim tept  . Now, let )(tx f  be a solution of )( fCP . Hence, it has the form  

 

).))(()()((),(=

)))(,()()(,(=)(

,

,

sdshEsftexte

sdshesfxtetx

qp

t

pp

qp

t

pf





















 

Thus, 0=)(lim tx ft   which is the desired result. 

For the converse, take 0=x , to obtain  
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 0.=))(,()(),(lim , sdshesfte qp

t

p
t




 


 

Consequently, (0)CP  is globally asymptotically stable.  

Theorem 2.5. The following statements are equivalent  

(i) 
   

(0)CP  is exponentially stable.  

(ii) There exist 0>  and 0>)(=   such that for any solution ),,(=)(  xtxtx  of (0)CP  with    

initial value Xx  , we have  

    ( ) ( , )x t x e t   for all .t   

(iii)     There exist 0>  and 0>)(=   such that  

       | ( , ) | ( , )pe t e t   for all .t   

(iv) 
    

)( fCP  is exponentially stable.  

Proof.  

  )()( iii   Assume that (0)CP  is exponentially stable. There exists 0>)(=   such that for any two solutions 

),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of (0)CP  with initial values Xxx 
ˆ,  respectively, we have  

    ˆ ˆ ˆ( ) ( ) = ( , )( ) ( , )px t x t e t x x x x e t           for all .t   

Let ),,(=)(  xtxtx  be any solution of (0)CP  and )ˆ,,(ˆ=)(ˆ  xtxtx  be the zero solution corresponding to the 

initial value 0=̂x . Then, we obtain our desired result.  

 )()( iiiii   Let )(tx  be any nontrivial solution corresponding to the initial value 0x . Then, we have 

( ) ( , )x t e t x   . Consequently, we have ( , ) ( , )pe t x e t x      and thereby ).,(|),(|   tetep   

 )()( iviii   Let ),,(=)(  xtxtx ff  and )ˆ,,(ˆ=)(ˆ
 xtxtx ff  be two solutions for )( fCP  with initial values 

Xxx 
ˆ,  respectively. We deduce that  

 ˆ ˆ ˆ ˆ= ( , )( ) =| ( , ) | ( , )f f p px x e t x x e t x x e t x x             
 
for .t   

Hence, )( fCP  is exponentially stable.  

  )()( iiv   There exist 0>  and 0>)(=   such that for two solutions ),,(=)(  xtxtx ff  and 

)ˆ,,(ˆ=)(ˆ
 xtxtx ff  of )( fCP , the inequality  

 ˆ ˆ( ) ( ) ( , )f fx t x t e t x x       for .t   

holds. For any two solutions ),,(=)(  xtxtx  and )ˆ,,(ˆ=)(ˆ  xtxtx  of (0)CP , we conclude that  

 ˆ ˆ ˆ( ) ( ) = ( ) ( ) ( , )f fx t x t x t x t e t x x        for .t   

Hence, (0)CP  is exponentially stable.   

Similarly, we can prove the following theorem.  

Theorem 2.6. The following statements are equivalent  

(i)  (0)CP  is uniformly exponentially stable.  

(ii)  There exist 0>  and 0>  independent on   such that for any solution ),,(=)(  xtxtx  of 
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(0)CP  with initial value Xx  , we have  

 ( ) ( , )x t x e t    for all .t   

(iii) There exist 0>  and 0>  independent on   such that  

 | ( , ) | ( , )pe t e t    for all .t   

(iv) )( fCP  is uniformly exponentially stable.  

The following results concerning  stability and  unifom stability are more general than Theorems 2.5, 2.6 replacing 

the exponential function e  by || . The proofs are similar, so they will be omitted.  

Theorem 2.7. The following statements are equivalent   

(i) (0)CP  is   stable.  

(ii) There is 0>)(  such that for any solution ),,(=)(  xtxtx  of (0)CP  with initial value Xx  , we 

have  

 ( ) ( ) ( )t x t x     for all .t   

(iii) There exist 0>  such that  

 | ( ) ( , ) | | ( ) |pt e t      for all .t   

(iv) ( )CP f  is   stable.  

Theorem 2.8. The following statements are equivalent   

(i) (0)CP  is   uniformly stable.  

(ii) There is 0>  independent on   such that for any solution ),,(=)(  xtxtx  of (0)CP  with initial 

value Xx  , we have  

 ( ) ( ) ( )t x t x     for all .t   

 

(iii)  There exist 0>  independent on   such that  

 | ( ) ( , ) | | ( ) |pt e t      for all .t 
 

 

(iv) ( )CP f  is   uniformly stable.  

Numerical Examples 

In this section we give some numerical examples about the various types of stability for solutions of Hahn difference 
equations.  

Example 3.1. The Hahn difference equation  

 ,,,=)(0,=)(, ItXcxtxDq    (3.1) 

 where 0c  is uniformly stable but it is not asymptotically stable.  

Examaple 3.2. Let [,[= I . Consider the Hahn difference equations of the form  

 ,,,=)(),()()(=)(, ItXxxtftxtrtxDq     (3.2) 

 where r  is a non-negative function and continuous at  . 
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Equation (3.2)  is 

(i) Stable since  

 

.)(=
)(

1

)))(1())(((1

)))(1())(((1
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)(
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=|),(|

0=
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           Consequently, for every ,I  Ittp te  ,|}),({|   is bounded.  

(ii) Exponentially stable when 0>)(inf= trIt . Indeed, if we take 
)(

)(
)(




 

re

e



 , then  

 

( )
| ( , ) | =

( )

( ) ( , )

r
r

r

e t
e t

e

e t




  






  for all .t   

(iii) Globally asymptotically stable if f  has the form )()(=)( tgtetf p  where tdtg q

t




,)(  is bounded for 

every I  and 0>)(inf= trIt . In fact, the homogeneous equation associated with the above liner 

Hahn difference equation is globally asymptotically stable. Indeed, we have  

 .
))(1(1

1

)(

1
<

)))(1())(((1

1

)(

1
=|),(|

0=

























qtqe

qtqthr
e

te
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r
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                Consequently, 0|=),(|lim te rt  .  

(iv)  Stable for any function )(t  such that |)(| t  is decreasing function because  

 

| ( ) ( , ) | =| ( ) ( ) / ( ) |

| ( ) / ( ) |

( ) | ( ) |

r r r

r

t e t t e t e

t e

   

 

   

  




 for all .t   

        where 
)(

1
=)(




re
.  
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