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ABSTRACT 

The paper focuses on the derivation of the integral variants of Jensen's inequality for convex functions of several 
variables. The work is based on the integral method, using convex combinations as input, and set barycentres as output.  
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1. INTRODUCTION 

1.1. Combinations of Scalars and Vectors 

Convex sets are generally observed in a real vector space  . Affiliation to some vector set is analytically expressed by 

combinations of vectors (points) ix   and scalars (coefficients) ip  . The combination  

 

=1

n

i i

i

p x  (1) 

 belongs to the vector subspace lin{ }ix  as the smallest vector space that contains all ix , and it is called the linear 

combination. If 
=1

=1
n

ii
p , the combination in (1) belongs to the affine hull aff{ }ix  as the smallest translated vector 

space that contains all ix , and it is called the affine combination. If 
=1

=1
n

ii
p  and all [0,1]ip  , the combination in 

(1)  belongs to the convex hull conv{ }ix  as the smallest convex vector set that contains all ix , and it is called the 

convex combination. 

1.2. Two Basic Forms of Jensen's Inequality 

In the discrete case, Jensen's inequality is applied to convex function and convex combinations of vectors from the convex 
set. 

Theorem A. 1  Let 1= { , , }nx x  be a set of vectors ix  in a real vector space  . Let :p   be a coefficient 

function, and :g   be a vector mapping. 

Every convex function : conv{ ( )}f g   verifies the inequality  

 

=1 =1

( ) ( ) ( ) ( ( ))
n n

i i i i

i i

f p x g x p x f g x
 

 
 
   (2) 

if the function p  is non-negative with 
=1

( ) =1
n

ii
p x , and the inequality  

 
=1 =1

=1 =1

( ) ( ) ( ) ( ( ))

( ) ( )

n n

i i i i

i i

n n

i i

i i

p x g x p x f g x

f

p x p x

 
 
  
 
 
 

 

 
 (3) 

 if the function p  is either a non-negative or non-positive with 
=1

( ) 0
n

ii
p x  .   

In the integral case, Jensen's inequality is applied to convex function and integral arithmetic means of real valued 
integrable functions on the measurable set. 

Theorem B. 2  Let   be a measure on a set  . Let :p   be a  -integrable function, and :g   be a 

 -measurable function. 

Every convex function : conv{ ( )}f g   verifies the inequality  

  ( ) ( ) ( ) ( ) ( ( )) ( )f p x g x d x p x f g x d x   
 (4) 

if the function p  is non-negative with ( ) ( ) =1p x d x , and the inequality                

                                                    

( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( )

p x g x d x p x f g x d x
f

p x d x p x d x

 

 

 
  
 
 

 

 
 

 

                             (5) 
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 if the function p  is either a non-negative or non-positive with ( ) 0p x  , provided that the functions pg  and ( )pf g  

are  -integrable in both cases.   

1.3. Recent Result 

Recall the following result: 

Theorem C. [9, Theorem 1]  Let p  be a non-negative continuous function on [ , ]a b  such that ( ) > 0
b

a
p x dx . If g  and 

h  are real-valued continuous functions on [ , ]a b  and  

 1 1 2 2( ) , ( )m g x M m h x M     

for all [ , ]x a b , and f  is convex on  

 1 1 2 2[ , ] [ , ],m M m M  

then  

 

( ) ( ) ( ) ( ) ( ) ( ( ), ( ))
,

( ) ( ) ( )

b b b

a a a

b b b

a a a

p x g x dx p x h x dx p x f g x h x dx
f

p x dx p x dx p x dx

 
  
  
 

  

  
 (6) 

 and  

 

( ) ( ) 1
, ( ( ), ( )) .

b b

b
a a

a

g x dx h x dx
f f g x h x dx

b a b a b a

 
  
    
 

 
  (7) 

 The inequalities hold in reversed order if f  is concave on 1 1 2 2[ , ] [ , ]m M m M .   

2. BARYCENTERS AND INTEGRAL ARITHMETIC MEANS  

In this section we emphasize the basic meaning and significance of convex combinations. The main result is Lemma 2.1 

which deals with a barycenter of a closed or open convex set in 
2 . All that follows in this section can be easily 

generalized to convex sets in 
n . 

2.1. Set Barycenter as a Limit of Set Centers 

Let   be a measure on a set 
2  with ( ) > 0  . Given a positive integer n , let  

 

=1

=
n

ni

i

   (8) 

be the partition of the set   with pairwise disjoint  -measurable sets ni , where every ni  contracts to the point or 

vanishes in infinity as n  approaches infinity. Take one point ni niP   for every index =1, ,i n  and denote with nir


 

the radius-vector of the point niP . Consider the center nP  of the convex combination  

 

=1

( )
= .

( )

n
ni

n ni

i

r r





 


 (9) 

 If the sequence ( )n nP  approaches the point P  as n  approaches infinity, then the point P  is called the barycenter of 

the set   with respect to the measure  , and it will be denoted with ( , )B  . Using point coordinates ( , )ni ni niP x y , 

we obtain the integral presentation  
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=1 =1

( ) ( )
( , ) = ,lim

( ) ( )

( , ) ( , )
= , .

( ) ( )

n n
ni ni

ni ni
n i i

B x y

xd x y yd x y

 


 

 

 



 
 
 

 
 
 
 

 

  

 


 

 

 (10) 

According to the above formula, the barycenter ( , )B   belongs to the closure of the convex hull of the set  . In the 

next lemma, relying on separation theorem we prove that the barycenter of a closed or open convex set belongs to the 
set. 

                                       

Figure 1. Barycenter of a closed or open convex set 

Lemma 2.1. 3  Let   be a measure on a closed or open convex set 
2  with ( ) > 0  . If the barycenter of the 

set   with respect to the measure   exists, then it belongs to to the set  .  

Proof. Suppose that P . Applying the separation theorem, we can choose the line   through the point P  so that 

=   , and the entire   is contained in one of the half-planes determined by  . Let n


 be the vector normal to 

the line  , oriented towards the set   as shown in Figure 1. Denote with ( , ) =x yr xi yj
 

 radius-vectors of the points 

( , )x y  , and with =P P Pr x i y j
 

 radius-vector of the barycenter P . The vector n


 makes acute angles with the 

vectors ( , )x y Pr r
 

 . Applying the inner product, we find that the following holds for every pint ( , )x y  :  

 

( , )

( , ) ( , )

( , ) ( , )

, > 0

1
, ( , ) > 0

( )

1
, , ( , ) > 0

( )

x y P

x y x y

x y x y

n r r

n r r d x y

n r n r d x y

















  

  

   









 (11) 

Integrating the above inner products over  , we get the contradiction  

 ( , ) ( , ), ( , ) , ( , ) > 0.x y x yn r d x y n r d x y  
   

 
 (12) 

So, it has to be P .                                                                                                                                                            

The method of proving used in Lemma 2.1 can be applied to more dimensions. If the closed or open set 
3 , then 

we use the plane   through the point P  so that =   . Similar procedure as in Lemma 2.1, without using 

integrals, was applied to convex polygon in [2] when determining the geometric position of the mass center. 

 

2.2. Barycenter and Integral Arithmetic Mean of a Function 
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We follow the ideas of the formula in (10). Let   be a measure on a set 
2  with ( ) > 0  . 

If :p   is either a non-negative or non-positive  -integrable function so that ( , ) ( , ) 0p x y d x y  , and the 

functions ( , )p x y x  and ( , )p x y y  are  -integrable, then the point  

 

( , ) ( , ) ( , ) ( , )
( , , ) = ,

( , ) ( , ) ( , ) ( , )

p x y xd x y p x y yd x y
B p

p x y d x y p x y d x y

 


 

 
 
 
 

 

 
 

 

  (13) 

 could be called the barycenter of the function p  on the set   with respect to the measure  . This point belongs to the 

set conv{ }  by Lemma 2.1. For example, if =p   is the mass density, then ( , , )B    represents the barycenter 

of the density  . Note that the invariant property  

 ( , , ) = ( , , )B p B p     (14) 

 holds for every number \{0} . 

If we have a  -integrable function :g  , then we have the number  

 

( , ) ( , )
( , , ) =

( )

g x y d x y
M g









 (15) 

called the integral arithmetic mean of the function g  on the set   with respect to the measure  . Using convex 

combinations in the above formula would be seen that this number belongs to the interval conv{ ( )}g  . Take as an 

example the random variable =g X . Then ( , , ) = ( )M X E X  represents the expectation of the random variable 

X . At that the point ( , , )B X   can be interpreted as the expected position of the variable X . 

Connecting formulas between barycenters and means can be written using the projections pr ( , ) =x x y x  and 

pr ( , ) =y x y y :  

  ( , ) = (pr , , ), (pr , , )x yB M M      (16) 

  

 
( pr , , )( pr , , )

( , , ) = ,
( , , ) ( , , )

yx
M pM p

B p
M p M p




 

 
 
 




 
 (17) 

Remark 2.2. 4  A function barycenter can be reduced to a set barycenter. Let   be a measure on a set 
2 , and 

:p   be a non-negative  -integrable function with ( , ) ( , ) > 0p x y d x y . We define the measure   on 

  putting  

 ( ) = ( , ) ( , )p x y d x y   (18) 

for every  -measurable set   . Since ( ) > 0   and ( ) > 0  , we have  

 ( , ) = ( , , ).B B p    (19) 

   

The properties of the measure   defined in (18) can be seen in [8, Theorem 1.29]. More on quantity centers and 

barycenters of the Riemann integrable quantity functions can be found in [5, Sections 3-4]. 

The general concept of barycenter in the framework of Choquet's theory was presented in [4, Section 6]. In mentioned 
paper, barycenters of compact convex subsets of a locally convex Hausdorff space were observed with respect to Borel 
probability measures. 
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3. JENSEN’S INEQUALITY FOR CONVEX FUNCTIONS OF SEVERAL VARIABLES  

In this section we emphasize the practical meaning and application of convex combinations. The main result is Theorem 
3.4  which presents Jensen's inequality for convex functions of two variables, and it can be easily generalized to convex 
functions of more variables. The convex sets that will be used will be closed or open. 

3.1. Integral Variants of Inequality 

Let 
2  be a convex set, =i i ir x i y j

 
 be radius-vectors of the points ( , )i i iP x y  , and ip   be non-

negative coefficients with 
=1

=1
n

ii
p . If :f   is a convex function with two variables, then the inequality in (2) 

takes the form  

 

=1 =1 =1

, ( , ).
n n n

i i i i i i i

i i i

f p x p y p f x y
 

 
 
    (20) 

The above inequality can be applied to obtain Jensen's inequality for the set barycenter: 

Lemma 3.1. 5  Let   be a measure on a convex set 
2  with ( ) > 0  . 

Every two variables  -integrable convex function :f   verifies the inequality  

 

( , ) ( , ) ( , ) ( , )
,

( ) ( ) ( )

xd x y yd x y f x y d x y
f

  

  

 
  
 
 

    

  
 (21) 

provided that the projections pr ( , ) =x x y x  and pr ( , ) =y x y y  are  -integrable on  .  

Proof. Using a partition =1= n

i ni   that satisfies the conditions of the partition in (8), we form the convex combination  

 

=1 =1 =1

( ) ( ) ( )
= = ,

( ) ( ) ( )

n n n
ni ni ni

n ni ni ni

i i i

r r x i y j
  

  
  

    

  
 (22) 

of the radius-vectors =ni ni nir x i y j
 

 of the points ( , )ni ni ni niP x y   with the coefficients = ( ) / ( )ni nip    . 

Applying the inequality in (20) on its center nP  , it follows  

 

=1 =1 =1

( ) ( ) ( )
, ( , ).

( ) ( ) ( )

n n n
ni ni ni

ni ni ni ni

i i i

f x y f x y
  

  

 
 

 
  

  

  
 (21) 

The sequence ( )n nP  converges to the barycenter P  by assumption (the projections are  -integrable). The convex 

function f  is continuous on the interior of the set  . The discrete inequality in (23) approaches the integral inequality in 

(21) as n  approaches infinity, respecting the continuity rule  

 ( ) = ( )lim limn n
n n

f P f P
 

 

if the set   is open. If the set   is closed, and if the function f  is not continuous on the whole  , then the right-hand 

side of (21) can only be increased.                                                                                                                                       

Smoothness properties of convex functions are presented in [3, pages 20-26]. 

Remark 3.2. 6  If :f   is the Riemann integrable convex function, then the inequality in (21) reads as follows:  

 

( , )
, .

xdxdy ydxdy f x y dxdy
f

dxdy dxdy dxdy

 
  
 
 

  

  
  

  

 (24) 

Using notations for the barycenter and integral arithmetic mean the inequality in (21) can be written as  
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  ( , ) ( , , ).f B M f    (25) 

 Corollary 3.3. 7  Let   be a measure on a convex set 
2 . Let :p   be either a non-negative or non-

positive  -integrable function with ( , ) ( , ) 0p x y d x y  . 

Every two variables convex function :f   verifies the inequality  

 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

p x y xd x y p x y yd x y p x y f x y d x y
f

p x y d x y p x y d x y p x y d x y

  

  

 
  
 
 

  

  
  

  

 (26) 

provided that the functions px , py  and pf  are  -integrable.  

Proof. Should start from the equality in (22) with the coefficients  

 

=1

( ) ( , )
= ,

( ) ( , )

ni ni ni
ni n

ni ni ni

i

p x y
p

p x y








 (27) 

and then follow the proof of Lemma 3.1.                                                                                                                                                                

The inequality in (26), after dividing both numerator and denominator of the quotient of the right-hand side with ( )  , 

takes the form  

  
( , , )

( , , ) .
( , , )

M pf
f B p

M p











 (28) 

Corollary 3.3 can be generalized by introducing the mapping g  consisting of two functions of two variables: 

Theorem 3.4. 8  Let   be a measure on a set 
2 . Let :p   be either a non-negative or non-positive  -

integrable function with ( , ) ( , ) 0p x y d x y  , and 
2

1 2= ( , ) :g g g   be a mapping consisting of  -

measurable functions 1g  and 2g . 

Every two variables convex function : conv{ ( )}f g   verifies the inequality  

 

1 2

1 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , ) ( , )

( , ) ( ( , ), ( , )) ( , )

( , ) ( , )

p x y g x y d x y p x y g x y d x y
f

p x y d x y p x y d x y

p x y f g x y g x y d x y

p x y d x y

 

 





 
 
 
 



 

 





 

 





 (29) 

provided that the functions 1pg , 2pg  and 1 2( , )pf g g  are  -integrable.  

Proof. Applying the proof of Lemma 3.1 with the radius-vectors  

 1 2= ( , ) ( , )ni ni ni ni nir g x y i g x y j
 

 (30) 

and the coefficients  

 

=1

( ) ( , )
= ,

( ) ( , )

ni ni ni
ni n

ni ni ni

i

p x y
p

p x y








 (31) 

we get the integral inequality in (29).                                                                                                                                         

Applying the notation of the integral arithmetic means the inequality in (29) can also be presented with  
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1 2( , , ) ( , , ) ( ( ), , )

, .
( , , ) ( , , ) ( , , )

M pg M pg M pf g
f

M p M p M p

  

  

 
 

 

  

  
 (32) 

3.2. Discrete-Integral Variant of Inequality 

Combining and connecting the inequalities in (20) and (29) as the inequalities for convex function with n  variables, it 

follows: 

Corollary 3.5. 9  Let j  be measures on a set 
n . Let :jp   be either non-negative or non-positive j -

integrable functions with the integral values 
1 1( , , ) ( , , ) 0j n j np x x d x x   


, and 1= ( , , ) : n

j j njg g g    

be mappings consisting of j -measurable functions ijg , and [0,1]j   be coefficients of the sum 
=1

=1
m

jj
 . 

Every n -variables convex function =1: conv{ ( )}m

j jf g   verifies the inequality  

 

1

=1 =1

1

=1

, ,

( , , )

m m
j j j j nj j

j j

j jj j j j

m
j j nj j

j

j j j

p g d p g d
f

p d p d

p f g g d

p d

 
 

 






 
 
 
 



 
 

 










 

 





 (33) 

provided all the functions 1 , ,j j j njp g p g  and 1( , , )j j njp f g g  are j -integrable.  

Proof. If =1= conv{ ( )}m

j jg  , then all the points 1( , , )j j njP x x  with the coordinates  

 
1

1 = , , =
j j j j nj j

j nj

j j j j

p g d p g d
x x

p d p d

 

 

 

 
 

 

 (34) 

belong to  . Applying first the discrete inequality in (20) with the points jP , then the integral inequality in (29), we get the 

inequality in (33).  

Inequalities with convex combinations and barycenters for convex functions of one variable were observed in [7]. Some 
inequalities that include barycenters expressed with the Riemann integrals were obtained in [1, Chapter 4], in studying the 
Hermite-Hadamard inequality. 

4. INEQUALITY WITH HYPERPLANE 

Take the three planar points ( , )A AA x y , ( , )B BB x y  and ( , )C CC x y  that do not belong to one line. If Ar


, Br


 and Cr


 

are its radius-vectors, the radius-vector Pr


 of any point 
2( , )P x y   is presented by the unique affine combination  

 = ,P P A P B P Cr r r r   
   

 (35) 

where  

 

1 1 1

1 1 1

1 1 1
= , = , = .

1 1 1

1 1 1

1 1 1

B B A A A A

C C C C B B

P P P

A A A A A A

B B B B B B

C C C C C C

x y x y x y

x y x y x y

x y x y x y

x y x y x y

x y x y x y

x y x y x y

    (36) 
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If 
2:f    is a two variables function, and 

pla

{ , , }= ( , )A B Cz f x y  is the equation of the plane passing through the 

points ( , ( ))A f A , ( , ( ))B f B  and ( , ( ))C f C  of the graph of f , then  

 
pla

{ , , }( , ) = ( ) ( ) ( ).A B C P P Pf x y f A f B f C     (37) 

If the function f  is convex, the plane inequality  

 
pla

{ , , }( ) ( ) ( ) ( ) = ( )P P P A B Cf P f A f B f C f P      (38) 

holds for every point conv{ , , }P A B C , because for these points the combination in (35) is convex. If 

conv{ , , }P A B C , the reverse inequality is not necessarily valid in (38). 

Let 1 1, , n

nA A     be points so that vectors 
1 1 1

, ,A A A A
n n n

r r r r
 

 
   

  are linearly independent. The convex hull 

1 1conv{ , , }nA A   is called the n -simplex in 
n  with the vertices 1 1, , nA A  . Geometrically speaking, all the 

simplex vertices can not belong to the same hyperplane in 
n . If 1= ( , , )k k k knA A x x , the radius-vector Pr


 of any 

point 1( , , ) n

nP x x    is presented by the unique affine combination  

 

1

=1

= ,
n

P k A
k

k

r r



 

 (39) 

where the numerator and denominator of the coefficients k  are  

          

1 11 1

11 1

11 1

num 1 den
11 1 1

11 1 11 1

11 1 11 1

1 1

1

1

1 1= ( 1) ,       = .

1 1

1 1

n n

n

k k n

k
k k n k knk k

k k n k k n

n n n n n n

x x x x

x x

x x

x x x x

x x x x

x x x x

 

 


 

   

   



 

    

    

 

 

       

 

 (40) 

If : nf    is an n -variables function, and 1 1
{

hyp
= ( , , )

}n nA
k

x f x x   is the equation of the hyperplane (in 
1n ) 

passing through the points ( , ( ))k kA f A  of the graph of f , then  

 

1

1{
=1

hyp
( , , ) = ( ).

}

n

n k kA
k k

f x x f A


  (41) 

If f  is convex, the hyperplane inequality  

 

1

{
=1

hyp
( ) ( ) = ( )

}

n

k k A
kk

f P f A f P


  (42) 

holds for every point 1 1conv{ , , }nP A A   . If 1 1conv{ , , }nP A A   , the reverse inequality is not necessarily 

valid in (42). 

We finish the paper by extending the inequality in (33) to double inequality which includes n -simplex and hyperplane. 

That version stands as follows: 
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Theorem 4.1. 10  Let 1 1= conv{ , , }nA A   be an n -simplex in 
n , :f   be a convex function, and 

1 1
{

hyp
= ( , , )

}n nA
k

x f x x   be the hyperplane passing through all the points ( , ( ))k kA f A  of the graph of f . Let j  be 

measures on a set 
n , :jp   be either non-negative or non-positive j -integrable functions with the 

integral values 
1 1( , , ) ( , , ) 0j n j np x x d x x   


, and 1= ( , , ) :j j njg g g     be mappings consisting of 

j -measurable functions ijg , and [0,1]j   be coefficients of the sum 
=1

=1
m

jj
 . 

Then the double inequality  

 

1

=1 =1

1

=1

1

{
=1 =1

, ,

( , , )

hyp
, ,

}

m m
j j j j nj j

j j

j jj j j j

m
j j nj j

j

j j j

m m
j j j j nj j

j jA
k j jj j j j

p g d p g d
f

p d p d

p f g g d

p d

p g d p g d
f

p d p d

 
 

 






 
 

 

 
 
 
 



 
 
 
 

 
 

 






 
 

 







 

 





 

 

 (43) 

holds if provided that all the functions 1 , ,j j j njp g p g  and 1( , , )j j njp f g g  are j -integrable.  

Proof. The left-hand side of the inequality in (43) follows from Corollary 3.5. Let us prove the right-hand side. 

Using the inequality in (42) and the hyperplane affine presentation  

 1 1{
=1

hyp
( , , ) = ,

}

n

n i i nA
k i

f x x a x a   (44) 

we get  

 

11 {

=1 =1

1

{
=1

1

{
=1 =1

hyp
( , , )( , , ) }

hyp
= , ,

}

hyp
= , ,

}

m m j j nj jj j nj j A
k

j j

j jj j j j

m
j j j j nj j

j A
kj j j j j

m m
j j j j nj j

j jA
k j jj j j j

p f g g dp f g g d

p d p d

p g d p g d
f

p d p d

p g d p g d
f

p d p d


 

 

 


 

 
 

 



 
 
 
 

 





 

 

 


 

 
 

 









 

 

 

 

 





 (45) 

which ends the proof.                                                                                                                                                            
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