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ABSTRACT 

We prove, the existence of coincidence points and common fixed points for four self- mappings satisfying a generalized 
contractive condition without normal cone in cone metric spaces. Our results generalize several well-known recent and 
classical results.              
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INTRODUCTION AND PRELIMINARIES  

The study of common fixed points of mappings satisfying certain contractive conditions has been at the centre of vigorous 
research activity, being the applications of fixed point very important in several areas of Mathematics. In 2007 Huang and 
Zhang [12] have generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach 
space and obtained some fixed point theorems for mapping satisfying different contractive conditions. Subsequently, 
Abbas and Jungck[1] and Abbas and Rhoades [2], Ilic and Rakocevic [13], Rezapour and Hamlbarani[14] and Vetro [17]  
studied  fixed point theorems for contractive type mappings in cone metric spaces .  

The aim of this paper is to obtain points of coincidence and common fixed points for four self-mappings satisfying 
generalized contractive type condition without normal in cone metric spaces. Our result generalized and extends several 
existing fixed point theorems in the literature.    

In all that follows B is a real Banach Space, and   denotes the zero element of B.    

For the mapping f, g: X X, let C (f, g) denote the set of coincidence points of f and g, that is C(f, g) = {z  X : fz = gz}. 

The following definitions are due to Huang and Zhang [12].  

Definition 1.1. Let B be a real Banach Space and P a subset of B .The set P is called a cone if and only if: 

(a). P is closed, non –empty  and P };{  

(b). a,b R , a,b 0 , x, y P implies ax+by P ; 

(c). xP and -x P implies x = .  

Definition 1.2. Let P be a cone in a Banach Space B, define partial ordering ‘ ’ with respect to P by x  y if and only if y-

x P . We shall write x<y to  indicate  x y  but  x y  while x<<y will stand for y-x Int P, where Int P denotes the 

interior of the set P. This Cone P is called an order cone. 

Definition 1.3. Let B be a Banach Space and PB be an order cone .The order cone P is called normal if there exists 

L>0 such that for all x,y B, 

                     yx   implies ║x║≤L║y║. 

The least positive number L satisfying the above inequality is called the normal constant of P.   

Definition 1.4. Let X be a nonempty set of B .Suppose that the map d: X XB satisfies: 

        (d1). ),( yxd   for all x, y X and  

                 d(x, y) =   if and only if x = y ; 

        (d2).d(x, y) = d(y, x)  for all x, y X ;  

        (d3).d(x, y) d(x, z) +d(y, z) for all x, y, z X . 

Then d is called a cone metric on X and (X, d) is called a cone metric space.  

The concept of a cone metric space is more general than that of a metric space. 

Example 1.5. ([12]). Let B =R
2
, P = { (x , y)B such that : x, y ≥ 0}  R

2
, X = R and d: X × X→B such that d(x , y) = (│x - 

y│, α │x - y│), where α ≥ 0 is a constant .Then (X, d) is a cone metric space. 

Definition 1.6. Let (X, d) be a cone metric space .We say that {xn} is  

(i) a Cauchy sequence if for every c in B with c>> ,there is N such that for all n, m>N, d(xn, xm)<<c ;     

(ii) Convergent sequence if for any c >> , there is an N such that for all n>N, d(xn, x) <<c,   for some fixed x in 

X .We denote this xnx   (as n ) . 

Lemma 1.7. Let (X, d) be a cone metric space, and let P be a normal cone with normal constant L.    

 Let {xn } be a sequence in X .Then  

(i). {xn } converges to x if and only if d(xn ,x)→ 0   (n  ). 

(ii).{xn } is a Cauchy sequence if and only if  d (xn , xm )→0 (as n, m→∞). 

2. Common Fixed Point Theorem 
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In this section we prove, the existence of coincidence points and common fixed points for four self-mappings satisfying a 
generalized contractive condition without normal cone in cone metric spaces. Our result generalizes and extends the 
results of A.Azam et al.[7] .              

The following Theorem is extend and improve the Theorem 1of A.Azam et al.[7] .              

Theorem 2.1: Let (X, d) be a cone metric space. Suppose the mappings S, T , f,  g: X→X satisfy 

       d(Sx,Ty) ≤ Ad(fx, gy) + B[d(fx, Sx)+d(gy,Ty)] + C[d(fx,Ty)+d(gy, Sx)]                                           …  (1) 

for all x, yX, where A,B,C are non negative real numbers with A+2B+2C<1. 

 If T(x) f(x), S(x) g(x) and one of  f(x), g(x), S(x) or T(x) is a complete subspace of  X, then  

{S, f} and {T, g} have a coincidence point in X. Moreover, if {S, f} and {T, g} are (IT)- Commuting, then S, T, f and g have a 
unique common fixed point. 

Proof: Suppose x0  is an arbitrary point of X and define the sequence { yn } in X such that 

                y2n =   Sx2n =   gx2n+1 

                       y2n+1  = Tx2n+1  =   fx2n+2 

By (1) we have 

                d(y2n, y2n+1 ) = d(Sx2n, Tx2n+1)                                

                                   ≤ A d(fx2n, gx2n+1)  + B[d(fx2n , Sx2n)   + d(gx2n+1 , Tx2n+1 ) ]   

                                       + C[d(fx2n, Tx2n+1)+d(gx2n+1 ,Sx2n )] 

                        ≤ A d(y2n-1,y2n)  + B[d(y2n-1,y2n)  + d(y2n,y2n+1) ]  

                                       + C[d(y2n-1,y2n+1) + d(y2n,y2n)] 

                                    ≤ A d(y2n-1,y2n)  + B[d(y2n-1,y2n)  + d(y2n,y2n+1) ] 

                                              + C[d(y2n-1,y2n) + d(y2n,y2n+1)] 

                                     ≤  (A+B+C) d(y2n-1,y2n) + (B+C) d(y2n,y2n+1) 

 which implies that 

                                   d(y2n, y2n+1) ≤ 
)(1 CB

CBA




 d(y2n-1,y2n)  

                                                             (or) 

                                   d(y2n, y2n+1  ) ≤ λ d(y2n-1,y2n)   

                                 

                  where,  λ =
)(1 CB

CBA




< 1.        

Similarly, it can be shown that 

               d(y2n+1, y2n+2 ) ≤ λ d(y2n,y2n+1). 

Therefore, for all n,
 

             d(yn+1, yn+2 ) ≤ λ d(yn,yn+1) ≤ …≤ λ 
n+1

d(y0,y1). 

Now, for any m > n, 

             d(yn, ym ) ≤ d(yn, yn+1 ) + d(yn+1, yn+2 ) + … +d(ym-1, ym ) 

                       ≤ [λ
n
  +  λ

n+1    
+ … +

  
λ

 m-1 
 ] d(y0,y1) 

                       ≤ 




1

m

d(y0,y1). 

Let 0<<c be given.  

Choose δ > 0 such that  c + {xZ: ║x║ < δ }   P. 
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Also choose a natural number N1   such that 




1

m

 d(y0,y1) {xZ: ║x║< δ },for all  m≥ N1.     

Then,  




1

m

d(y0,y1) << c, for all m ≥  N1. 

Thus n > m, d(yn, ym ) ≤ 




1

m

d(y0,y1) << c, 

which implies that {yn} is a Cauchy sequence. 

Since {yn} is a Cauchy Sequence in T(X) which is complete, there exists zT(X) such that  yn   z. 

Since T(X)  f(X), then there exist a point uX such that z = fu. 

Let us prove that z = Su. 

Choose a natural number  N2 such that for all n   N2 

          d(y2n-2, y2n-1)<< 






 

B

CBc

3

)1(
, 

            d(y2n-2, z)<< 












)(3

)1(

CA

CBc
, 

            and  d(y2n-1, z) << 












)1(3

)1(

C

CBc
. 

Now inequality (1) implies that (By the triangle inequality) 

       d(fu, Su)    d(fu,Tx2n-1) + d(Tx2n-1, Su) 

                         d(z,Tx2n-1) + d(Su,Tx2n-1)   

                         d(z,Tx2n-1) + Ad(fu, gx2n-1) + B[d(fu, Su) + d(gx2n-1,Tx2n-1)] + C[d(fu,Tx2n-1) +d(gx2n-1, Su)] 

                         d(z,Tx2n-1) + Ad(z, gx2n-1) + B[d(fu, Su) + d(gx2n-1,Tx2n-1)] + C[d(z,Tx2n-1) + d(gx2n-1, Su)] 

                         d(z,y2n-1) + Ad(z, y2n-2) + B[d(fu, Su) + d(y2n-2, y2n-1)] + C[d(z,y2n-1) + d(y2n-2, Su)] 

                         d(z,y2n-1) + Ad(z, y2n-2) + B[d(fu, Su) + d(y2n-2, y2n-1)] + C[d(z, y2n-1) +d(y2n-2, fu)] + d(fu, Su) 

                        (1+C) d(z,y2n-1) + (A+C)d(z, y2n-2) + Bd(y2n-2, y2n-1) + (B+C)d(fu, Su) 

        d(fu, Su) – (B+C)d(fu, Su)  (1+C) d(z,y2n-1) + (A+C)d(z,y2n-2) + Bd(y2n-2,y2n-1) 

             [1-(B+C)]d(fu, Su) (1+C) d(z,y2n-1) + (A+C)d(z,y2n-2) + Bd(y2n-2,y2n-1) 

          d(fu, Su)  












)1(

)1

CB

C
 d(z, y2n-1) +  













)1( CB

CA
d(z, y2n-2) +   









 )1( CB

B
 d(y2n-2,y2n-1) 

 

                         << 












)1(

)1

CB

C













)1(3

)1(

C

CBc
+ 













)1( CB

CA













)(3

)1(

CA

CBc
+ 









 )1( CB

B
                   

+ 






 

B

CBc

3

)1(
 

                       <<  
3

c
 +

3

c
 + 

3

c
. 
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  Thus,  d(fu, Su) <<
3

c
  , for 1 all m   1.  

 So,   
3

c
- d(fu, Su)P, for all m   1. 

Since 
3

c
  0 as m     and P is closed,  

     - d(fu, Su)P.  But P (-P) = {0}. 

Therefore,  d(fu, Su) = 0. 

Hence, z = fu = Su ; u is a coincidence point of {S, f}.                                                                               …   (2) 

Since,  S(X)   g(X) there exists a point vX such that z = gv. We shall show that Tv = z.  

Then by (1), we have                

                            d(z,Tv) = d(Su,Tv) 

                                        A d(fu, gv)+ B[d(fu, Su) + d(gv,Tv)] +C[d(fu,Tv) + d(gv, Su)], 

                                         A d(z, z)+ B[d(z, z) + d(z, Tv)] +C[d(z, Tv) + d(z, z)] , 

                                          (B+C) d(z, Tv), 

which is a contradiction.  Since , A+2B+2C < 1. 

Implies   z = Tv. 

Therefore, z = Tv = gv, v is a coincidence point of {T, g}.                                                                           …   (3)  

From (2) and (3) it follows that  

           Su = fg = Tv = gv (=z).                                                                                                                     …   (4) 

Since (S, f), (T, g) are (IT) – Commuting. 

            d(SSu, Su) = d(SSu, fu) 

                              = d(SSu, Tv) 

                                Ad(fSu, gv) + B[d(fSu, SSu) + d(gv, Tv)] + C[d(fSu, Tv) + d(gv, SSu)],   

                              =  Ad(Sfu,gv) + B[d(Sfu,SSu) + d(gv,Tv)] + C[d(Sfu,Tv) + d(gv,SSu)],   

                              = Ad(SSu, Su) + B[d(SSu SSu) + d(z, z)] + C[d(SSu, Su) + d(Su, SSu)] , 

                                 [A + B + 2C] d(SSu, Su),   which is a contradiction, Since A + 2B + 2C<1. 

Therefore, SSu = Su(=z).  

                 Su = SSu = Sfu= fSu   (since, (S, f) is (IT)- Commuting) 

        SSu = fSu = Su(=z). 

Therefore, Su(=z) is a common fixed point of S and f.                                                                            …  (5) 

Similarly,  Tv =TTv =Tgv = gTv, 

            TTv = STv = Tv(=z). 

Therefore, Tv(=z) is a common fixed point of T and g.                                                                           …  (6) 

In view of (5) and (6), it follows that S, T, f and g have a common fixed point namely z. 

Uniqueness, let W be another common fixed point of  S, T, f and g , then 

   d(z,w) = d(Sz,Tw) 

                        Ad(fz, gw) + B[d(fz, Sz) + d(gw, Tw)] + C[d(fz, Tw) + d(gw, Sz)], 

                        Ad(z, w) + B[d(z, z) + d(w, w)] + C[d(z, w) + d(w, z)], 

                      = A d(z, w) + 2C d(z, w), 

                        (A + 2C) d(z, w), which is a contradiction, since  A+2B+2C < 1. 
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 Therefore, z = w. 

Hence, z is a unique common fixed point of S, T, f and g respectively. 
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