

Random Fixed Point Theorem in Fuzzy Metric Spaces

¹Arvind Gupta, Anil Rajput² and ³Anupama Gupta

¹Professor, Department of Mathematics, Govt. M.V.M., Bhopal (M. P.)

² Professor, Department of Mathematics, CSA Govt. P. G. College, Sehore

³Assitt Prof., Professor, Department of Mathematics, Barkatullah University IT, Bhopal (M.P.)

Abstract.

In the present paper, we prove a fixed point theorem in fuzzy metric spaces through weak Compatibility.

Keywords: Fuzzy metric space; common fixed point; t-norm; compatible map; weak compatible map.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 5, No. 1 editor@cirworld.com <u>www.cirworld.com</u>, member.cirworld.com

Introduction

The concept of Fuzzy sets was introduced by zadeh [4], following the concept of fuzzy sets, fuzzy metric spaces have been introduced by Kramosil and Michalek [5] and George and Veeramani [1] modified the notion of fuzzy metric spaces with the help of continuous t-norm. Vasuki [6] investigated some fixed point theorem in fuzzy metric spaces for R- weakly commuting mappings. In this paper we prove a common fixed point theorem for six maps under the condition of weak compatibility and compatibility in fuzzy metric spaces.

Preliminaries

Definition 2.1: A binary operation *: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norm if * is satisfying the following conditions:

- (a) * is commutative and associative;
- (b) * is continuous;
- (c) a * b = a for all $a \in [0, 1]$;
- (d) $a^* b \le c^* d$ whenever $a \le c$ and $b \le d$ and $a, b, c, d \in [0, 1]$.

Definition 2.2: A 3-tuple (X , M , *) is said to be a fuzzy metric space if X is an arbitrary set , * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions; for all x, y, z $\in X$ and s, t > 0.

(FM-1)M(x, y, t) > 0;

(FM-2) M(x, y, t) = 1 if and only if x = y;

(FM-3) M(x, y, t) = M(y, x, t);

 $(FM-4) M(x, y, t)^* M(y, z, s) \le M(x, z, t+s);$

(FM-5) M(x, y, .): $(0, \infty) \rightarrow [0, 1]$ is continuous.

Then M is called a fuzzy metric on X. The function M(x, y, t) denote the degree of nearness between x and y with respect to t.

Example 2.3: Let (X, d) be a metric space. Denote a *b =ab for a, b \in [0, 1] and let M_d be a fuzzy set on $X^2 \times (0, \infty)$ defined as follows:

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}$$

Then $(X, M_d, *)$ is a fuzzy metric space, we call this fuzzy metric induced by a metric d the standard intuitionistic fuzzy metric.

Definition 2.4: Let (X, M,*) be a fuzzy metric space, then

- (a) A sequence $\{x_n\}$ in X is said to be convergent to x in X if for each $\epsilon > 0$ and each t > 0, there exists $n_0 \epsilon = 0$ such that M $\{x_n, x, t\} > 1 \epsilon$ for all $n \geq n_0$
- (b)A sequence $\{x_n\}$ in X is said to be Cauchy if for each $\epsilon > 0$ and each t > 0, there exist $n_0 \in \mathbb{N}$ such that $\mathbb{M}(x_n, x_m, t) > 1 \epsilon$ for all $n, m \geq n_0$.
- (c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Proposition2.5: In a fuzzy metric space (X, M, *), if $a * a \ge a$ for $a \in [0, 1]$ then $a * b = \min \{a, b\}$ for all $a, b \in [0, 1]$.

Definition 2.6: Two self mappings A and S of a fuzzy metric space (X, M, *) are called compatible if $\lim_{n\to\infty}$ M (AS x_n , SA x_n , t) = 1 whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = x$ for some x in X.

Definition 2.6: Two self maps A and B of a fuzzy metric space $(X, M, ^*)$ are called weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if Ax = Bx for some $x \in X$ then ABx = BAx.

Remark 2.7: If self maps A and B of a fuzzy metric space $(X, M,^*)$ are compatible then they are weakly compatible. Let $(X, M,^*)$ be a fuzzy metric space with the following condition:

(FM-6) $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$.

Lemma 2.8: Let (X, M, *) be a fuzzy metric space. If there exists $k \in [0, 1]$ such that $M(x, y, kt) \ge M(x, y, t)$ then x = y.

Lemma 2.9: Let $\{x_n\}$ be a sequence in a fuzzy metric space (X, M, *) with the condition (FM-6). If there exists $k \in [0, 1]$ such that $M(y_n, y_{n+1}, kt) \ge M(y_{n-1}, y_n, t)$ for all t > 0 and $n \in N$ then $\{y_n\}$ is a Cauchy sequence in X.

Main Results

Theorem3.1: Let A, B, S, T, L and N be self maps on a complete fuzzy metric space (X, M, *) with $t * t \ge t$ for all $t \in [0, 1]$, satisfying:

- (a) L (X) \subseteq ST(X), N (X) \subseteq AB(X);
- (b) There exists a constant $k \in [0, 1]$ such that

$$M^2$$
 (Lx, Ny, kt)* [M (ABx, Lx, kt)* M (STy, Ny, kt)] \geq M(STx, Lx, t) * M(ABy, Ny, t)
 * M(ABy, Lx, t)*M (STx, Ny, t)
 * M (STx, ABy, t)

- (c) AB =BA, ST =TS, LB =BL, NT =TN.
- (d) Either AB or L is continuous.
- (e) The pair (L, AB) is compatible and (N, ST) is weakly compatible.

Then A, B, S, T, L, N have a unique common fixed point.

Proof: Let x_0 be an arbitrary point of X. By (a) there exists x_1 , $x_2 \in X$ such that $Lx_0 = STx_1 = y_0$ and $Nx_1 = ABx_2 = y_1$. Inductively we can construct sequence $\{x_n\}$ and $\{y_n\}$ such that

$$Lx_{2n} = STx_{2n+1} = y_{2n}$$
 and $Nx_{2n+1} = ABx_{2n+2} = y_{2n+1}$ for n= 0, 1, 2.....

Step -1 By taking $x=x_{2n}$ and $Y=x_{2n+1}$ in (b) we have

$$\begin{split} M^2 & (\mathsf{L} x_{2n}, \mathsf{N} x_{2n+1}, \mathsf{K} t) * [\mathsf{M} & (\mathsf{A} \mathsf{B} x_{2n}, \mathsf{L} x_{2n}, \mathsf{K} t) * \mathsf{M} & (\mathsf{S} \mathsf{T} x_{2n+1}, \mathsf{N} x_{2n+1}, \mathsf{k} t)] \geq & \mathsf{M} (\mathsf{S} \mathsf{T} x_{2n}, \mathsf{L} x_{2n}, \mathsf{t}) \\ & * \mathsf{M} (\mathsf{A} \mathsf{B} x_{2n+1}, \mathsf{N} x_{2n+1}, \mathsf{t}) \\ & * \mathsf{M} (\mathsf{A} \mathsf{B} x_{2n+1}, \mathsf{L} x_{2n}, \mathsf{T}) \\ & * \mathsf{M} (\mathsf{S} \mathsf{T} x_{2n}, \mathsf{N} x_{2n+1}, \mathsf{t}) \\ & * \mathsf{M} & (\mathsf{S} \mathsf{T} x_{2n}, \mathsf{A} \mathsf{B} x_{2n+1}, \mathsf{t}) \end{split}$$

$$\begin{split} M^2(y_{2n},y_{2n+1},\mathsf{kt})*[\mathsf{M}(y_{2n-1},y_{2n},\mathsf{kt})*\mathsf{M}(y_{2n},y_{2n+1},\mathsf{kt})] &\geq \mathsf{M}(y_{2n-1},y_{2n},\mathsf{t}) \\ &* \mathsf{M}(y_{2n},y_{2n+1},\mathsf{t}) \\ &* \mathsf{M}(y_{2n},y_{2n},\mathsf{t}) \\ &* \mathsf{M}(y_{2n-1},y_{2n+1},\mathsf{t}) \\ &* \mathsf{M}(y_{2n-1},y_{2n},\mathsf{t}) \end{split}$$

$$\Rightarrow M^{2}(y_{2n}, y_{2n+1}, kt) * [M(y_{2n-1}, y_{2n}, kt), M(y_{2n}, y_{2n+1}, kt)] \ge M(y_{2n-1}, y_{2n}, t)$$

$$* M(y_{2n}, y_{2n+1}, t) * 1$$

$$* M(y_{2n-1}, y_{2n+1}, t)$$

$$* M(y_{2n-1}, y_{2n}, t)$$

$$\Rightarrow M^{2}(y_{2n}, y_{2n+1}, kt) * [M(y_{2n-1}, y_{2n}, kt) * M(y_{2n}, y_{2n+1}, kt)] \ge M(y_{2n-1}, y_{2n}, t) * M(y_{2n}, y_{2n+1}, t) * M(y_{2n-1}, y_{2n+1}, t) * M(y_{2n-1}, y_{2n}, t)$$

$$\Rightarrow \ M^2 \ (y_{2n} \ , y_{2n+1}, kt) \ \geq \ M(y_{2n-1} \ , y_{2n}, t) * \ M(y_{2n-1}, y_{2n+1}, t)$$

$$\geq \ M(y_{2n-1} \ , y_{2n} \ , t) * \ M(y_{2n-1}, y_{2n}, t) * \ M(y_{2n-1}, y_{2n}, t) * \ M(y_{2n} \ , y_{2n+1} \ , t)$$

$$\Rightarrow$$
 M $(y_{2n}, y_{2n+1}, kt) \ge M(y_{2n-1}, y_{2n}, t)$

In general

$$M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n}, y_{2n+1}, t)$$

In general for all n even or odd we have

 $M(y_n, y_{n+1}, kt) \ge M(y_{n-1}, y_n, t)$ for $k \in (0, 1)$ and all t > 0. Thus by Lemma 2, $\{y_n\}$ is a Cauchy sequence in X. Since $(X, M,^*)$ is complete, it converges to a point z in X, and also its subsequences converges as follows.

$$\{Lx_{2n}\} \rightarrow z$$
, $\{ABx_{2n}\} \rightarrow z$

$$\{Nx_{2n+1}\}\rightarrow z$$
, and $\{STx_{2n+1}\}\rightarrow z$.

Case-1: AB is continuous.

Since AB is continuous. AB (AB) $x_{2n} \rightarrow ABz$ and (AB) $Lx_{2n} \rightarrow ABz$.

Since (L, AB) is complete. L (AB) $x_{2n} \rightarrow ABz$.

Step 2: By taking $x = ABx_{2n}$ and $y = x_{2n+1}$ in (b) we have

$$M^2$$
 (L (AB) x_{2n} , Nx_{2n+1} , kt) * [M(AB(AB) x_{2n} *L(AB) x_{2n} , kt), M(STx_{2n+1} , Nx_{2n+1} , kt)]
 \geq M(ST(AB x_{2n}), L(AB) x_{2n} , t) * M(AB x_{2n+1} , N x_{2n+1} , t)
* M(AB x_{2n+1} , L(AB) x_{2n} , t) * M(ST(AB) x_{2n} , Nx_{2n+1} , t)
* M(ST(AB) x_{2n} , AB x_{2n+1} , t),

This implies that as $n \to \infty$

$$M^2$$
 (ABz, z, kt) * [M (ABz, ABz, kt) *M(z,z,kt)] \geq M(z, ABz,t) * M(ABz,z,t) * M(ABz,ABz,t)
* M(z,z,t) * M(z,ABz,t)

⇒
$$M^2$$
 (ABz,z,kt)*[1*1] ≥ M (ABz,z,t)* M(ABz,z,t) * 1 * 1 * M(ABz,z,t)

$$\Rightarrow$$
 M^2 (ABz, z, kt) \geq M (ABz, z, t)

$$\Rightarrow$$
 M (ABz, z, kt) ≥ 1

$$\Rightarrow$$
 ABz = z.

Step 3: By taking x = z and $y = x_{2n+1}$ in (b) we have

$$M^2$$
 (Lz, Nx_{2n+1} ,kt)*[M (ABz, Lz, kt), M (ST x_{2n+1} , Nx_{2n+1} kt)] \geq M(STz , Lz ,t)

*
$$M(ABx_{2n+1}, Nx_{2n+1}, t)$$

* M(AB
$$x_{2n+1}$$
, Lz,t)

* M (STz ,N
$$x_{2n+1}$$
 ,t)

* M (STz, AB
$$x_{2n+1}$$
,t)

This implies that as $n \rightarrow \infty$ we have

$$M^2$$
 (Lz, z, kt) * [M(z, Lz, kt),M(z, z, kt)] \geq M(z, Lz, t) *M(z, z, t) * M(z, Lz, t) *M(z, z, t) * M(z,z,t)

⇒
$$M^2$$
 (Lz, z, kt) *[M(Lz, z, kt), 1] ≥ M(Lz, z, t) * 1* M(Lz, z, t) * 1 *1

$$\Rightarrow \qquad \qquad M^2 \; (Lz, z, kt) \geq M \; (Lz, z, t)$$

$$\Rightarrow$$
 M (Lz, z, kt) ≥ 1

$$Lz = z = ABz$$

Step -4: By taking x = Bz and $y = x_{2n+1}$ we have

$$\begin{split} M^2 \text{ (L (Bz), N} x_{2n+1} \text{ ,kt) *[M (AB(Bz) , L (Bz) ,kt), M(ST} x_{2n+1} \text{ ,N} x_{2n+1} \text{ ,kt)]} \\ & \geq \text{M (ST (Bz) ,L(Bz) ,t) * M(AB} x_{2n+1} \text{ ,n} x_{2n+1} \text{ ,t)} \\ & * \text{M (AB} x_{2n+1} \text{ ,L(Bz) ,t) * M(ST(Bz), N} x_{2n+1} \text{ ,t)} \\ & * \text{M (ST(Bz) , AB} x_{2n+1} \text{ ,t)} \\ & \Rightarrow M^2 \text{ (Bz , z ,kt)*[M(Bz , Bz , kt), M(z , z , kt)]} \geq \text{ M(z, Bz, t) * M(z, z , t) * M(z, Bz, t)} \end{split}$$

$$* M (z, z, t) * M (z, z, t)$$

$$\Rightarrow M^2 (Bz, z, kt) * 1*1 ≥ M(Bz, z, t) * 1* M(Bz, z, t) * 1*11$$

$$\Rightarrow M^2 (Bz, z, kt) ≥ M (Bz, z, t)$$

$$\Rightarrow M (Bz, z, kt) ≥ 1$$
Thus we have Bz = z
Since z = ABz we also have z = Az therefore a = Az = Bz = Lz.
$$\text{Step -6: Since L} (X) \subseteq ST(X) \text{ there exists } v \in X \text{ such that } z = Lz = STv. \text{ By taking } x = x_{2n}, y = v \text{ in } (b) \text{ we have } M^2 (Lx_{2n}, Nv, kt) * [M(ABx_{2n}, Lx_{2n}, kt), M(STv, Nv, kt)] ≥ M(STx_{2n}, Lx_{2n}, t) * M(ABv, Nv, t) \\
+ M(ABv, Lx_{2n}, t) * M(STx_{2n}, Nv, t) * M(STx_{2n}, Nv, t) \\
+ M(z, Nv, kt) * [M (z, z, kt), M (z, Nv, kt)] ≥ M(z, zt) * M(z, Nv, t) * M(z, z, t) \\
+ M(z, Nv, t) * M(z, z, t)$$

$$\Rightarrow M^2 (z, Nv, kt) * 1* M(z, Nv, kt) ≥ 1* M(z, Nv, t) * 1* M(z, Nv, t) * 1$$

$$\Rightarrow M^2 (z, Nv, kt) * 1* M(z, Nv, kt) ≥ M(z, Nv, t) * 1* M(z, Nv, t) * 1$$

$$\Rightarrow M^2 (z, Nv, kt) ≥ 1$$
Thus we have z = Nv and so z = Nv = STv.
$$\text{Since } (N, ST) \text{ is weakly compatible we have } ST(Nv) = N (STv). \text{ Thus } STz = Nz.$$

$$\text{Step -6: By taking } x = x_{2n} \text{ and } y = z \text{ in } (b) \text{ ans using step -5 we have } M^2 (Lx_{2n}, Nz, kt) * M(GRx_{2n}, Lx_{2n}, kt) + M(GRx_{2n}, Lx_{2n}, t) \\
+ M (ABz, Nz, t) * M(STx_{2n}, Lx_{2n}, t) + M(STx_{2n}, Lx_{2n}, t) \\
+ M (STx_{2n}, Nz, t) * M(STx_{2n}, ABz, t) * M(STx_{2n}, Lx_{2n}, t) \\
+ M (z, Nz, t) * M(z, z, t) * M(z, z, t) + M(z, z, t) \\
+ M (z, Nz, t) * M(z, z, t) * M(z, z, t) * M(z, z, t) \\
+ M (z, Nz, t) * M(z, Nz, t) * 1* M$$

Since NT =TN and ST =TS, we have NTz =TNz =Tz and ST (Tz) =T (STz) =Tz letting $n \rightarrow \infty$ we have

 M^2 (z, Tz, kt) *[M(z,z,kt), M(Tz,Tz,kt)] \geq M(z,z,t) *M(z,Tz,t) * M(z,z,t)

$$* M (z, Tz, t) * M (z, z, t)$$

$$\Rightarrow M^{2} (z, Tz, kt) * 1 * 1 \ge 1 * M(z, Tz, t) * 1 * M(z, Tz, t) * 1$$

$$\Rightarrow M^{2} (z, Tz, kt) \ge M (z, Tz, t)$$

$$\Rightarrow M (z, Tz, kt) \ge 1$$

Thus z = Tz. Since Tz = STz we also have z = Sz.

Therefore z = Az = Bz = Lz = Nz = Sz = Tz, that is z is the common fixed point of the six maps.

Case -3: L is continuous. Since L is continuous $LLx_{2n} \to Lz$ and L (AB) $x_{2n} \to Lz$. Since (L, AB) is compatible, (AB) $Lx_{2n} \to Lz$.

Step-8:— By taking $x = Lx_{2n}$ and $y = x_{2n+1}$ in (b) we have

$$M^{2} \text{ (LL}x_{2n}, Nx_{2n+1}, kt) * [M \text{ (ABL}x_{2n}, LLx_{2n}, Kt), M \text{ (ST}x_{2n+1}, Nx_{2n+1}, kt)]}$$

$$\geq M(\text{STL}x_{2n}, LLx_{2n}, t) * M(\text{AB}x_{2n+1}, Nx_{2n+1}, t)$$

$$*M(\text{AB}x_{2n+1}, LLx_{2n}, t)$$

$$*M \text{ (STL}x_{2n}, Nx_{2n+1}, t) * M(\text{STL}x_{2n}, ABx_{2n+1}, t)$$

$$\Rightarrow M^{2} \text{ (Lz}, z, kt) * [M(Lz, Lz, kt), M(z, z, kt)] \geq M(z, z, t) * M(z, z, t) * M(z, z, t)$$

$$*M \text{ (Lz}, z, t) * M \text{ (Lz}, z, t)$$

$$*M \text{ (Lz}, z, t) * M \text{ (Lz}, z, t) * M(Lz, z, t)$$

$$*M(Lz, z, t) * M(Lz, z, t) * M(Lz, z, t)$$

$$\Rightarrow M^{2} \text{ (Lz}, z, kt) * 1 * 1 \geq M \text{ (z}, Lz, t) * 1 * M(Lz, z, t) * M(Lz, z, t)$$

$$*M(Lz, z, t) * M(Lz, z, t) *$$

 $\Rightarrow \qquad \qquad M \; (Lz,\,z,\,kt) \geq 1$ Thus we have z = Lz and using steps 5-7 we have z = Lz = Nz =Sz =Tz.

Step -9: Since N(X) \subseteq AB(X) there exists $v \in X$ such that z = Nz = Sz = Tz. By taking x = v, $y = x_{2n+1}$ in (b) we have

$$M^2$$
 (Lv, Nx_{2n+1} , kt) * [M((ABv, Lv, kt), M(ST x_{2n+1} , Nx_{2n+1} , kt)] \geq M(STv, Lv, t)
* M (AB x_{2n+1} . Nx_{2n+1} , t) * M (AB x_{2n+1} , Lv, t) * M (STv, Lv, t)
* M (STv, AB x_{2n+1} , t)

Which implies that as $n \rightarrow \infty$

Thus we have z = Lv = ABv

Since (L, AB) is weakly compatible, we have Lz = ABz and using step-4, we have z = Bz. therefore

$$z = Az = Bz = Sz = Tz = Lz = Nz$$

That is z is the common random fixed point of the six maps in this case also.

Step -10 : — for uniqueness, let $(w \ne z)$ be another common fixed point of A , B , S , T , L and N taking x = z , y = w in (b) we have

$$M^2$$
 (Lz, Nw, kt) * [M (ABz, Lz, kt), M (STw, Nw, kt)] \geq M (STz, Lz, t) *M (ABw, Nw, t)
*M(ABw, Lz,t) *M(STz, Nw, t)
*M(STz, ABw, t)

⇒
$$M^2$$
 (Lz,Nw,kt) *[M(z,z,kt), M(w,w,kt)] ≥M(z,z,t) * M(w,w,t) *M(w,z,t)
* M(z,w,t)*M(z,w,t)
⇒ M^2 (z,w,kt) * 1*1 ≥ 1*1 * M(w,z,t) * M(w,z,t)
* M(z,w,t)
⇒ M^2 (z,w,kt) ≥ M(z,w,t)
⇒ M (z,w,kt) ≥ 1

Thus we have z = w This completes the proof of the theorem. If we take B = T = Ix (the identity map on X) in the main theorem we have the following

Corollary : Let A, S, L and N be self maps on a complete fuzzy metric space (X, M,*) with $t * t \ge t$ for all $t \in [0,1]$ satisfying

(a) L (X)
$$\subseteq$$
 ST(X), N(X) \subseteq A(X)

(b) There exists a constant $k \in (0, 1)$ such that

$$M^2$$
 (Lx, Ny, Kt) * [M(Ax, Lz, kt), M(Sy, Ny, kt)] \geq M(Sx, Lx, t) * M(Ay, Ny, t) * M(Ay, Lx, t)
*M (Sx, Ny, t) * M (Sx, Ay, t)

For all $x, y \in X$ and t > 0

- (c) Either A or L is continuous.
- (d) The pair (L, A) is compatible and (N, S) is weakly compatible. Then A, S If we take A = S, L = N and B = T = Lx is the main theorem, we have the following:

Corollary : Let (X, M, *) be a compatible fuzzy metric space with $t *t \ge t$ for all $t \in [0, 1]$ and let A and L be compatible maps on X such that $L(X) \subset A(X)$, if A is continuous and there exists a constant $k \in (0, 1)$ such that

$$M^{2}$$
 (Lx, Ly, kt) * [M (Ax, Lx, kt), M(Ay, Ly, kt)] \geq M(Ax, Lx, t) * M(Ay, Ly, t) * M(Ay, Ly, t) * M(Ax, Ly, t) * M(Ax, Ly, t)

For all $x, y \in X$ and t>0 then A and L have a unique fixed point.

References

- [1] A. George, P. Veeramani, On some results in Fuzzy metric spaces, Fuzzy set and systems, 64 (1994), 395-399
- [2] B. Singh and S. Jain, Fixed point theorem using semi compatibility and weak compatibility in Fuzzy metric space, VJMS, 1 (2007), 139-147
- [3] K. Singh and M. S. Rathore A common Fixed point theorem in Fuzzy metric spaces, IJMA, vol, 2011, no 17, 819-826
- [4] L.A.Zadeh, Fuzzy sets Inform and control, 8 (1965), 338-353.
- [5] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11(1975), 326-334
- [6] R. Vasuki, Common Fixed point for R- weakly commuting maps in Fuzzy metric spaces, Indian J. Pure Appl.Math, 30(1999),419-423
- [7] S. Sharma, Common fixed point theorem in Fuzzy metric spaces, Fuzzy sets and systems, 127 (2002), 345-352
- [8] Y. J. Cho, H. K. Pathak, S. M. Kang, J.S. Jung, Common Fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy sets and systems, 93 (1998),99-111.

629 | Page Dec 18, 2013