Random Fixed Point Theorem in Fuzzy Metric Spaces

${ }^{1}$ Arvind Gupta, Anil Rajput ${ }^{2}$ and ${ }^{3}$ Anupama Gupta
${ }^{1}$ Professor, Department of Mathematics, Govt. M.V.M., Bhopal (M. P.)
${ }^{2}$ Professor, Department of Mathematics, CSA Govt. P. G. College, Sehore
${ }^{3}$ Assitt Prof., Professor, Department of Mathematics, Barkatullah University IT, Bhopal (M.P.)

Abstract

. In the present paper, we prove a fixed point theorem in fuzzy metric spaces through weak Compatibility.

Keywords: Fuzzy metric space; common fixed point; t-norm; compatible map; weak compatible map.

Council for Innovative Research

Introduction

The concept of Fuzzy sets was introduced by zadeh [4], following the concept of fuzzy sets, fuzzy metric spaces have been introduced by Kramosil and Michalek [5] and George and Veeramani [1] modified the notion of fuzzy metric spaces with the help of continuous t-norm. Vasuki [6] investigated some fixed point theorem in fuzzy metric spaces for R-weakly commuting mappings. In this paper we prove a common fixed point theorem for six maps under the condition of weak compatibility and compatibility in fuzzy metric spaces.

Preliminaries

Definition 2.1: A binary operation ${ }^{*}$: $[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norm if * is satisfying the following conditions:
(a) * is commutative and associative;
(b) * is continuous;
(c) $\mathrm{a} * \mathrm{~b}=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$;
(d) $\mathrm{a}^{*} \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2.2: A 3-tuple ($X, M,{ }^{*}$) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$ satisfying the following conditions; for all $x, y, z \in X$ and $s, t>0$.
(FM-1) M $(x, y, t)>0$;
(FM-2) $M(x, y, t)=1$ if and only if $x=y$;
(FM-3) $M(x, y, t)=M(y, x, t)$;
(FM-4) $M(x, y, t)^{*} M(y, z, s) \leq M(x, z, t+s)$;
(FM-5) $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.
Then M is called a fuzzy metric on X. The function $M(x, y, t)$ denote the degree of nearness between x and y with respect to t.
Example 2.3: Let (X, d) be a metric space. Denote $a * b=a b$ for $a, b \in[0,1]$ and let M_{d} be a fuzzy set on $X^{2} \times(0, \infty)$ defined as follows:

$$
M_{d}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\frac{t}{t+d(x, y)}
$$

Then $\left(\mathrm{X}, M_{d},{ }^{*}\right)$ is a fuzzy metric space, we call this fuzzy metric induced by a metric d the standard intuitionistic fuzzy metric.
Definition 2.4: Let ($X, M,{ }^{*}$) be a fuzzy metric space, then
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to x in X if for each $\in>0$ and each $t>0$, there exists $n_{0} \in N$ such that M $\left(x_{n}, \mathrm{x}, \mathrm{t}\right)>1-\epsilon$ for all $\mathrm{n} \geq n_{0}$
(b)A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy if for each $\in>0$ and each $t>0$, there exist $\mathrm{n}_{0} \in \mathrm{~N}$ such that $\mathrm{M}\left(x_{n}, x_{m}, \mathrm{t}\right)>1$ \in for all $\mathrm{n}, \mathrm{m} \geq n_{0}$.
(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Proposition2.5: In a fuzzy metric space ($X, M,{ }^{*}$), if $a^{*} a \geq a$ for $a \in[0,1]$ then $a^{*} b=\min \{a, b\}$ for $a l l a, b \in[0,1]$.
Definition 2.6: Two self mappings A and S of a fuzzy metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) are called compatible if $\lim _{n \rightarrow \infty} \mathrm{M}\left(\mathrm{AS} x_{n}, \mathrm{SA} x_{n}\right.$, $\mathrm{t})=1$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=\mathrm{x}$ for some x in X .
Definition2.6: Two self maps A and B of a fuzzy metric space ($X, M,{ }^{*}$) are called weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if $A x=B x$ for some $x \in X$ then $A B x=B A x$.
Remark 2.7: If self maps A and B of a fuzzy metric space ($X, M,{ }^{*}$) are compatible then they are weakly compatible. Let ($\mathrm{X}, \mathrm{M},{ }^{*}$) be a fuzzy metric space with the following condition:
(FM-6) $\lim _{t \rightarrow \infty} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=1$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
Lemma 2.8: Let ($X, M,{ }^{*}$) be a fuzzy metric space. If there exists $k \in[0,1]$ such that $M(x, y, k t) \geq M(x, y, t)$ then $x=y$.
Lemma 2.9: Let $\left\{x_{n}\right\}$ be a sequence in a fuzzy metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) with the condition (FM -6). If there exists $\mathrm{k} \in[0,1]$ such that $\mathrm{M}\left(y_{n}, y_{n+1}, \mathrm{kt}\right) \geq \mathrm{M}\left(y_{n-1}, y_{n}, \mathrm{t}\right)$ for all $\mathrm{t}>0$ and $\mathrm{n} \in \mathrm{N}$ then $\left\{y_{n}\right\}$ is a Cauchy sequence in X .
Main Results

Theorem3.1: Let A, B, S, T, L and N be self maps on a complete fuzzy metric space ($X, M,{ }^{*}$) with $t^{*} t \geq t$ for all $t \in[0$, 1], satisfying:
(a) $L(X) \subseteq S T(X), N(X) \subseteq A B(X)$;
(b) There exists a constant $k \in[0,1]$ such that
$M^{2}(L x, N y, k t) *[M(A B x, L x, k t) * M(S T y, N y, k t)] \geq M(S T x, L x, t) * M(A B y, N y, t)$

$$
\begin{aligned}
& * M(A B y, L x, t) * M(S T x, N y, t) \\
& * M(S T x, A B y, t)
\end{aligned}
$$

(c) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{LB}=\mathrm{BL}, \mathrm{NT}=\mathrm{TN}$.
(d) Either $A B$ or L is continuous.
(e) The pair ($L, A B$) is compatible and ($N, S T$) is weakly compatible.

Then A, B, S, T, L, N have a unique common fixed point.
Proof: Let x_{0} be an arbitrary point of X . By (a) there exists $x_{1}, x_{2} \in \mathrm{X}$ such that $\mathrm{L} x_{0}=\mathrm{ST} x_{1}=y_{0}$ and $\mathrm{N} x_{1}=\mathrm{AB} x_{2}=y_{1}$. Inductively we can construct sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that
$\mathrm{L} x_{2 n}=\mathrm{ST} x_{2 n+1}=y_{2 n}$ and $\mathrm{N} x_{2 n+1}=\mathrm{AB} x_{2 n+2}=y_{2 n+1}$ for $\mathrm{n}=0,1,2 \ldots$.
Step -1 By taking $\mathrm{x}=x_{2 n}$ and $\mathrm{Y}=x_{2 n+1}$ in (b) we have
$M^{2}\left(\mathrm{~L} x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{Kt}\right) *\left[\mathrm{M}\left(\mathrm{AB} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{Kt}\right) * \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right)\right] \geq \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{t}\right)$

$$
\begin{aligned}
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~L} x_{2 n}, \mathrm{~T}\right) \\
& * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

$M^{2}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{kt}\right) * \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right)\right] \geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)$

$$
\begin{aligned}
& * \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(y_{2 n}, y_{2 n}, \mathrm{t}\right) \\
& * \mathrm{M}\left(y_{2 n-1}, y_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)
\end{aligned}
$$

$\Rightarrow M^{2}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{kt}\right), \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right)\right] \geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)$ $* \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{t}\right) * 1$

* $\mathrm{M}\left(y_{2 n-1}, y_{2 n+1}, \mathrm{t}\right)$

$$
* M\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)
$$

$\Rightarrow M^{2}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{kt}\right) * \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right)\right] \geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{t}\right)$ $* \mathrm{M}\left(y_{2 n-1}, y_{2 n+1}, \mathrm{t}\right) * \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)$
$\Rightarrow M^{2}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right) \geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(y_{2 n-1}, y_{2 n+1}, \mathrm{t}\right)$

$$
\geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{t}\right)
$$

$\Rightarrow \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{kt}\right) \geq \mathrm{M}\left(y_{2 n-1}, y_{2 n}, \mathrm{t}\right)$
In general

$$
\mathrm{M}\left(y_{2 n+1}, y_{2 n+2}, \mathrm{kt}\right) \geq \mathrm{M}\left(y_{2 n}, y_{2 n+1}, \mathrm{t}\right)
$$

In general for all n even or odd we have
$\mathrm{M}\left(y_{n}, y_{n+1}, \mathrm{kt}\right) \geq \mathrm{M}\left(y_{n-1}, y_{n}, \mathrm{t}\right)$ for $\mathrm{k} \in(0,1)$ and all $\mathrm{t}>0$. Thus by Lemma $2,\left\{y_{n}\right\}$ is a Cauchy sequence in X . Since (X , $\left.\mathrm{M},{ }^{*}\right)$ is complete, it converges to a point z in X , and also its subsequences converges as follows.

$$
\left\{\mathrm{L} x_{2 n}\right\} \rightarrow \mathrm{z}, \quad\left\{\mathrm{AB} x_{2 n}\right\} \rightarrow \mathrm{z}
$$

$\left\{\mathrm{N} x_{2 n+1}\right\} \rightarrow \mathrm{z}$, and $\left\{\mathrm{ST} x_{2 n+1}\right\} \rightarrow \mathrm{z}$.
Case-1: AB is continuous.
Since $A B$ is continuous. $A B(A B) x_{2 n} \rightarrow A B z$ and (AB) $L x_{2 n} \rightarrow A B z$.
Since $(\mathrm{L}, \mathrm{AB})$ is complete. $\mathrm{L}(\mathrm{AB}) x_{2 n} \rightarrow \mathrm{ABz}$.
Step 2: By taking $\mathrm{x}=\mathrm{AB} x_{2 n}$ and $\mathrm{y}=x_{2 n+1}$ in (b) we have
$M^{2}\left(\mathrm{~L}(\mathrm{AB}) x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{AB}(\mathrm{AB}) x_{2 n} * \mathrm{~L}(\mathrm{AB}) x_{2 n}, \mathrm{kt}\right), \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right)\right]$

$$
\begin{aligned}
& \geq \mathrm{M}\left(\mathrm{ST}\left(\mathrm{AB} x_{2 n}\right), \mathrm{L}(\mathrm{AB}) x_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~L}(\mathrm{AB}) x_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{ST}(\mathrm{AB}) x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST}(\mathrm{AB}) x_{2 n}, \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

This implies that as $\mathrm{n} \rightarrow \infty$
$M^{2}(A B z, z, k t) *[M(A B z, A B z, k t) * M(z, z, k t)] \geq M(z, A B z, t) * M(A B z, z, t) * M(A B z, A B z, t)$

$$
* M(z, z, t) * M(z, A B z, t)
$$

$\Rightarrow \quad M^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) *[1 * 1] \geq \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{t}) * M(\mathrm{ABz}, \mathrm{z}, \mathrm{t}) * 1 * 1 * M(\mathrm{ABz}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad M^{2}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq 1$
$\Rightarrow A B z=z$.
Step 3: By taking $x=z$ and $y=x_{2 n+1}$ in (b) we have
$M^{2}\left(\mathrm{Lz}, \mathrm{N} x_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}(\mathrm{ABz}, \mathrm{Lz}, \mathrm{kt}), \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1} \mathrm{kt}\right)\right] \geq \mathrm{M}(\mathrm{STz}, \mathrm{Lz}, \mathrm{t})$

$$
\begin{aligned}
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{Lz}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{STz}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{STz}, \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

This implies that as $\mathrm{n} \rightarrow \infty$ we have
$M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{Lz}, \mathrm{kt}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{Lz}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{Lz}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$

* M(z,z,t)
$\Rightarrow \quad M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) *[\mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}), 1] \geq \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t}) * 1 * 1$
$\Rightarrow \quad M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad M(L z, z, k t) \geq 1$

$$
\mathrm{Lz}=\mathrm{z}=\mathrm{ABz}
$$

Step -4: By taking $\mathrm{x}=\mathrm{Bz}$ and $\mathrm{y}=x_{2 n+1}$ we have
$M^{2}\left(\mathrm{~L}(\mathrm{Bz}), \mathrm{N} x_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}(\mathrm{AB}(\mathrm{Bz}), \mathrm{L}(\mathrm{Bz}), \mathrm{kt}), \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right)\right]$

$$
\begin{aligned}
& \geq \mathrm{M}(\mathrm{ST}(\mathrm{Bz}), \mathrm{L}(\mathrm{Bz}), \mathrm{t}) * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{n} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~L}(\mathrm{Bz}), \mathrm{t}\right) * \mathrm{M}\left(\mathrm{ST}(\mathrm{Bz}), \mathrm{N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST}(\mathrm{Bz}), \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

$$
\Rightarrow M^{2}(B z, z, k t) *[M(B z, B z, k t), M(z, z, k t)] \geq M(z, B z, t) * M(z, z, t) * M(z, B z, t)
$$

$$
\begin{array}{lc}
& \quad * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) \\
\Rightarrow & M^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) * 1 * 1 \geq \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) * 1 * 1 \\
\Rightarrow & M^{2}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) \geq \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}) \\
\Rightarrow & \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \geq 1
\end{array}
$$

Thus we have $\mathrm{Bz}=\mathrm{z}$
Since $z=A B z$ we also have $z=A z$ therefore $a=A z=B z=L z$.
Step -5: Since $L(X) \subseteq S T(X)$ there exists $v \in X$ such that $z=L z=S T v$. By taking $x=x_{2 n}, \mathrm{y}=\mathrm{v}$ in (b) we have $M^{2}\left(\mathrm{~L} x_{2 n}, \mathrm{Nv}, \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{AB} x_{2 n}, \mathrm{~L} x_{2 n} \mathrm{kt}\right), \mathrm{M}(\mathrm{STv}, \mathrm{Nv}, \mathrm{kt})\right] \geq \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{t}\right) * \mathrm{M}(\mathrm{ABv}, \mathrm{Nv}, \mathrm{t})$

$$
\begin{aligned}
& * \mathrm{M}\left(\mathrm{ABv}, \mathrm{~L} x_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{Nv}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{ABv}, \mathrm{t}\right)
\end{aligned}
$$

Which implies that as $\mathrm{n} \rightarrow \infty$
$M^{2}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{zt}) * \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$

* $\mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad M^{2}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt}) \geq 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{t}) * 1$
$\Rightarrow \quad M^{2}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{t})$
$\Rightarrow \mathrm{M}(\mathrm{z}, \mathrm{Nv}, \mathrm{kt}) \geq 1$
Thus we have $z=N v$ and so $z=N v=S T v$.
Since (N, ST) is weakly compatible we have ST (Nv) = N (STv). Thus STz =Nz.
Step -6: By taking $x=x_{2 n}$ and $y=z$ in (b) ans using step -5 we have
$M^{2}\left(\mathrm{~L} x_{2 n}, \mathrm{Nz}, \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{AB} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{kt}\right), \mathrm{M}(\mathrm{STz}, \mathrm{Nz}, \mathrm{kt})\right] \geq \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{t}\right)$
$* \mathrm{M}(\mathrm{ABz}, \mathrm{Nz}, \mathrm{t}) * \mathrm{M}\left(\mathrm{ABz}, \mathrm{L} x_{2 n}, \mathrm{t}\right)$
$* \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{Nz}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{ABz}, \mathrm{t}\right)$
$\Rightarrow M^{2}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$

$$
* M(z, N z, t) * M(z, z, t)
$$

$\Rightarrow \quad M^{2}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt}) \geq 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{t}) * 1$
$\Rightarrow \quad M^{2}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{t})$
$\Rightarrow \quad \mathrm{M}(\mathrm{z}, \mathrm{Nz}, \mathrm{kt}) \geq 1$
Thus we have $\mathrm{z}=\mathrm{Nz}$ and therefore

$$
\mathrm{Z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Lz}=\mathrm{Nz}=\mathrm{STz}
$$

Step -7: By taking $\mathrm{x}=x_{2 n}$ and $\mathrm{y}=\mathrm{Tz}$ in (b) we have
$M^{2}\left(\mathrm{~L} x_{2 n}, \mathrm{~N}(\mathrm{Tz}), \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{AB} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{kt}\right), \mathrm{M}(\mathrm{ST}(\mathrm{Tz}), \mathrm{N}(\mathrm{Tz}), \mathrm{kt})\right] \geq \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~L} x_{2 n}, \mathrm{t}\right)$

$$
\begin{aligned}
& * \mathrm{M}(\mathrm{AB}(\mathrm{Tz}), \mathrm{N}(\mathrm{Tz}), \mathrm{t}) \\
& * \mathrm{M}\left(\mathrm{AB}(\mathrm{Tz}), \mathrm{L} x_{2 n}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{~N}(\mathrm{Tz}), \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{ST} x_{2 n}, \mathrm{AB}(\mathrm{Tz}),\right.
\end{aligned}
$$

Since $N T=T N$ and $S T=T S$, we have $N T z=T N z=T z$ and $S T(T z)=T(S T z)=T z$ letting $n \rightarrow \infty$ we have
$M^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$

$$
\begin{array}{lc}
& * \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) \\
\Rightarrow & M^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) * 1 * 1 \geq 1 * \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) * 1 \\
\Rightarrow & M^{2}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}) \\
\Rightarrow & \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq 1
\end{array}
$$

Thus $z=T z$. Since $T z=S T z$ we also have $z=S z$.
Therefore $\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Lz}=\mathrm{Nz}=\mathrm{Sz}=\mathrm{Tz}$, that is z is the common fixed point of the six maps.
Case -3: L is continuous. Since L is continuous $L L x_{2 n} \rightarrow L z \quad$ and $L(A B) x_{2 n} \rightarrow \quad L z$. Since ($L, A B$) is compatible, (AB) $\mathrm{L} x_{2 n} \rightarrow \mathrm{Lz}$.
Step-8:- By taking $\mathrm{x}=\mathrm{L} x_{2 n}$ and $\mathrm{y}=x_{2 n+1}$ in (b) we have
$M^{2}\left(\mathrm{LL} x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left(\mathrm{ABL} x_{2 n}, \mathrm{LL} x_{2 n}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right)\right]$

$$
\begin{aligned}
& \geq \mathrm{M}\left(\mathrm{STL} x_{2 n}, \mathrm{LL} x_{2 n}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{LL} x_{2 n}, \mathrm{t}\right) \\
& * \mathrm{M}\left(\mathrm{STL} x_{2 n}, \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{STL} x_{2 n}, \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

$\Rightarrow M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) *[\mathrm{M}(\mathrm{Lz}, \mathrm{Lz}, \mathrm{kt}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{Lz}, \mathrm{t})$

$$
* \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t})
$$

$\Rightarrow \quad M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) * 1 * 1 \geq \mathrm{M}(\mathrm{z}, \mathrm{Lz}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad M^{2}(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{Lz}, \mathrm{z}, \mathrm{t})$
$\Rightarrow \quad M(\mathrm{Lz}, \mathrm{z}, \mathrm{kt}) \geq 1$
Thus we have $z=L z$ and using steps $5-7$ we have $z=L z=N z=S z=T z$.
Step -9: Since $N(X) \subseteq A B(X)$ there exists $v \in X$ such that $z=N z=S z=T z$. By taking $x=v, y=x_{2 n+1}$ in (b) we have $M^{2}\left(\mathrm{Lv}, \mathrm{N} x_{2 n+1}, \mathrm{kt}\right) *\left[\mathrm{M}\left((\mathrm{ABv}, \mathrm{Lv}, \mathrm{kt}), \mathrm{M}\left(\mathrm{ST} x_{2 n+1}, \mathrm{~N} x_{2 n+1}, \mathrm{kt}\right)\right] \geq \mathrm{M}(\mathrm{STv}, \mathrm{Lv}, \mathrm{t})\right.$

$$
\begin{aligned}
& * \mathrm{M}\left(\mathrm{AB} x_{2 n+1} \cdot \mathrm{~N} x_{2 n+1}, \mathrm{t}\right) * \mathrm{M}\left(\mathrm{AB} x_{2 n+1}, \mathrm{Lv}, \mathrm{t}\right) * \mathrm{M}(\mathrm{STv}, \mathrm{Lv}, \mathrm{t}) \\
& * \mathrm{M}\left(\mathrm{STv}, \mathrm{AB} x_{2 n+1}, \mathrm{t}\right)
\end{aligned}
$$

Which implies that as $\mathrm{n} \rightarrow \infty$
$M^{2}(\mathrm{Lv}, \mathrm{v}, \mathrm{t}) *[\mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{kt}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{t}) *$

$$
\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})
$$

$$
M^{2}(\mathrm{Lv}, \mathrm{z} \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{kt}), 1] \geq \mathrm{M}(\mathrm{z} \mathrm{Lv}, \mathrm{t}) * 1 * \mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{t}) * 1 * 1
$$

$$
M^{2}(\mathrm{Lv}, \mathrm{z}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Lv}, \mathrm{t})
$$

$$
\mathrm{M}(\mathrm{Lv}, \mathrm{z}, \mathrm{kt}) \geq 1
$$

Thus we have $z=L v=A B v$
Since ($L, A B$) is weakly compatible, we have $L z=A B z$ and using step-4, we have $z=B z$. therefore

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}=\mathrm{Lz}=\mathrm{Nz}
$$

That is z is the common random fixed point of the six maps in this case also.
Step -10 : - for uniqueness, let $(w \neq z)$ be another common fixed point of A, B, S, T, L and N taking $x=z, y=w$ in (b) we have
$M^{2}(\mathrm{Lz}, \mathrm{Nw}, \mathrm{kt}) *[\mathrm{M}(\mathrm{ABz}, \mathrm{Lz}, \mathrm{kt}), \mathrm{M}(\mathrm{STw}, \mathrm{Nw}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{STz}, \mathrm{Lz}, \mathrm{t}) * \mathrm{M}(\mathrm{ABw}, \mathrm{Nw}, \mathrm{t})$

$$
\begin{aligned}
& * \mathrm{M}(\mathrm{ABw}, \mathrm{Lz}, \mathrm{t}) * \mathrm{M}(\mathrm{STz}, \mathrm{Nw}, \mathrm{t}) \\
& * \mathrm{M}(\mathrm{STz}, \mathrm{ABw}, \mathrm{t})
\end{aligned}
$$

$$
\begin{array}{ccc}
\Rightarrow & M^{2}(\mathrm{Lz}, \mathrm{Nw}, \mathrm{kt}) *[\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{t}) * \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}) \\
& * \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t}) * \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \\
\Rightarrow & M^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) * 1 * 1 \geq 1 * 1 * \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}) * \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}) \\
& \\
& \\
\Rightarrow & \\
\Rightarrow & M^{2}(\mathrm{z}, \mathrm{w}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t}) \\
\Rightarrow & \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t})
\end{array}
$$

Thus we have $z=w$ This completes the proof of the theorem. If we take $B=T=I x$ (the identity map on X) in the main theorm we have the following
Corollary : Let A, S, L and N be self maps on a complete fuzzy metric space ($X, M, *$) with $t * t \geq t$ for all $t \in[0,1]$ satisfying
(a) $L(X) \subseteq S T(X), N(X) \subseteq A(X)$
(b) There exists a constant $k \in(0,1)$ such that
$M^{2}(\mathrm{Lx}, \mathrm{Ny}, \mathrm{Kt}) *[\mathrm{M}(\mathrm{Ax}, \mathrm{Lz}, \mathrm{kt}), \mathrm{M}(\mathrm{Sy}, \mathrm{Ny}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{Sx}, \mathrm{Lx}, \mathrm{t}) * \mathrm{M}(\mathrm{Ay}, \mathrm{Ny}, \mathrm{t}) * \mathrm{M}(\mathrm{Ay}, \mathrm{Lx}, \mathrm{t})$

$$
* M(S x, N y, t) * M(S x, A y, t)
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$
(c) Either A or L is continuous.
(d) The pair (L, A) is compatible and (N, S) is weakly compatible. Then A, S if we take $A=S, L=N$ and $B=T=L x$ is the main theorem, we have the following:
Corollary : Let ($\mathrm{X}, \mathrm{M}, *$) be a compatible fuzzy metric space with $t * t \geq t$ for all $t \in[0,1]$ and let A and L be compatible maps on X such that $L(X) \subset A(X)$, if A is continuous and there exists a constant $k \in(0,1)$ such that
$M^{2}(\mathrm{Lx}, \mathrm{Ly}, \mathrm{kt}) *[\mathrm{M}(\mathrm{Ax}, \mathrm{Lx}, \mathrm{kt}), \mathrm{M}(\mathrm{Ay}, \mathrm{Ly}, \mathrm{kt})] \geq \mathrm{M}(\mathrm{Ax}, \mathrm{Lx}, \mathrm{t}) * \mathrm{M}(\mathrm{Ay}, \mathrm{Ly}, \mathrm{t}) * \mathrm{M}(\mathrm{Ay}, \mathrm{Ly}, \mathrm{t})$

$$
* \mathrm{M}(\mathrm{Ax}, \mathrm{Ly}, \mathrm{t}) * \mathrm{M}(\mathrm{Ax}, \mathrm{Ay}, \mathrm{t})
$$

For all $x, y \in X$ and $t>0$ then A and L have a unique fixed point.

References

[1] A. George, P. Veeramani, On some results in Fuzzy metric spaces, Fuzzy set and systems, 64 (1994), 395-399
[2] B. Singh and S. Jain, Fixed point theorem using semi compatibility and weak compatibility in Fuzzy metric space, VJMS, 1 (2007), 139-147
[3] K. Singh and M. S .Rathore A common Fixed point theorem in Fuzzy metric spaces, IJMA, vol, 2011, no 17, 819-826
[4] L.A.Zadeh, Fuzzy sets Inform and control, 8 (1965), 338-353.
[5] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11(1975), 326-334
[6] R. Vasuki, Common Fixed point for R- weakly commuting maps in Fuzzy metric spaces, Indian J. Pure Appl.Math, 30(1999),419-423
[7] S .Sharma, Common fixed point theorem in Fuzzy metric spaces, Fuzzy sets and systems, 127 (2002), 345-352
[8] Y. J. Cho, H. K. Pathak, S .M. Kang, J .S. Jung, Common Fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy sets and systems, 93 (1998), 99-111.

