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ABSTRACT 

This paper deals with the oscillation criteria for nth order nonlinear neutral mixed type differential equations of the form  
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where n  is an even positive integer, a  and b  are nonnegative constants, 121 ,,   and 2  are positive real 

constants, ))(0,),,([)(),( 0  tCtptq  and  ,  and   are ratios of odd positive integers with 1,  . Some 

examples are provided to illustrate the main results.  
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1  INTRODUCTION 

In this paper, we study the oscillatory behavior of all solutions of nth order nonlinear neutral differential equations with mixed 
arguments of the form  
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n
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 (3) 

where n  is an even positive integer, a  and b  are nonnegative constants, 121 ,,   and 2  are positive real 

constants, ))(0,),,([)(),( 0  tCtptq  and  ,  and   are ratios of odd positive integers with 1,  . 

As is customary, a solution is called oscillatory if it has arbitrarily large zeros and nonoscillatory if it is eventually positive or 
eventually negative. Equations (1.1),(1.2) and (1.3) are called oscillatory if all its solutions are oscillatory. 

Differential equations with delayed and advanced arguments (also called mixed differential equations or equations with 
mixed arguments) occur in many problems of economy, biology and physics (see for example [2,4,8,9,14]), because 
differential equations with mixed arguments are much more suitable than delay differential equations for an adequate 
treatment of dynamic phenomena. The concept of delay is related to a memory of system, the past events are importance for 
the current behavior, and the concept of advance is related to a potential future events which can be known at the current 
time which could be useful for decision making. The study of various problems for differential equations with mixed 
arguments can be seen in [3,7,13,16,19,22]. It is well known that the solutions of these types of equations cannot be 
obtained in closed form. In the absence of closed form solutions a rewarding alternative is to resort to the qualitative study of 
the solutions of these types of differential equations. But it is not quite clear how to formulate an initial value problem for such 
equations and existence and uniqueness of solutions becomes a complicated issue. To study the oscillation of solutions of 
differential equations, we need to assume that there exists a solution of such equation on the half line.  

The problem of asymptotic and oscillatory behavior of solutions of nth order delay and neutral type differential equations has 
received great attention in recent years see for example [1-27], and the references cited therein. However, there are few 
results regarding the oscillatory properties of neutral differential equations with mixed arguments. 

In[10] the authors established some oscillation criteria for the following mixed neutral equations  

   ),()(=)()()( *)(** gtpxgtqxhtxchtcxtx
n

  (4) 

and  

   ),()(=)()()( *)(** gtpxgtqxhtxchtcxtx
n

  (5) 

where n  is an even positive integer, phhcc ,,,, **
 and q  are real numbers and g  and 

*g  are positive constants. 

In[5] the author established some oscillation results for the following mixed neutral equation  

   ,  ),()(=)()()( 022112211 tttxqtxqtxptxptx    (6) 

with 1q  and 2q  are nonnegative real valued functions. 

In[25] the authors established some oscillation theorems for the following second order mixed neutral differential equation  

   ,  ),()()()(=))()()(( 022112211 tttxtqtxtqtxptxptx   
 (7) 

where  ,  and   are ratios of odd positive integers, iip ,  and 1,2=,ii  are positive constants and 

1,2.=)),[0,),,([ 0 itCqi   

In[26] the authors established some oscillation criteria for the following second order mixed neutral differential equation  
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 and  
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   ,  ),()()()(=))()()(( 02121 tttxtptxtqtbxtaxtx   
 (9) 

where   and   are ratios of odd positive integers with 1 , 2121 ,,,,, ba  are positive constants and 

1,2.=)),,[),,([)(),( 00 ittCtptq   

Clearly equations (1.4) and (1.5) with 1===   and ptpqtq =)(,=)(  are special cases of equations (1.1) and 

(1.3) and equation (1.6) with 2=n  and 21 =)(,=)(1,=== qtpqtq  is a special case of equation (1.3) 

respectively. Moreover equations (1.7), (1.8) and (1.9) with 2=n  are special cases of of equations (1.1), (1.2) and (1.3) 

respectively. Motivated by the above observation in this paper we study the oscillatory behavior of equations (1.1),(1.2) and 

(1.3) for different values of 1  and 1 . Therefore our results generalize and extend those of [5,10,25,26]. 

In Section 2, we present some sufficient conditions for the oscillation of all solutions of equations (1.1),(1.2) and (1.3). 
Examples are provided in Section 3 to illustrate the main results. 

2  SOME PRELIMINARY LEMMAS 

 In this section we shall obtain some sufficient conditions for the oscillation of all solutions of the equations (1.1),(1.2) and 
(1.3). Before proving the main results we state the following lemmas which are essential in the proofs of our oscillation 
theorems. 

Lemma 2.1 Let 00,  BA  and 1.  Then 

 .)(
2

1
1





 BABA 


 

If ,BA  then  

 .)(  BABA   

The proof may be found in [23].  

Lemma 2.2 ([21]) Let ).),,([ 0

 RtCu n
 If )()( tu n

 is eventually of one sign for all large ,t  then there exists a 

,> 1ttx  for some 01 > tt , and an integer l , ,0 nl   with ln  even for 0)()( tu n
 or ln  odd for 

0)()( tu n
 such that 0>l  implies that 0>)()( tu k

 for 1,0,1,...,=  ,> lktt x  and 1 nl , implies that 

0>)(1)( )( tu kkl  for 1.1,...,,=  ,>  nllktt x  

Lemma 2.3 ([1]) Let u  be as in Lemma 2.2. Assume that )()( tu n
 is not identically zero on any interval ),,[ 0 t  and 

there exists a 01 tt   such that 0)()( )(1)(  tutu nn
 for all .1tt   If 0,)(lim 


tu

t
 then for every 1,<<0  ,   

there exists ,1tT   such that for all ,Tt    
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1)!(

)( 1)(1 tut
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Lemma 2.4 ([15])Suppose R),[: 0tq  is a continuous and eventually nonnegative function, and   is a positive 

real number. Then the following hold. 
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hold for some 1,0,1,...,= ni  then the inequality  
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has no eventually positive solution )(ty  which satisfies 0>)()( ty j
 eventually, .0,1,...,= nj   
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(II) If  
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hold for some 1,0,1,...,= ni  then the inequality  
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has no eventually positive solution )(tz  which satisfies 0>)(1)( )( tz jj  eventually, .0,1,...,= nj  

Lemma 2.5 ([24]) Assume that for large t  
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where 
*t  satisfies .=)( * tt  Then  

 ,  0,=))](()[()( 0tttxtqtx    

has an eventually positive solution if and only if the corresponding inequality  

 ,  0,))](()[()( 0tttxtqtx    

has an eventually positive solution.  

In [6,12,18,27], the authors investigated the oscillatory behavior of the following equation  
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  and )(0,  is a ratio of odd 

positive integers. 

Let 1= . Then equation (2.1) reduces to the linear delay differential equation  
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 and it is shown that every solution of equation (2.2) oscillates if  
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3  Oscillation Results 

First we study the oscillation of all solutions of equation (1.1).  
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 have no eventually positive solution, no eventually 

positive decreasing solution and no eventually positive increasing solution respectively. Then every solution of equation 
(1.1) is oscillatory. 

Proof: Let )(tx  be a nonoscillatory solution of equation (1.1). Without loss of generality we may assume that )(tx  is 

eventually positive,i.e., there exists a 01 tt   such that 0>)(tx  for .1tt   Set 
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  tbxtaxtxtz  

Then  

 .    0>)()()()(=)( 0121

)( tttallfortxtptxtqtz n   
 (16) 
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 are of one sign on .  );,[ 122 ttt   As a result we have two cases:(a) 0<)(tz  for 
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Case(a): 0<)(tz  for .2tt   In this case, we let  
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has a positive solution, which is a contradiction.  

Case(b): 0>)(tz  for .2tt   Now we set 
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Using the monotonicity of )(tq  and )(tp ,  1,1,ba  and Lemma 2.1 in the above inequality, we get 
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Now using 0>)(tz  for 2tt   in the above inequality, we obtain 
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Using the last inequality in (3.6), we obtain 

 0.)(
2

2

)(
)(

2

2

)(
)( 22

/

/
1

121

/

/
1

1

)( 

























 


















tv

b

tp
tv

b

tq
tv n

 

or  

 .  0,)()()()()( 222

/

121

/

1

)( tttvtpctvtqctv n   
 

Using the procedure of case(a), )(tv  is a positive solution of (3.1), a contradiction. Thus we consider two possible 

cases:(i): 0<)(tz  eventually,(ii) 0>)(tz  eventually. 

Case(i): Assume that 0<)(tz  for all .2

*

3 ttt   Then from (3.4) we have 0>)(1)( )( tz ii  for 
*

34 ttt   and 

10,1,...,= ni . We claim that 0<)(ty  for .4tt   To prove it, assume 0>)(ty  for .4tt   Then differentiate 
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a contradiction. Thus 0<)(ty  for 4tt   and from (3.6), we have  
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Now, using the monotonicity of )(tz , we obtain 
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Then from the above inequality and (3.6), we have 
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has a positive decreasing solution, a contradiction. 

Case(ii): Assume that 0>)(tz  for all .23 ttt   Now we consider the following two subcases: 

Subcase(i): Assume that 0<)(ty  for all .3tt   Proceeding as in Case(i) and using the monotonicity of ),(tz  we 

obtain  
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Thus once again )(ty  is a positive decreasing solution of the equation (3.2), which is a contradiction. 

Subcase(ii):  Assume that 0>)(ty  for all .3tt   Then we have  
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has a positive increasing solution which satisfies  
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a contradiction. This completes the proof. 

Corollary 3.1 Let ii  >  for 0>)
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where 1,0,1,...,= ni  then every solution of equation (1.1) is oscillatory. 

Proof: Let )(ty  be a positive solution of (3.1), for .01 ttt   Then we have 0)()( ty n
 for all .1tt   Further 
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Combining the last two inequalities, we obtain  
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But according to the Lemma 2.5 and the condition (2.3), condition (3.11) guarantees that inequality (3.14) has no positive 
solution, which is a contradiction. Hence (3.1) has no eventually positive solution. Moreover in view of Lemma 2.4 (II) and the 
condition (3.12), inequality (3.8) has no eventually positive solution which satisfies (3.7), which is a contradiction. Hence 
(3.2) has no eventually positive decreasing solution. Also in view of Lemma 2.4 (I) and the condition (3.13), inequality (3.9) 
has no eventually positive decreasing solution which satisfies (3.10), which is a contradiction. Hence (3.3) has no eventually 
positive increasing solution. 

Next we consider the equation (1.2) and present sufficient conditions for the oscillation of all solutions.  
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 have no eventually positive solution, no eventually 

positive decreasing solution and no eventually positive increasing solution respectively. Then every solution of equation 
(1.2) is oscillatory.  
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Proof: Let )(tx  be a nonoscillatory solution of equation (1.2). Without loss of generality we may assume that )(tx  is 

eventually positive,i.e., there exists a 01 tt   such that 0>)(tx  for .1tt   Set 

 
 ))()()((=)( 211  tbxtaxtxtz  

and proceeding as in the proof of Theorem 3.1, we see that the function ,0,1,...,=),()(
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has a positive solution, which is a contradiction.  

Case(b): 0>)(1 tz  for .2tt   Now we set 
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Using the monotonicity of )(tq  and  1,1,),( batp  and Lemma 2.1 in the above inequality, we get 
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Now using 0>)(1 tz  for 2tt   in the above inequality, we obtain 
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As in the proof of Theorem 3.1, case (2), we can easily see that 0>)(1 ty  for .2tt   Next we consider two possible 

cases:(i): 0<)('1 tz  eventually,(ii) 0>)('1 tz  eventually. 

Case(i): Assume that 0<)('1 tz  for all .2

*

3 ttt   Then we have 0>)(1)( )(
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34 ttt   and 

10,1,...,= ni . We claim that 0<)('1 ty  for .4tt   To prove it, assume 0>)('1 ty  for .4tt   Then differentiate 
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Then from the above inequality and (3.19), we have  
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has a positive decreasing solution, a contradiction. 

Case(ii): Assume that 0>)('1 tz  for all .23 ttt   Now we consider the following two subcases: 

Subcase(i): Assume that 0<)('1 ty  for all .3tt   Proceeding as in Case(i) and using the monotonicity of ),(1 tz  we 

obtain  
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 Thus once again )(1 ty  is a positive decreasing solution of the inequality (3.16), which is a contradiction. 

Subcase(ii): Assume that 0>)('1 ty  for all .3tt  Then we have  
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 has a positive increasing solution, which satisfies  
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 a contradiction. This completes the proof. 

Corollary 3.2 Let ii  >  for 0>)
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and  
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then every solution of equation (1.2) is oscillatory. 

Proof: The proof is similar to that of Corollary 3.1 and hence the details are omitted.  

Next we consider the equation (1.3) and present sufficient conditions for the oscillation of all solutions. 

Theorem 3.3 Let ii  >  for 11,1,2,=  bai  and  1 , and  

 )},(),(),({min=)( 21   tqtqtqtQ  

 

 )},(),(),({min=)( 21   tptptptP  

are positive functions for .0tt   Assume that the differential inequalities  
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and 
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 (39) 

have no eventually positive decreasing solution and no eventually positive increasing solution. Then every solution of 
equation (1.3) is oscillatory. 

Proof: Let )(tx  be an eventually positive solution of equation (1.3), then there exists a 01 tt   such that 0>)(tx  for 

.1tt   Set 

 .  ,))()()((=)( 1212 tttbxtaxtxtz    

and proceeding as in the proof of Theorem 3.1, we see that the function nitz i 0,1,...,=),()(

2  is of one sign on ),,[ 2 t  

for some .12 tt   Now we define  

 .  ),()()(=)( 2221222 tttzbtzatzty   
 (40) 

Then 0>)(2 ty  for 2tt   and then 
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Using the monotonicity of )(tq  and   1,11,),( batp  and Lemma 2.1 in the above inequality, we get 
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Now using 0>)(2 tz  for 2tt   in the above inequality, we obtain 
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which implies that the function nity i 0,1,...,=),()(

2  are of one sign. Next we consider two possible cases:(i): 

0<)('2 tz  eventually,(ii) 0>)('2 tz  eventually. 

Case(i): Assume that 0<)('2 tz  for all .2

*

3 ttt   Then there exists a 2

*

3 tt   so that 0>)(1)( )(

2 ty ii  for 

10,1,...,= ni  and .*

34 ttt   Using the fact that the function 
)(

2

ny  is decreasing on ),[ 4 t  in the equation (3.28) 

we have  
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  Using the last inequality in (3.29), we obtain  
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has a positive decreasing solution, a contradiction. 
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Case(ii): Assume that 0>)('2 tz  for all .23 ttt   so that 0>)('2 ty  for all .3tt   Using the fact that the function 

)(

2

ny  is increasing on ),,[ 3 t  in (3.29), we have  
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has a positive increasing solution, which satisfies  

 ,    ,1,2,...,=    0>)( 3
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 a contradiction. The proof is now complete. 

Corollary 3.3 Let ii  >  for 11,1,2,=  bai  and 1==  . If 
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where 1,0,1,...,= ni  and  
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  (46) 

where 1,0,1,...,= ni  then every solution of equation (1.3) is oscillatory. 

Proof: The proof is similar to that of Corollary 3.1 and hence the details are omitted. 

4  Examples 

In this section we present some examples to illustrate the main results. 

Example 4.1 Consider the differential equation  
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Here .
2

1
=)(=)(,2==,==3,===,

2

1
== 2121 tptqba   Then one can see that all 

conditions of Corollary 3.1 are satisfied. Therefore all the solutions of equation (4.1) are oscillatory. In fact ttx sin=)( 1/3
 

is one such oscillatory solution of equation (4.1).  

Example 4.2 Consider the differential equation  
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Then one can see that all conditions of Corollary 3.2 are satisfied. Therefore all the solutions of equation (4.2) are oscillatory. 

In fact tetx t
sin=)( 1/3/3

 is one such oscillatory solution of equation (4.2). 

Example 4.3 Consider the differential equation  
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where /2.3t   

Here ,
)32(

)3(
=)(,

/23

6
=)(,3=/2,3=,==1,===2,=1/2,= 2121












 t

t
tp

t
tqba and 

we can see that all the conditions of Corollary 3.3 are satisfied. Therefore all the solutions of equation (4.3) are oscillatory. In 

fact tsinttx =)(  is one such oscillatory solution of equation (4.3).  

Example 4.4 Consider the differential equation  
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Here .
2

2187
=)(,

2

2187
=)(4,=2,=1,==3,===,=,

1
= 12

62121 etp
e

tqeb
e

a   Then one can 

see that all conditions of Corollary 3.3 are satisfied except condition (3.33). Therefore all the solutions of equation (4.4) not 

necessarily oscillatory. In fact 
tetx =)(  is one such nonoscillatory solution, since it satisfies equation (4.4).  

We conclude this paper with the following remark.  

Remark 1 It would be interesting to obtain oscillation results for the equations (1.1) to (1.4) when 1<,<0   or 

1<<0   and 1>  or 1>  and 1.<<0   
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