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ABSTRACT

This paper deals with the oscillation criteria for nth order nonlinear neutral mixed type differential equations of the form

(@) +ax(t—7,) -bx(t +7,))* )" = q)X’ (t—07) + pO)X’ (t+o,),

((x(t) - ax(t—z,) + bx(t+7,))* | = @)%’ (t—5,) + pOX’ (t +5,),

and
((x(t) +ax(t—z,) +bx(t+7,))* | = q)x* (t—0,) + pO)X’ (t+0,)

where N is an even positive integer, & and D are nonnegative constants, 7,,7,,0, and &, are positive real

constants, q(t), p(t) € C([t,,>),(0,)) and , S and y are ratios of odd positive integers with /3, >1. Some
examples are provided to illustrate the main results.
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1 INTRODUCTION

In this paper, we study the oscillatory behavior of all solutions of nth order nonlinear neutral differential equations with mixed
arguments of the form

(@) +ax(t—7,) -bx(t +7,))* )" = q)X’ (t—07) + pO)X’ (t+o,), o)

() —ax(t—z) +bx(t +7,)) )" = q)X’ (t—07) + pO)X’ (t+o,), @
and

((x()) +ax(t —7,) +bx(t +7,))* | = q)x” (t—cy) + pOX’ (t+03) @

where N is an even positive integer, & and D are nonnegative constants, 7,,7,,0, and O, are positive real

constants, (t), p(t) € C([t,,),(0,0)) and «, S and y are ratios of odd positive integers with /3, >1.

As is customary, a solution is called oscillatory if it has arbitrarily large zeros and nonoscillatory if it is eventually positive or
eventually negative. Equations (1.1),(1.2) and (1.3) are called oscillatory if all its solutions are oscillatory.

Differential equations with delayed and advanced arguments (also called mixed differential equations or equations with
mixed arguments) occur in many problems of economy, biology and physics (see for example [2,4,8,9,14]), because
differential equations with mixed arguments are much more suitable than delay differential equations for an adequate
treatment of dynamic phenomena. The concept of delay is related to a memory of system, the past events are importance for
the current behavior, and the concept of advance is related to a potential future events which can be known at the current
time which could be useful for decision making. The study of various problems for differential equations with mixed
arguments can be seen in [3,7,13,16,19,22]. It is well known that the solutions of these types of equations cannot be
obtained in closed form. In the absence of closed form solutions a rewarding alternative is to resort to the qualitative study of
the solutions of these types of differential equations. But it is not quite clear how to formulate an initial value problem for such
equations and existence and uniqueness of solutions becomes a complicated issue. To study the oscillation of solutions of
differential equations, we need to assume that there exists a solution of such equation on the half line.

The problem of asymptotic and oscillatory behavior of solutions of nth order delay and neutral type differential equations has
received great attention in recent years see for example [1-27], and the references cited therein. However, there are few
results regarding the oscillatory properties of neutral differential equations with mixed arguments.

In[10] the authors established some oscillation criteria for the following mixed neutral equations

(x(®) +ext—h)—cx(t +h"))"” = gx(t—g) + px(t+g°), @
and
(x(t) +ex(t—h)+c x(t+ h*))(n) =ox(t—g)+ px(t+9°), (5)

where N is an even positive integer, C,C*,h,h*, P and Q arereal numbersand ¢ and g* are positive constants.

In[5] the author established some oscillation results for the following mixed neutral equation
(X(t) + P X(t—7,) + poX(t+ Tz)) =g X(t—0y) + QX (t +0,), t=1, (6)
with (; and (], are nonnegative real valued functions.

In[25] the authors established some oscillation theorems for the following second order mixed neutral differential equation
(@ + pox(t=7) + PX(t+7,)" )= G X (- 0) + 8, OX (t+0,), t21,, Q
where «, ,B and y are ratios of odd positive integers, ,;,7; and 0O, i=12 are positive constants and
g; € C([ty,),[0,0)),i =1,2.
In[26] the authors established some oscillation criteria for the following second order mixed neutral differential equation
((X(t) + ax(t—7,) —bx(t +7,))* )= Q)X (t— o) + pEOX” (t+55), t=t,, ®)

and
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((x(t) —ax(t —z,) +bx(t +7,))* )= aO)X’ (t— ;) + )X’ (t+o,), t =1, ©)

where & and ﬂ are ratios of odd positive integers with ﬂZl, a,b,‘t'l,‘t'z,O'l,O'2 are positive constants and
q(t), p(t) € C([ty, ), [ty, 0)), i1 =1,2.

Clearly equations (1.4) and (1.5)with ¢ = =y =1 and ((t) =q, p(t) = p are special cases of equations (1.1) and
(1.3) and equation (1.6) with N=2 and ==y =1,q(t) =q,, p(t) =, is a special case of equation (1.3)

respectively. Moreover equations (1.7), (1.8) and (1.9) with N = 2 are special cases of of equations (1.1), (1.2) and (1.3)
respectively. Motivated by the above observation in this paper we study the oscillatory behavior of equations (1.1),(1.2) and
(1.3) for different values of ﬂ >1 and y = 1. Therefore our results generalize and extend those of [5,10,25,26].

In Section 2, we present some sufficient conditions for the oscillation of all solutions of equations (1.1),(1.2) and (1.3).
Examples are provided in Section 3 to illustrate the main results.

2 SOME PRELIMINARY LEMMAS

In this section we shall obtain some sufficient conditions for the oscillation of all solutions of the equations (1.1),(1.2) and
(1.3). Before proving the main results we state the following lemmas which are essential in the proofs of our oscillation
theorems.

Lemma2lLlet A>0,B>0 and y >1. Then
1
A’ +B7 ZF(A'F B)y
If A> B, then
A -B” > (A-B)".

The proof may be found in [23].

Lemma 2.2 ([21]) Let u € C"([t,,),R"). If u™ (t) is eventually of one sign for all large t, then there exists a
t,>t, for some t >t,, and an integer |, O0<I<n, with N+l even for u(")(t)ZO or N+l odd for
u™ (t) <0 such that 1 >0 implies that u® (t)>0 for t>t,, k=0,1,..,1-1, and 1 <n-1, implies that
)" *u®t)>0 for t>t,, k=1,1+1,..,n-1.

Lemma 2.3 ([1]) Let U be as in Lemma 2.2. Assume that R (t) is not identically zero on any interval [to,oo), and
there exists a t, >t, such that U™ (t)u™ (t) <0 for all t>t,. if limu(t) 0, then for every A, 0< A <1,
t—oo
there exists T =t;, suchthatforall t>T,
A .
u(t) > ———t" ().
(n=21)!

Lemma 2.4 ([15])Suppose ( : [to,oo) —> R is a continuous and eventually nonnegative function, and O is a positive
real number. Then the following hold.

OXli

t+o A n—i-1
limsup (s—-t)'(t—s+o0)

ds>1,
o 1 il(n—i-1)! q(s)ds

hold for some 1 =0,1,...,n—1, then the inequality

y® ) =qt)y(t+o)

has no eventually positive solution Y(t) which satisfies Y (t) >0 eventually, j=0,1,...,n.
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an if
(t-s)'(s—t+o)""*

il(n—i—1)! q(s)ds >1,

t—oowo

t
limsup _[

t-o
hold for some i =0,1,...,n—1, then the inequality

(-1)"z" (1) 2 a(t)z(t-o)

has no eventually positive solution Z(t) which satisfies (—=1)1z(t) >0 eventually, j=0,1,...,n.

Lemma 2.5 ([24]) Assume that for large t
q(s)=0 forall se[t,t],

where t” satisfies o(t”) =t. Then

X®)+a®x(et)]* =0, t=t,,
has an eventually positive solution if and only if the corresponding inequality
X' +at)[x(c(t)]” <0, t=t,,

has an eventually positive solution.

In [6,12,18,27], the authors investigated the oscillatory behavior of the following equation
X®)+aM®x(et)]* =0, t=t,, (10)

where e€C([t,,©),R"), oeC([t,,©),R), o(t)<t, !EQ o(t) = and a (0,2) is a ratio of odd
positive integers.
Let & =1. Then equation (2.1) reduces to the linear delay differential equation

X'(t)+q(t)x(o(t) =0, t>t,, (11)

and it is shown that every solution of equation (2.2) oscillates if

t
A\ 1
liminf j q(s)ds > ~. (12)
t—o e
a(t)

3 Oscillation Results
First we study the oscillation of all solutions of equation (1.1).
b”
27

nonincreasing functions for t >1;. Assume that the differential inequalities

Theorem 3.1 Let o, > 7, for 1 =1,2,8,b<1,1<B<y,(1+a” ——=) >0, and q(t) and p(t) are

yO ) +eq®)y” (t—o,—7,) +e,p)y"* (t+o, —7,) <0, (13)
VOO sy apya ¥ (-4 8) 20 0
and
y™(t) - PV o y"“(t+o,—1,) >0, (15)
2 (1+a” _F)W
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11 1 2 » o
(=—)"“}, have no eventually positive solution, no eventually

( )ﬂ/a
b? b’ ' 2Ft 2
positive decreasing solution and no eventually positive increasing solution respectively. Then every solution of equation
(1.1) is oscillatory.

1 2

where C, = min{—

Proof: Let X(t) be a nonoscillatory solution of equation (1.1). Without loss of generality we may assume that X(t) is

eventually positive,i.e., there exists a t; >1t; suchthat X(t) >0 for t >t,. Set
z(t) = (x(t) + ax(t —7,) —bx(t+17,))”.

Then

zO (M) =qt)x’ (t—o) + pt)x (t+o,) >0 forall t>t >t,. (16)
Thus Z(i)(t),i =0,1,...,n, are of one sign on [t,,o0); t, >t,. As a result we have two cases:(a) Z(t) <O for
t>t,, (b) z(t)>0 for t>t,.
Case(a): z(t) <0 for t 2t,. Inthis case, we let

O<u(t) =—z(t) = (bx(t+7,) —x(t) —ax(t —z,))* <b“xX*(t+7,).

Then
1 1l
X(t)ZBu (t—7,), t>t,.

Using above inequality in equation (1.1), we have
0=u(®)+aM)x’(t-c;) + p(H)X’ (t+0,)
>u™ (1) + qb( Jura(t—c, —z,)+ 2)(7) U (t+ o, ),
or
u®(®) +c,qMu (t -0, —7,) + ¢, p(u™ (t+ 0, —7,) <O
has a positive solution, which is a contradiction.

Case(b): z(t)>0 for t=1t,. Now we set

y(t) =z(t)+a’z(t - z'l)— b —2(t+7,), t>t,. a7

Then

yO ) =z +a’zV (t-7) - i ——2V(t+7,)
=q(t)x’ (t—oy) + pt)X (t+o0,)
+a?(qt—7,)X* (t—0, —7,) + pt—7,)X’ (t+0, —7,))
-

Using the monotonicity of q(t) and p(t), a,b<1,1< <y and Lemma 2.1 in the above inequality, we get

(it +0,)X (=0, +7,) + plt+1,)X (t+0,+1,))
¥ 0> 20 (x(t-0) +axt -0 ) -bx(t- o +2,)f
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L PO

t ot (x(t+o,)+ax(t+ o, —7,) —bx(t+ o, +7,)Y .

Now using Z(t) >0 for t>1, in the above inequality, we obtain

(”)(t)> q() 77“(t -0, ;(tl) 7" (t+0,)>0, t>t,, (18)
which implies that the function Y (t), i =0,1,...,n are of one sign. We shall prove that y(t) >0 eventually. If not,
then

5 b” b”
O<v(t)=-y(t)=-z(t)-a"z(t- rl)+ S 2(t+7,)<— o T Z(t+17,).
Hence
27
z(t) > ™ v(t—1,).

Using the last inequality in (3.6), we obtain

pla 1 Aa
v (t) + q(t)( 7 J V%t -0, —71,)+ b(t) (Z—J v“(t+o,-1,)<0.

2/ 271 b”
or
v () +c gtV (t—o, —1,) +c, ptV“(t+o,-7,) <0, t >t,.

Using the procedure of case(a), V(t) is a positive solution of (3.1), a contradiction. Thus we consider two possible
cases:(i): Z'(t) <0 eventually,(ii) 2'(t) >0 eventually.

Case(i): Assume that z'(t) <O for all t >t; >t,. Then from (3.4) we have (—1)'z®”(t)>0 for t>t, >t; and

i=0,1,..,n—1. We claim that y'(t) <O for t >1,. To prove it, assume Yy'(t) >0 for t >t,. Then differentiate
(3.5), we have

0<y'(t)=2'(t)+a’Z'(t-1,) —% Z'(t+7,)
or
b7
0> —y'(t) = w(t) +a’w(t—z,) Wt z,)
where W=—2">0 on [t,,o0). Since the function W is decreasing on [t,,), we have
b’
0>-y'(t)>(1+a” _F)W(t +17,)>0, for t>t,,

a contradiction. Thus y'(t) <0 for t >, and from (3.6), we have
(-1)'y®@t)>0 for t>t, and i=0,1,..,n. (19)

Now, using the monotonicity of Z(t) , we obtain

y(t) = z(t) +a’z(t —rl)—% 2(t+7,)<(1+a%)z(t-1,), t>t,.

Then from the above inequality and (3.6), we have
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q(t)

2/ (1+a”)P-

has a positive decreasing solution, a contradiction.

y"M (t) - y 7 (t—o,+17,) >0, t>t,, (20)

Case(ii): Assume that z'(t) >0 forall t >t; >t,. Now we consider the following two subcases:

Subcase(i): Assume that Y'(t) <O for all t >1,. Proceeding as in Case()) and using the monotonicity of Z(t), we
obtain

y(t—o)<(1+a’)z(t—o,).
Using the last inequality in (3.6) and the monotonicity of y(t), we obtain

O s )
a®)

277 (1+a”)"

q(t)
" 2P (1+af)P"

yﬁ/a (t-oy)

yﬂ’“ (t—o, +17).

Thus once again y(t) is a positive decreasing solution of the equation (3.2), which is a contradiction.

Subcase(ii): Assume that Y'(t) >0 forall t =t;. Then we have

b” b”
y(t) =z(t)+a’z(t-7,) > 2(t+7,)<(1+a” _F)Z(t +7,)

and this with (3.6) implies
p()

2 (1+a” —F)”“

y® () - y'“(t+o,-1,)>0, t>t,, (21)

has a positive increasing solution which satisfies

yO@)>0 for i=1.2,..,n, and t=>t,, (22)

a contradiction. This completes the proof.

a

Corollary 3.1 Let o; > 7, for 1 =1,2,a,b<1,(1+a“ —

)>0 and = f=y>1 and q(t) and p(t) are

a-1

nonincreasing functions for t>1t,. If

t a _ |
liminf I (s—o,—1,)""(q(s) + p(s))ds > M 0<A<1 (23)
t—w tfo-lfrz e
t i n—i-1
limsup I (t=s) (_S_tJfgl_Tl) q(s)ds > 2**(1+a“),i=0,1,...,n—-1 (24)
B0 gy i(n—-i-1)!

and
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o272 e wNiff L yn-irt a
limsup (s=t) (_t 3+ ) p(s)ds > 2" (1+a* — b’H)’ (25)
— t il(n—i-1)! 2
where 1 =0,1,...,n—1, then every solution of equation (1.1) is oscillatory.

Proof: Let Y(t) be a positive solution of (3.1), for t>1t, >t,. Then we have Y™ (t)<O0 for all t>1,. Further
yO () >0 for all t>t,, otherwise Y(t) ——c0 as t—>—o0. Hence we have Y(t)>0,y"™(t)>0 and
y™(t) <0, for t>1,. Then by Lemma 2.2 and Lemma 2.3 we obtain

(t)_( 1)' t"ty™ (), 1€(0,1), t>t, >t,.
From (3.1) and the monotonicity of Y(t), we have
W(tﬁwN o, —7,) <0, t>t,.

Combining the last two inequalities, we obtain

(“)(t)+(q(t)+p(t))( (t—o,—7,)"y" (- G—z'z)j<0 t>t,.

b*(n—-1)!

Let @(t) = Y™V (t). Then we see that @(t) is a positive solution of equation

i (q(t)+ p(t)A
b“(n-1)!

But according to the Lemma 2.5 and the condition (2.3), condition (3.11) guarantees that inequality (3.14) has no positive
solution, which is a contradiction. Hence (3.1) has no eventually positive solution. Moreover in view of Lemma 2.4 (1) and the
condition (3.12), inequality (3.8) has no eventually positive solution which satisfies (3.7), which is a contradiction. Hence
(3.2) has no eventually positive decreasing solution. Also in view of Lemma 2.4 (I) and the condition (3.13), inequality (3.9)
has no eventually positive decreasing solution which satisfies (3.10), which is a contradiction. Hence (3.3) has no eventually
positive increasing solution.

o'(t (t-o,—-7,)" " ot-0,-7,)<0, t>t, (26)

Next we consider the equation (1.2) and present sufficient conditions for the oscillation of all solutions.

Theorem 3.2 Let o, >7; for 1=12,(1- +b”)>0,a,b<1, 1<y<p, and q(t) and p(t) are

nondecreasing functions for t > to- Assume that the differential inequalities

YO ) +c,a)y” (t—oy+7) +C,p()y" (t+0o, +7) <0, @7)
n t a
A )(t)—w y*(t—o,+17,) 20, (28)
and
n t «
y¢ )(t)—%y” (t+o,—17,)20, (29)
y-1 7-1
where C, mln{ 1ﬁ' , 1}/ 227' T (2 )ﬂ/“ 23'1 (2 )%a} have no eventually positive solution, no eventually

positive decreasing solution and no eventually positive increasing solution respectively. Then every solution of equation
(1.2) is oscillatory.
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Proof: Let X(t) be a nonoscillatory solution of equation (1.2). Without loss of generality we may assume that X(t) is

eventually positive,i.e., there exists a t; >1t; suchthat X(t) >0 for t >t,. Set
z,(t) = (x(t) —ax(t —z;) + bx(t +7,))”
and proceeding as in the proof of Theorem 3.1, we see that the function Zl(i)(t),i =0,1,...,n, are of one sign on
[t,,); t, >t,. Asaresult we have two cases:(a) Z(t) <O for t>t,, (b) z,(t)>0 for t >t,.
Case(a): Z,(t) <O for t>1,. In this case, we let
0<u,(t) =—z/(t) = (—x(t) +ax(t—z,) —bx(t +7,))* <a“x*(t—17,).

Then
1
X(t) > =u (t+17,), t>t,.
a

Using above inequality in equation (1.2), we have
0=u" (1) +aO)X’ (t—0y) + pOX (t+0,)
q(t) p( )

>u(”)(t)+ T (- 0'l+rl)+ u' (t+ o, +1,),

or
ul™ (t) +c,qt)u*(t—o, +7,) +C,p(t)u/“(t+ o, +17,) <0
has a positive solution, which is a contradiction.

Case(b): Z,(t) >0 for t >t,. Now we set
y)=z,(t) -7z -7)+b’z(t+7,), t>t,. (30)
Then

a’
i =2"0) -z 4"t -7)+0' " (t+7,)

= Q(t)Xﬂ(t—01)+ p®X"(t+0,)

aﬂ
o (at=)X’(t—o, —7,)+ plt—)X (t+0,—1,))

+b7 (q(t+7,)X° (t =0y +7,) + Pt +7,)X (t+0, +7,))
Using the monotonicity of q(t) and p(t),a,b<1,1<y < S and Lemma 2.1 in the above inequality, we get

q(t)

y™ (t) > 2ﬂl(x('[ o) -ax(t—o, —7,) +bx(t— o, +1,) )
N gftl) (X(t+0,) - ax(t+ o, —7,) +bx(t + o, +7,))

Now using Z;(t) >0 for t>t, in the above inequality, we obtain

v (t) > gg 27 (t—o,)+ sy(l)z”“(t+az)>0 t>t,. (31)
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As in the proof of Theorem 3.1, case (2), we can easily see that yl(t) >0 for t> tz. Next we consider two possible

cases:(i): Z,'(t) <O eventually,(ii)z,'(t) > 0 eventually.

Case(): Assume that Z,'(t) <0 for all t>t; >t,. Then we have (-1)'z"(t)>0 for t>t, >t; and

i=0,1,..,n—1. weclaimthat Y,"(t) <O for t >t,. Toprove it, assume Y,'(t) >0 for t >t,. Then differentiate
(3.18), we have

o<vy,'(t)=2z'(t)- a’ —= 4 (t-7)+b"2'(t+7,)
a’?
0> -y, "(t) = w,(t)— w(t 7,)+b"w, (t+7,)

where W, =—2,">0 on [t,,). Since the function W, is decreasing on [t,,0), we have

0>-y,'

+b")w, (t+7,) >0, for t>t,,

a contradiction. Thus Y;'(t) <O for t>t, and from (3.19), we have
(-1)'y®(@)>0 for t>t, and i=0,1,..,n. (32)

Now, using the monotonicity of Z(t) , we obtain

y,(t) = z,(t) - za 7)+b7z,(t+7,) < (1+b")z(t), t>t,.
Then from the above inequality and (3.19), we have
n t) e
OEE A R )
q(t) Pla
W [ (t—0)

q(t)
27 (1+b7)Pe

has a positive decreasing solution, a contradiction.

y e (t—o,+1,), t>t,.

Case(ii): Assume that Zl' (t) >0 forall t> t; = 1,. Now we consider the following two subcases:

Subcase(i): Assume that Y,'(t) <O for all t>t,. Proceeding as in Case(i) and using the monotonicity of Z,(t), we
obtain

y, () <(1+Db")z,(t+7,).

Using the last inequality in (3.19) and the monotonicity of Y, (t), we obtain

e A0 g
W 0> 30 2 (1~

q(t) a
—Wylﬂ/ (t-0,-7,)
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q(t)

—Wyf/a(t_o-l_'_rl)'

Thus once again Y, (t) is a positive decreasing solution of the inequality (3.16), which is a contradiction.

Subcase(ii): Assume that Y,"(t) >0 forall t >t,.Then we have

aﬁ
y,(t) = Zl(t)_ﬁ z,(t—7)+b"z(t+7,) <(1+0b")z(t+7,)

and this with (3.19) implies

p(t) .
yl(n)(t)—mylﬂ (t+0'2—2'2)20, t2t3, (33)
has a positive increasing solution, which satisfies
yO(@t)>0 for i=1.2,..,n, and t=>t,, (34)
a contradiction. This completes the proof.
Corollary 32 Let o; > 7; for 1=1,2,8,0<1,(1-—5+b“)>0 and ==y =1 and q(t) and p(t) are

nonincreasing functions for t >1,. If

t a ' |
liminf [ (s—0,+7)"(a(5) + p(s)ds > el S B (35)
- tfcrlﬂ'l €
i _ Q)i il - n—i-1
limsup [ L=V C—troi=n) o ies pa i pe), 20,101 (36)
0 g if(n—i-1)!
and
02T e _pNift __yn-il
limsup (O (_t A ) p(s)ds > 2“*(1+b%), i=0,1,...,n—1, 37)
t>o0 : (n—-i-1)!

then every solution of equation (1.2) is oscillatory.
Proof: The proof is similar to that of Corollary 3.1 and hence the details are omitted.

Next we consider the equation (1.3) and present sufficient conditions for the oscillation of all solutions.

Theorem 3.3 Let 0, > 7; for i=1,2,a<1,b>1and 1< <y, and

Q(t) =min{q(t),a(t—z),q(t+7,)},

P(t) = min{p(t), p(t—7), p(t+7,)},

are positive functions for 1 > to- Assume that the differential inequalities

Q)

47 (1+a” +p7)7”

y" (t) - y 7 (t—o,+1,) >0, (38)

and
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P(®)
4 (1+a’ +b7)"”

have no eventually positive decreasing solution and no eventually positive increasing solution. Then every solution of
equation (1.3) is oscillatory.

y®(t) - y*(t+o,-1,) 20, (39)

Proof: Let X(t) be an eventually positive solution of equation (1.3), then there exists a t; >t such that X(t) >0 for
t>1. set

2,(t) = (X(t) + ax(t — 7,) + bx(t + 7,))%, t>t,.

and proceeding as in the proof of Theorem 3.1, we see that the function Zg) (t), i= 0,1,...,n is of one sign on [tz,oo),

for some t, >1t,. Now we define
y,(t)=z,(t)+a’z,(t—7,) +b'z,(t +17,), t >t,. (40)
Then Y,(t) >0 for t>t, and then
y () =z () +a’ 2" (t— 7)) + b7z (t +7,)
=q(t)x” (t—0,)+ p()X (t+0o,)
+aﬁ(q(t—r1)xﬁ(t —o, 1)+ pt—7)X (t+0, —rl))
+07(q(t+7,)X" (t—0y +7,) + Pt +7,)X (t+0, +7,))

Using the monotonicity of ((t) and p(t),a<1,b>1,1< <y and Lemma 2.1 in the above inequality, we get

W0 > A (x(t-0) + (1 -0, - 7) +bx(t =05 +7,)f
+ ZV(L) (X(t+0,)—ax(t+ o, —7,) +bx(t+o, +7,)) .

Now using Z,(t) >0 for t>t, in the above inequality, we obtain

WO > T2 (o)L 2 (t+0) >0, t2t, @)

47

which implies that the function yg’(t),i =0,1,...,n are of one sign. Next we consider two possible cases:(i):
Z,'(t) <0 eventually,(ii) Z,'(t) >0 eventually.
Case(i): Assume that Z,'(t) <O for all t>1t; >t,. Then there exists a t, >t, so that (=1)'y{’(t)>0 for

1=0,1,.,n-1and t>t, Zt;. Using the fact that the function yé") is decreasing on [t,,0) in the equation (3.28)
we have

y,)=z,(t)+a’z,(t—7) +b7z,(t+7,) < (1+a” +b")z,(t—7,),

and then we have Z, (t — z'l) 2> yz—(t) Using the last inequality in (3.29), we obtain
1+a” +b’
t a
VOO )y (-0, +7) 20 @)

47 (1+a” +p7)7”

has a positive decreasing solution, a contradiction.
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Case(ii): Assume that Z,"(t) >0 forall t>t, >t,. sothat Y, (t) >0 forall t >t,. Using the fact that the function
yé”) is increasing on [t3,oo), in (3.29), we have

P(t)
4 (1+a’ +b7)"”
has a positive increasing solution, which satisfies

Ot)>0 for i=1,2,..,n, and t>t,, (44)

yV (t) - y “(t+o,-1,) >0, (43)

a contradiction. The proof is now complete.
Corollary 3.3 Let 0, > 7, for i=1,2,a<l,b>land a=pF=y21.1

t n—-i-1

(t—S)i(S—t+O'1—T1)

limsup : _ Q(s)ds > 4**(1+a” +b%), 45)
oo i(n—i-1)!
t o1+
where 1 =0,1,...,n-1, and
i s N P __yn-i-l
timsup [ OV (U=S+02—%) T biyge s 4714 0% +b), (46)
t>o0 1 i(n—i-1)!
where 1 =0,1,...,n—1, then every solution of equation (1.3) is oscillatory.

Proof: The proof is similar to that of Corollary 3.1 and hence the details are omitted.

4 Examples
In this section we present some examples to illustrate the main results.

Example 4.1 Consider the differential equation

()
[(x(t)+%x(t—n)—%x(t+7z))3j =%x3(t—27z)+%x3(t+27r), t>0. @7)

Here a:b:%,a:ﬂ:}/:&q:rz:72',0'120'2:27Z',q(t): p(t):%. Then one can see that all

conditions of Corollary 3.1 are satisfied. Therefore all the solutions of equation (4.1) are oscillatory. In fact X(t) = sinmt

is one such oscillatory solution of equation (4.1).

Example 4.2 Consider the differential equation

(iv)
((x(t)—ée’”’3x(t—7r)+ 3eld3 x(t+7z))3j = %ez”xs(t—&zﬂ 722;‘;?” X*(t+37), (48
where t>0.
Here
1 1 1372 ,, _ 2744
azgeds,b:F,a:ﬂ:}/:&q :TZ :72',0'1 :272',0'2 :37d2,q(t) :?982 , p(t) —W.

Then one can see that all conditions of Corollary 3.2 are satisfied. Therefore all the solutions of equation (4.2) are oscillatory.
In fact X(t) = e”3 sinllst is one such oscillatory solution of equation (4.2).

Example 4.3 Consider the differential equation

(iv)
(X(t)+%X(t—ﬁ)+2X(t+7z)J = 6 X(t—322) + 3(t+7)

X(t+37), (49)
t —342 2(t+37)

587 |Page Dec 16, 2013



where t > 372.

6 3(t+rx
Here a=12,b=2,a=p=y=1,7,=1,=7r,0,=312,0,=3r,q(t) = p(t )—ﬁ,
t—322 2(t+37)
we can see that all the conditions of Corollary 3.3 are satisfied. Therefore all the solutions of equation (4.3) are oscillatory. In
fact X(t) =tsint is one such oscillatory solution of equation (4.3).

Example 4.4 Consider the differential equation

2187 g

()
((x(t)+%x(t—1)+ex(t+1))3] X3 (t—2)+ e12x3(t+4) t>1. (50)

Here azl,b:e,a=,8=y:3,r1:rz:1,0-1 2,0, =4, C|(t)‘2187 (t)—ﬁe”. Then one can
€

see that all conditions of Corollary 3.3 are satisfied except condition (3.33). Therefore all the solutlons of equation (4.4) not
necessarily oscillatory. In fact X(t) =e " isone such nonoscillatory solution, since it satisfies equation (4.4).
We conclude this paper with the following remark.

Remark 1 It would be interesting to obtain oscillation results for the equations (1.1) to (1.4) when 0< £, <1 or
O0<pf<land y>1or f>1and O<y<l.
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