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ABSTRACT 

Image data Compression based on fractal theory is fundamentally different from conventional compression methods, its 
idea is to generate a contraction operator whose fixed point approximates the original image in a complete metric space of 
images. The specification of such operator can be stored as the fractal code for the original image. The contraction 
mapping principle implies that the iteration of the stored operator starting from arbitrary initial image will recover its fixed 
point which is an approximation for the original image. This contraction mapping is usually constructed using the 
partitioned IFS(PIFS)technique which relies on the assertion that parts of the image resemble other parts of the same 
image. It then, finds the fractal code for each part by searching for another larger similar part. This high costly search 
makes fractal image compression difficult to be implemented in practice, even it has the advantages of a high 
compression ratio, a low loss ratio, and the resolution independence of the compression rateo. 

In this paper, we investigate fractal image compression (FIC) using Iterated Function Systems (IFS). After reviewing the 
standard scheme, we state a mathematical formulation for the practical aspect. We then propose a modified IFS that relies 
on the fact that, there are very constant parts in certain images. From the view point of mathematics, we present the 
modified operator, proving its properties that make it not only a fractal operator but also more effective than the standard 
one. The experimental results are presented and the performance of the proposed algorithm is discussed. 
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1. INTRODUCTION  

The mathematics behind fractals began to take shape in the 17th century when mathematician and philosopher Leibniz 
considered recursive self-similarity (although he made the mistake of thinking that only the straight line was self-similar in 
this sense) [6]. Fractal image compression has been studied from different perspectives [11] such as: Iterated Function 
Systems, Self vector quantization [9], Self-quantized wavelet sub trees [13], and Convolution transform coding [14]. This 
motivated Barnsley to search for an image compression system by modeling images as attractors of IFSs [3]. Barnsely 
suggested that storing the fractal like image as a collection of transformations reduces the required memory of storing the 
image as a collection of pixels. Iterated functions in the complex plane were investigated in the late 19th and early 20th 
centuries by Henri Poincar, Felix Klein, Pierre Fatou and Gaston Julia. However, without the aid of modern computer 
graphics, they lacked the means to visualize the beauty of many of the objects that they had discovered [8]. In the 1960s, 
Benot Mandelbrot started investigating self-similarity in papers such as How Long Is the Coast of Britain? Statistical Self-
Similarity and Fractional Dimension, which built on earlier work by Lewis Fry Richardson. Finally, in 1975 Mandelbrot 
coined the word fractal to denote an object whose Hausdorff-Besicovitch dimension is greater than its topological 
dimension [8]. Fractal image compression (FIC) was introduced by Barnsley and Sloan [1]. They introduce in another work 
a better way to compress images [2], and after that, (FIC) has been widely studied by many scientists. FIC is based on the 
idea that any image contains self-similarities, that is, it consists of small parts similar to itself or to some big part in it. So in 
FIC iterated function systems are used for modeling. Jacquin [12] presented a more exible method of FIC than Barnsley's, 
which is based on recurrent iterated function systems (RIFSs) introduced first by him. RIFSs which have been used in 
image compression schemes consist of transformations which have a constant vertical contraction factor. Fisher [10] 
improved the partition of Jacquin. A hexagonal structure called the Spiral Architecture (SA) [4] was proposed by Sheridan 
in 1996. Bouboulis etc. [7] introduced an image compression scheme using fractal interpolation surfaces which are 
attractors of some RIFSs. Kramm presented a quite fast algorithm [5], manages to merge low-scale redundancy from 
multiple images. 

2. FRACTALS ENCODING USING ITERATED FUNCTIONS SYSTIMS 

2.1 Iterated Function Systems 

The concept of iterated function systems (IFS) was first developed by Hutchinson [25], then independently discovered by 
Barnsley and Demko [24] who gave them their name. 

Definition 2.1 Let wi : X → X be a mapping on X for i =  1,2,3,… . , N, then we will referto {X; w1, w2,… , wN } as an iterated 
function system or IFS. 

If the functions w1, w2,… , wN are contractions then the IFS that compound of them issaid to be contractive. This property 
is useful in generating fractals by such systems andfor this purpose the concept of IFS is extended from X to the space of 
fractals  H(X) whichdefined as follows. 

Definition 2.2 (Hausdorff  metric Space) [26] Let (X, d) be a metric space, the Hausdorff space H(X) denotes the set of all 
non-empty compact subsets of X. 

Let (X, d) be a metric space, and H(X) be the associated Hausdorff_ space. Then thedistance from a point x ∈ X to B ∈
H(X) is defined by 

DB(x) =  min  d(x, b) ∶  b ∈  B  

Moreover, the distance from A to B is defined by 

DB A = max DB(a) ∶  a ∈ A  

 

DB(x) =  min  d(x, b) ∶  b ∈  B  

Moreover, the distance from A to B is defined by 

DB A = max DB(a) ∶  a ∈ A  

These definitions make sense because DB (x) is a continuous function of x ∈A [23] and A is compact being in H(X), so 
there must exist a point a ∈ A such that,DB(a ) ≥ DB a ∀a ∈  A. 

It is necessary to notice that, it is possible to find two points in the Hausdorff  space(A, B ∈ H(X)) such that DB(A) ≠ DA (B). 
Hence the distance d(A,B) = DB(A) does not constitute a metric. The next theorem defines the Hausdorff  distance that 
constitute a metric on the Hausdorff  space. 

Theorem 2.1 Let (X, d) be a metric space and H(X) denote the nonempty compact sub sets of  X. Define 

h A, B = max DB A , DA B  ∀A, B ∈ H X . 

Then (H X , h) is a metric space. 

Proof: See [22] 
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There are many properties that induced from X to H(X) as refereed in [23, 22]. Forexample,if (X, d) is complete then 
(H X , h)  is also complete, and the contraction of w ∶  X → X isinherited by w ∶  H(X)  → H(X). 

These properties enables the extension of  IFS from X to H(X), and ensure that eachwiis continuous and maps H(X) into 
itself, which allows the Hutchinson operator to be defined as follows. 

Definition 2.3 The Hutchinson operator of a finite set of maps  Wi i=1
n on a set A is written as: 

                                                W A =  wi
N
i=1 (A)                                                                                                       (1) 

The Hutchinson operator is a convenient tool for later proofs, and the inheritance of completeness is important because it 
used to proof the existence of many fractals. The following theorem provides a general condition for the completeness of 
(H X , h), it also characterizes the limits of Cauchy sequences in (H X , h). 

Theorem 2.2 Let (X, d) be a complete metric space. Then (H X , h) is a complete metricspace. Moreover, if { An ∈
H(X)}n=1

∞  is a Cauchy sequence then, 

A ∶= lim
n→∞

An  , 

can be characterized as A =  x ∈ X  there is a Cauchy sequence that converges to x  . 

proof See [23, 22]. 

The unique fixed point AW ∈ H(X) ofW =   wiN
i=1  is called a fractal in many references [20]. 

2.2 Fractal Encoding using IFS 

2.2.1 Classical Fractals Compression 

We can notice that, many classical fractals may be represented as binary (black-and-white) images on computers. Since 
many such fractals are generated by IFS as seen previously, then there are many images that can be generated by IFS. 
The question now will be as, Which better to represent such images on computer memory, IFS code (parameters), or the 
traditional pixel array. The answer may be induced by the following example [28, 27]: 

 

Figure 1: A simple fractal tree. 

Example 2.3 The tree-like image in Figure 1 is generated by IFS of four transforms, listed in Table 2. This IFS can be 
stored in a file of size 176 bytes, whereas the pixel array representation of the original image requires 264,000 bytes, 
achieving 1,500 compression ratio. 

Transform A B C D E F 

W1 0.53 -0.08 0.08 0.53 -0.88 33.44 

W2 -0.31 -0.42 -0.44 0.33 -15.19 19.43 

W3 -0.25 -0.05 -0.07 0.29 1.48 11.73 

W4 0.29 0.54 -0.04 0.29 18.74 9.87 

Table 2: The parameters of the four affine transforms resembling 
the IFS that generates the tree in Figure 1 
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In this example, the generating IFS code is known, however, we do not know the IFS generator for all binary images. 
Moreover we do not know if such IFS exists or not. So the problem will be: For a given image A, how to find a contractive 
IFS whose attractor is this image. This problem is known as the inverse problem for iterated function systems [21, 19]. 

To address this problem mathematically, we have to state a suitable mathematical framework. Let 𝑋 be a compact subset 

of 𝑅2 then it is possible to consider 𝐻(𝑋) as a collection of all binary (black-and-white) images, where a subset of the 
plane is represented by an image that is black at the points of the subset and white elsewhere. As mentioned previously, 
many classical fractals are elements in Hausdorff  space 𝐻(𝑋) which denotes the set of all non-empty compact subsets of 
𝑋. 

2.2.2 Collage Theorem On (𝐻 𝑋 , 𝑕) 

Since the number of points in fractal sets is infinite and complicatedly organized, it is difficult to specify exactly the 
generator IFS. From the practical point of view, it will be acceptable for the required IFS to be chosen such that its 
attractor is close to a given image for a pre-defined tolerance. 

The collage theorem is very useful to simplify the inverse problem for fractal images [23], it has been addressed by many 
researchers as well [19]. 

Theorem 2.4 Let { X; w1, w2,… , wN } be a hyperbolic IFS with contractivity factor s, and W be the associated Hutchinson 
map as defined in Eq.(1) then 

h A, AW <
h A, W A  

1 − s
, ∀A ∈ H X                                                                                                  (2) 

 

where AW is the fixed point of W. 

Hence if h(A, W(A)) < ϵ then 

h A, AW  <
ϵ

1 − s
. 

Proof:  see [23] 

The theorem can be used as following. Given a fractal image 𝐴, find a set of contractive mappings that maps 𝐴 into 
smaller copies of itself such that the union of the smaller copies is close as 𝜖 to the target image. The determined contractions are the 

IFS codes with corresponding Hutchinson operator 𝑊. 

The theorem states that, the attractor AW of the determined IFS 𝑊 approximates the target image 𝐴 (𝑖. 𝑒. , 𝑕(𝐴, 𝐴𝑊)  <
𝜖

1−s
  

. It also implies that, the more accurately the IFS maps the image to itself, the more accurately the IFS approximates the 
image. The consequence of collage is the following useful corollary. 

Corollary 2.5 Let 𝐴 ∈ 𝐻(𝑋), Given 𝜖> 0,there exist a hyperbolic IFS { 𝑋;𝑤1,𝑤2,… ,𝑤𝑁} with attractor AW satisfying 

𝑕 𝐴,𝐴(𝑊) <  𝜖. 

Proof: see [17, 18]. 

The attractor of the IFS is not necessarily equal to the original image, it can be a close approximation to it, so the fractal 
compression is lossy. 

Clearly, the self-affine images are more accurately represented by affine IFS than other images that require an 
approximate solution. 

2.3 Fractal Image Compression using Local Iterated Function Systems 

The classic IFS methods represent a target image as a union of small copies of itself. This representation is suitable for 
the entirely self-similar images, but most real-world images do not have this type of similarity. Instead, they may have 
another type of similarity where sub portions of the target image may be similar to other subregions in the same image. 
These images are said to be locally self-similar, and this was the idea of block-based fractal-based image compression 
scheme which developed by Jacquin, in the late 1980s. 

2.3.1 Local(Partitioned) Iterated Function System 

Most natural images are not seemed to have the self-similarity which found in classical fractals, however they have a self-
similarity of another type that is small region of an image is seen to be similar to a large region of the same image which 
called quasi-self-similarity as the remarked regions in Figure 2. 
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Figure 2: Self-similar portions in a neutral image 

 

This type of self-similarity can be seen in most images that found in the real-world, such as, images of faces, trees, 
mountains, clouds, houses, etc. This leads to the idea of representing images by transformed parts of themselves.  

For this purpose, a generalization of the iterated function system concept is used, this extension is based on that the maps 
w1,… , wN, are applied to local domains of the image instead of the whole image. This variation is called local iterated 
function systems (LIFS) [3] or partitioned iterated function system (PIFS) [10, p. 48] and defined as following. 

Definition 2.4 Let 𝑋 be a complete metric space, and let 𝐷 𝑖 ⊂  𝑋 for 𝑖 =  1, 2,… ,𝑁. 𝐴 partitioned (local) iterated function 
system is a collection of contractive maps 𝑤𝑖 ∶  𝐷𝑖 →  𝑋, for 𝑖 =  1, 2,… ,𝑁. 

It is clear from the definition that, the specification of each 𝑤𝑖 cannot be done only using an contractive mapping, it also 
needs the domain of this mapping. 

2.3.2 Image Encoding using Local IFS 

IFS-type methods sought to express a target set or image as a union of shrunken copies of itself. However, as before 
most real-world objects are rarely so entirely self-similar. Instead, self-similarity may be exhibited only locally, in the sense 
that subregions of an image may be self-similar. In the late 1980s, Jacquin developed a block-based fractal image 
compression scheme that exploits local self-similarities within images [12]. This fractal-based scheme is based on 
exploiting the inherent local self-similarities in the spatial domain of images. In fact, most real-world images exhibit some 
degree of local self-similarity which can be exploited by using fractal-based image compression methods. To exploit the 
local self-similarities within sub-regions of images, the image is subdivided into a pair of simple and uniform partitions of 
the image: A domain partition of larger sub-blocks, also known as parent sub-blocks and a range partition of smaller sub-
blocks, also known as child sub-blocks. A parent sub-block is mapped into its corresponding child sub-block using a 
geometric mapping, followed by a simple affine transformation, known as the gray-level map. 

2.4 Generalized Fractal Image Encoding 

Consider a complete metric space of images (𝑌, 𝑑𝑌), and let 𝑦𝑇 ∈ 𝑌 be the fixed point of acontractive transformation 𝑇. 
The image 𝑦𝑇can be closely approximated by a convergingalgorithm that based on the contraction mapping principle. This 
algorithm suggests to iterate the transformation T starting from any initial image 𝑦0. This iteration processproduces the 

images sequence {𝑇 𝑛  𝑦0 }𝑛=0
∞ that converges to the attractor of T which is its fixed point 𝑦𝑇. In practice, only few 

iterations are enough to approximate 𝑦𝑇within areasonably small error tolerance. 

The image 𝑦𝑇 is also called a fractal, because as a fixed point of a contractive transformation it often shows some fractal 
properties such as self-tiling and symmetry. Hence in fractal image compression, given a target image 𝑦 ∈ 𝑌 , the goal is 
to approximate 𝑦  by a fractal 𝑦𝑇. For this purpose, the fractal encoding aims to construct an appropriate contractive 
transformation 𝑇 whose attractor 𝑦𝑇 closely resembles a given target image 𝑦 . 
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The problem of finding such operator T is called the fractal inverse problem or the fractal image coding problem, and can 
be stated mathematically as following: 

Given a target image 𝑦 ∈ 𝑌 , construct a transformation T such that T is contractive on (𝑌, 𝑑𝑌) and its fixed point, 𝑦𝑇, 
closely approximates 𝑦 . 

The collage theorem is helpful in solving this question and can be stated for images as following. 

Theorem 2.6 (Images Collage Theorem) Let 𝑦  be a target image in a complete metricspace of images (𝑌, 𝑑𝑌) and T is a 
contractive transformation defined on 𝑌 with contractivityfactor 𝑠, such that 

𝑑𝑌(𝑦 ,𝑇(𝑦 ))  <, for some 𝜖 >  0                                                                                                                                (3) 

then 

𝑑𝑌 𝑦 , 𝑦𝑇 <
𝜖

1 –𝑠
                                                  (4) 

where 𝑦𝑇 is the fixed point of T. 

Proof  See [16]. 

      In view of this theorem, if a contractive transformation T maps the target image 𝑦  close to itself, then the target image 
𝑦  will be closely approximated by the fixed point 𝑦𝑇 of T. Consequently, the fractal image encoding problem can be 
reformulated as following: 

Given a target image 𝑦 , find a contractive transformation T that maps 𝑦  closest to itself. 

Solving this question can be reduced to solving the following minimization problem for the parameters of T: 

Minimize : dY y , T y     subject to Tisconntractive.                                                                                                 (5) 

2.5 A Mathematical Formulation For IFS-based) 

From the previous discussion we can say that, the IFS-based fractal image compression has the following mathematical 
issues: 

1. The identification of suitable metric spaces  𝑌, 𝑑𝑦  that can be used to represent"images" supported on a region 𝑿. 

2. The construction of suitable fractal transform operators 𝑇: 𝑌 → 𝑌 over these spaces.It is also required to determine the 

contractivty conditions of T in  𝑌, 𝑑𝑦 . 

3. The formulation of fractal inverse problem in  𝑌, 𝑑𝑦 , and a solution for such problemwhere a "target" element 𝑓 ∈ 𝑌 is 

approximated by a fixed point 𝑓𝑇of a contractivefractal transform 𝑇. 

Now, we will follow these steps to provide a mathematical framework for a practicalfractal image coding scheme. We will 
focus on grey scale images that are more generalizedthan black-white images and can be studied mathematically better 
than color images thatare extensions of the grey-scale images. Let us identify a suitable metric spaces to 
represent"images" and present its mathematical properties to apply IFS-based FIC. 

Let X be a screen (finite subset of ℝ2), and d be a metric onX, such that (X, d) be acomplete metric space, each point 
𝒙 ∈ 𝑿 is called a pixel. Then, from [15] (𝑩 𝑿 ,  .  ∞) isa Banach space where for each 𝒇:𝑿 → ℝ, define 

 𝒇 ∞ = 𝐦𝐚𝐱  𝒇(𝒙) :𝒙 ∈ 𝑿  

and 

𝑩(𝑿)  =  𝒇:𝑿 → 𝑹:  𝒇 ∞ < ∞  

 

That means that, (𝑩 𝑿 ,  .  ∞) is a complete metric space, and if 𝑻 be a contractionmapping on B(X) with contraction 

factor 𝜶, then 𝑻 has a unique fixed point 𝒇𝑻 ∈ 𝑩 𝑿 . 

For simplicity we will write Con(B X ) to refer to the set of contraction mappings on (B X ,  .  ∞). Now, to encode a given 
image f ∗ ∈ B X , it is required to find a contractive mapping T ∈ Con(B(X)) whose fixed point fT is f ∗, but in practical aspect 
it is enough for 𝒇𝑻 to beclose to 𝒇∗, so our aim is to answer the question: For a given image 𝒇∗ ∈ 𝑩(𝑿) and 𝝐 > 0,can we 
find a non constant 𝑻 ∈ 𝑪𝒐𝒏(𝑩(𝑿)) such that  𝒇∗ − 𝒇𝑻 ∞ < 𝜖 ? Let us define the following subset of 𝑩(𝑿) 

𝜸 𝒇∗, 𝝐 =  𝒇 ∈ 𝑩 𝑿 : 𝒇∗ − 𝒇𝑻 ∞ ≤ 𝝐 , 

which forms a closed ball in 𝑩(𝑿). 

Thus we are looking for a contractive mapping 𝑻whose fixed point 𝒇𝑻be in 𝜸 𝒇∗, 𝝐 , the basin of 𝒇∗. The ability of 
constructing such an 𝑻 is uncertain at this stage. Moreover,it is uncertain if it even exists or not. So it is better to begin with 
another easier question: 

Given 𝒇∗ ∈ 𝑩 𝑿 ,𝑻 ∈ 𝑪𝒐𝒏(𝑩 𝑿 ), how close is 𝒇∗  to 𝒇𝑻? The following theorem is helpful to lend an answer: 
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Theorem 2.7 (Local Banach Contraction Principle) Given 𝒇∗ ∈ 𝑩 𝑿  and 𝝐 > 0, let 𝑻 be a contraction mapping with 
contraction factor 𝜶. If 

𝟏

𝟏−𝜶
 𝒇∗ − 𝑻(𝒇∗) ∞ < 𝜖, 

then 𝑻 has a unique fixed point𝒇𝑻 ∈ 𝜸 𝒇
∗, 𝝐 . 

Proof: See [20]. 

This theorem enables us to formulate the following question. Given 𝒇∗ ∈ 𝑩 𝑿  and 𝝐 > 0, 

can we find a non constant 𝑻 ∈ 𝑪𝒐𝒏(𝑩 𝑿  such that 
𝟏

𝟏−𝜶
 𝒇∗ −𝑻(𝒇∗) ∞ < 𝜖? 

When T is contraction we call it a fractal operator and if it satisfies the previous condition for some image f ∗, then it called 
its fractal encoder. 

After establishing a complete metric space of grey-scale images, it is possible now to construct a fractal transform that will 
be used later in encoding images. Let 𝑹 =  𝑹𝒊: 𝒊 ∈ 𝑰  be a partition for 𝑿, i.e., 𝑿 =∪𝒊∈𝑰 𝑹𝒊 and 𝑹𝒊 ∩ 𝑹𝒋 = ∅, 𝒊 ≠ 𝒋, and 

𝑫 =  𝑫𝒋: 𝒋 ∈ 𝑱  bea cover for 𝑿, i.e.,𝑿 =∪𝒋∈𝑱 𝑫𝒋, where 𝑰, 𝑱 are finite subsets of 𝑵. 

The notations, 𝑹,𝑫,𝑹𝒊, 𝑫𝒊 are called range pool, domain pool, range block, and domain block respectively, where 𝑹𝒊 are a 
non overlapping sub regions of 𝑿 and smaller than 𝑫𝒊. 

For each (𝒊;  𝒋) ∈ 𝑰 × 𝑱, let  𝒘𝒊𝒋  be a contraction mapping (𝑿,𝒅), defined such that: 𝒘𝒊𝒋 𝑫𝒋 = 𝑹𝒋∀ (𝒊, 𝒋) ∈ 𝑰 × 𝑱. For 

simplicity, we configure the 𝑹𝒊and 𝑫𝒋blocks to be squarepixel blocks, also the length and the width of the domain blocks 

are twice the length andthe width of the range blocks, as illustrated in Figure 4, i.e. the area of a domain block isfour times 
the area of the range block. 

 

Figure 4: Spatial contraction 𝒘𝒊𝒋of a domain block 𝑫𝒋to a range block 𝑹𝒊. 

The contraction of these geometric mappings can be easily done on the continuousspaces.However, the shrinking of a 
parent block to a child block is not straight-forward ina discrete pixel space. It can be done by replacing neighbouring 
pixels in the parent blockby a single pixel and replacing the gray-level values by their average value. 

Let {τk}k∈K, be a symmetric group on Dj, i.e., 𝛕𝐤: 𝐃𝐣 → 𝐃 and 𝛕𝐤 𝐃𝐣 = 𝐃𝐣. Such isometry can be composited with a non-

rotating affine transformation 𝒘𝒊𝒋to definea geometric mapping 𝒘𝒊𝒋𝒌from 𝑫𝒋to 𝑹𝒊as:𝒘𝒊𝒋𝒌 = 𝒘𝒊𝒋𝝉𝒌 We will consider only the 

eightessential isometries of the 𝑲 possible isometries [16], that act on 𝑫𝒋as shown for a specialcase in Figure 5. If 

𝒘𝒊𝒋𝒌 𝑫𝒋 = 𝑹𝒋, then the block 𝑫𝒋 is called a parent block for the childblock 𝑹𝒋. 

 

             Figure 5: There are 8 geometric maps that transform a square parent block into a smaller square child block. 
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Now, we define the gray-level maps, that will be applied to these transformed parentsub-blocks. Let 𝒇 ∈ 𝑩(𝑿) be a given 
image, 𝒇|𝑹𝒊is the sub image which restricted on 𝑹𝒊,and can be denoted as 𝒇𝒊such that for all 𝒙 ∈ 𝑿: 

                              𝒇𝒊 𝒙 =  
𝒇(𝒙) 𝒙 ∈ 𝑹𝒊

𝟎 , 𝒙 ∉ 𝑹𝒊

                                                                   (6) 

It is clear that 𝒇 𝒙 =  𝒇𝒊(𝒙)𝒊∈𝑰 for all 𝒙 ∈ 𝑿 and 𝒇𝒊 ∈ 𝑩(𝑿). Moreover, if we define 𝒇𝒊𝒋𝒌(𝒙) to be the average of the values in 

the set 𝒘𝒊𝒋𝒌
−𝟏(𝒙)for all 𝒙 ∈ 𝑿, i.e. 

𝒇𝒊𝒋𝒌 𝒙 = 𝒂𝒗𝒓{𝒇 𝒚 :𝒚 ∈ 𝒘𝒊𝒋𝒌
−𝟏 𝒙 }, 

then 𝒇𝒊𝒋𝒌 𝒙 ∈ 𝑩(𝑿). Once the pixel sizes of the parent blocks 𝑫𝒋are reduced to be similar to that of the child blocks 𝑹𝒊, we 

can define the following affine transformations: 

  𝑻
𝒊𝒋𝒌

 𝜶𝒊𝒋𝒌,𝜷𝒊𝒋𝒌  𝒇  𝒙 =  
𝜶𝒊𝒋𝒌𝒇𝒊𝒋𝒌 𝒙 + 𝜷𝒊𝒋𝒌 𝒙 ∈ 𝑹𝒊

𝟎 , 𝒙 ∉ 𝑹𝒊

                                                      (7) 

                                                                             , (𝜶𝒊𝒋𝒌,𝜷𝒊𝒋𝒌) ∈ 𝑹𝟐 

In other words, 𝑻
𝒊𝒋𝒌

 𝜶𝒊𝒋𝒌,𝜷𝒊𝒋𝒌  𝒇  𝒙  (also called the fractal component), represents a modified value of the grey level of f at the 

ithpreimage of x (if it exists). And because 𝑩(𝑿) isa Banach space then 𝑻
𝒊𝒋𝒌

 𝜶𝒊𝒋𝒌,𝜷𝒊𝒋𝒌  𝒇 ∈ 𝑩 𝒙  for all 𝒇 ∈ 𝑩(𝑿). Next 

proposition states that,the images under 𝑻
𝒊𝒋𝒌

 𝜶𝒊𝒋𝒌,𝜷𝒊𝒋𝒌 
, can only get so far from each other, depending on how closethey were 

before and the value of 𝜶𝒊𝒋𝒌,. 

Proposition 2.8 The operator T
ijk

 αijk ,βijk  
in Equation (7) is lipschitz, with lipschitz constant αijk  , i.e. 

          T
ijk

 αijk ,βijk   f − T
ijk

 αijk ,βijk  
(g) 

∞

≤  αijk   f − g ∞                                               (8) 

∀ f, g ∈ B(X) 

Proof: 

Let f, g ∈ B(X), then(f − g) ∈ B(X), and αijk (f − g) ∈ B(X), where  αijk ∈ ℝ, 

because B(X) is a vector space. And we have that,  ∀x  x ∈ Ri (Ri ⊆ X),  

                         f − g ijk (x) ≤  f − g ∞∀x ∈ X.                                              (9) 

Now, from the definition of T
ijk

 αijk ,βijk  
 in Eq.(7),  

T
ijk

 α ijk ,β ijk  (f) x − T
ijk

 α ijk ,β ijk  (g) x = (αijk fijk  x + βijk ) − (αijk gijk  x + βijk ) 

= αijk  fijk  x − gijk  x  = αijk  
 f(y)y∈w ijk

−1(x)

 1y∈w ijk
−1(x)

−
 g(y)y∈w ijk

−1(x)

 1y∈w ijk
−1(x)

  

=αijk  f − g ijk  y , where y ∈ wijk
−1(x) 

Using Eq.(9), we deduce that 

               T
ijk

 αijk ,βijk  
(f) x − T

ijk

 αijk ,βijk  
(g) x  ≤  αijk   f − g ∞∀x ∈ X.                           (10) 

Therefore, 

 T
ijk

 αijk ,βijk   f − T
ijk

 αijk ,βijk  
(g) 

∞

≤  αijk   f − g ∞, ∀ f, g ∈ B(X) ▀ 

The next task is to define the operator T which combines the distinct fractal components T
ijk

 αijk ,βijk   f (x). 

Let i ∈ I, and j i ∈ J, k(i) ∈ Kbe an associated domain and isometry indices. 

                           T f  x = T
ij(i)k(i)

 αij  i k(i),βij  i k(i)  f  x : x ∈ Ri ,                                             (11) 

It is easy to verify that 
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            T f  ∞ = max   T
ij(i)k(i)

 αij  i k(i),βij  i k(i) 
(f) 

∞

, i ∈ I                                          (12) 

From this construction, the transform T will define an operator T: B(x) → B(x) that associates to each image function 
f ∈ B(X) the image function Tf, but the next theorem will define it in alternative way proving its important properties. 

Theorem 2.9 Let T be defined on B(X)as 

                       T f  x = T
ijk

 αij  i k i ,βij  i k i   f  x ,∀x ∈ X,                                          (13) 

for all f ∈ B(X), then 

T: B(x) → B(x) 

Moreover, 

 T(f) − T(g) ∞ ≤ α f − g ∞,   ∀ f, g ∈ B(X) 

where α = maxi∈I|αij i k i |. 

Proof: 

Let f ∈ B(X), then from Equation (12) 

 T f  ∞ < ∞, which implies that T f ∈ B(X). 

On other hand if g ∈ B(X), then   

 T(f) − T(g) ∞ = max   T
ij i k i 

 αij  i k i ,βij  i k i   f − T
ij(i)k(i)

 αij  i k(i),βij  i k(i) 
(g) 

∞

, i ∈ I  

≤ max   αij(i)k(i)  f − g ∞ , i ∈ I ,  From(8) 

= max   αij(i)k(i) , i ∈ I  f − g ∞, 

Hence 

 T(f) − T(g) ∞ ≤ α f − g ∞,   ∀ f, g ∈ B(X) 

where α = maxi∈I|αij i k i |. ▀ 

 

The following corollary is a consequent from the previous results, and is an important tool in our work. 

Corollary 2.10 If α < 1 then, there is a unique image fT ∈ (B X ,  .  ∞), such that 

fT =  T(fT)  =  limn→∞ Ton  f   , ∀f ∈ B(X). 

Proof: 

From Theorem 2.9, T is lipstchiz on B(X) with α factor, immediately if α < 1, T will be contractive on B(X), then T has a 
unique fixed point fT because B(X) is a Banach space. 

Let T be an image operator specified by a partition R and the code parameters  j i , k i ,αij i k i ,βij i k i 
 , i ∈ I. Then, T is 

a fractal operator if αij i k i , < 1, ∀𝑖 ∈ 𝐼, where Riis encoded by  j i , k i ,αij i k i ,βij i k i 
 . 

3. Fractal Image Compression Using a Filtered Transform 

We propose that the range pool can be divided into two pools, one contains the ranges thatare constants (or nearly 
constant), then encode its ranges by their suitable parameters,  however run the fractal algorithm to encode the others. 

Let T be an image operator that specified by a partition R =   Ri i∈I and the code parameters  j i , k i ,αij i k i ,βij i k i 
 ,

i ∈ I. For simplicity we refer to Dij(i),αij(i)k(i) ,β
ij(i)k(i)

 as Di ,αi ,βi
 respectively, and Ti is the local mapping which defined 

previously as Tij i k(i), where Ti is associated with Di ,αi ,βi
, ∀i ∈ I. 

We say that f is aconstant image if ∃c ∈ ℝ s. t f(x) = c; ∀x ∈ X. Let I  be the set of the indices of the constant sub images of 
f, i.e. 

I = {i ∈ I:  ∃ci  ci ∈ ℝ  fi x = ci  ∀x ∈ X }. 

Now let's modify the fractal components to be 

T i(f) x =  
ci , i ∈ I 

(Tif) x otherwise
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∀x ∈ X. 

Then the modified fractal operator can be defined as: 

       𝑇  𝑓  𝑥 = 𝑇 𝑖 𝑓  𝑥 , 𝑥 ∈ 𝑅𝑖 .                                                             (14) 

The modified operator T  inherits many of its mathematical properties from the originalone T. For example, it is easy to 

verify that  T  f  
∞

= max   T i(f) 
∞

, i ∈ I . Hence, T  is well defined on B(X), which is a complete metric space, and this 

makes sense of the following theorems. 

Theorem 3.1 T  is lipschitz, with lipschitz constant 

α = max  αi , i ∈ I\I  . 

Proof: 

Let 𝑓, 𝑔 ∈  𝑩(𝑿), then 

 𝑇  𝑓 − 𝑇  𝑔  
∞

= max  𝑇 𝑖 𝑓 − 𝑇 𝑖 𝑔  ∞, 𝑖 ∈ 𝐼  

= max max  𝑇 𝑖 𝑓 − 𝑇 𝑖 𝑔  ∞, 𝑖 ∈ 𝐼\𝐼  , max  𝑐𝑖 − 𝑐𝑖 ∞, 𝑖 ∈ 𝐼   

≤ max 𝛼𝑖 𝑓 − 𝑔 ∞, 𝑖 ∈ 𝐼\𝐼   

≤ 𝛼 𝑓 − 𝑔 ∞. ▀ 

Furthermore, ifα and α  are the lipschitz factors of T and T  respectively, then 

                         α ≤ α,                                                                            (15) 

since: 

α = maxi∈I\I  αi ≤ max maxi∈I\I  αi , maxi∈I  αi  = maxi∈I αi = α. 

From (15), if α < 1 then α < 1, but it is possible for α  to be less than one although α is not, i.e., the modified operator T  
may be contractive whenever the base one T is not. 

3.1 The Proposed Algorithm 

The proposed algorithm is a modification for the standard one and this modification is done depending on the 
mathematical setting that stated and proved in the previous section. 

We will modify the standard encoding algorithm to be: 

1. get an image 𝑓∗, 𝜖 > 0 
2. construct 𝑅 =   𝑅𝑖 𝑖∈𝐼such that: 

        𝑅𝑖𝑅𝑖∈𝑅
= 𝑋, 𝑅𝑖 ∩ 𝑅𝑗 = ∅, 𝑖 ≠ 𝑗, 

𝐶 =  𝑐𝑖 = 𝑎𝑣𝑟(𝑓𝑖) 𝑖∈𝐼, 𝑉 =  𝑣𝑖 = 𝑣𝑎𝑟𝑟(𝑓𝑖) 𝑖∈𝐼, and 𝐷 =  𝐷𝑗  𝑗 ∈𝑗  

3. Extract some 𝑅𝑖 ∈ 𝑅,do: 
4. if the variance 𝑣𝑖 < 𝜖, then 

(a) store the average ci to be the code parameter of 𝑅𝑖 , 
(b) put the range block index 𝑖 in 𝐼 , 
(c) omit 𝑅𝑖 from 𝑅, and go to step 6. 

5. find the fractal code parameters by the standard algorithm and store them as thecode of 𝑅𝑖 . 
6. if 𝑅 ≠ ∅,then go to step 3, 
7. end. 

Next, the fractal decoding algorithm, which is significantly simpler and faster than the encoding process, is described. The 
decoding algorithm will be: 

1. Let 𝑓0be any initial image, 𝑚 =  0, 

2. for each range block, 𝑅𝑖 ;  𝑖 ∈ 𝐼, 

(a) if 𝑖 ∈ 𝐼 , then set the grey-level values in 𝑅𝑖 to 𝑐𝑖 , else, 

(b) if 𝑖𝐼 , set the grey-level values in 𝑅𝑖 ,by the standard fractal decoding algorithm, 

3. Put 𝑓𝑚+1 = 𝑇 𝑓𝑚 , 𝑖𝑓  𝑓𝑙+1 − 𝑓𝑙 ≅ 0then stop else repeat these steps with 𝑚 =  𝑚 + 1. 

3.2 Experimental Results and Discussion 
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The implementation of the introduced algorithms is done to show that the experimentalresults support the theoretical 
results proved previously. The computer simulations havebeen carried out in Visual C# environment on Pentium Dual 
CPU with 1.73 GHz and2.00GB RAM. 

The following results are given for a 256 × 256 pixel grey-scale images. The resultsare different for different images 
depending on the characteristics of each one as shown inTable1. 

Table 1 compares fractal image compression results where the standard scheme is thatintroduced in section 2.6 and the 
filtered is given above. Error measures are computedby comparing the original bitmap image with an image that has been 
decoded using 20iterations (more iterations would have resulted in slightly smaller errors) with tolerance0.5, PSNR is the 
peak signal-to-noise ratio. 

M Encoding Time (sec) PSNR (dB) CR (pbb) 

Image Standard 
FIC 

Filtered FIC FIC Filtered FIC FIC Filtered FIC 

Constant 127 27 44.4 54.4 4.2:1 14.2:1 

Lenna 198 187 30.1 28.8 4.2:1 4.1:1 

Airplane 191 166 30.4 29.6 4.2:1 3.5:1 

Table 1: Results of the Standard algorithm vs the Filtered algorithm 

 

In our experiments, gray level images of size 256 × 256 have been considered, each oneis partitioned into range blocks of 
size 4 × 4 and 8 × 8 domain blocks. According ouralgorithms, the range blocks pool 𝑹, the set of all 4 × 4 pixel non-
overlapping sub-squaresof the image, will contain 4096 squares. And the domain blocks pool 𝑫, the set of all 8 × 8pixel 

sub-squares of the image(may be overlapping), will contain 2492 =  62, 001 squares. 

Let 𝑹𝟏, 𝑹𝟐, … , 𝑹𝟒𝟎𝟗𝟔 to be the elements of 𝑹, and 𝑫𝟏,𝑫𝟐,… ,𝑫𝟔𝟐𝟎𝟎𝟏to be the elements of 𝐷. 

In the standard approach, for each 𝑹𝒊, scan 𝑫 to find a 𝑫𝒋 ∈ 𝑫 whose correspondingimage is the most similar image to 

that of 𝑹𝒊. Considering the 8 isometries, there are8(62,001) = 496008 squares that should be compared with each of the 
4096 range squares. 

Moreover, each square in 𝑫 is 4 times in pixels as an 𝑹𝒊, so the nonoverlapping 𝟐 × 𝟐 sub-squares of 𝑫𝒋 are averaged 

corresponding to each pixel of 𝑹𝒊. 

However, in the modified approach, the search step is omitted for some special rangeblocks which reduces the encoding 
time for the images that contain a significant number ofthese special types. 

In the fractal code, each range block is encoded by a transformation and the parametersof the transformation should be 
stored to recover the corresponding range block. Eachtransformation requires 31 bits to store its parameters, 16 bits for 
the position of 𝐷𝑖(8 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 8 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛), 7 bits for 𝛽𝑖, 5 bits for 𝛼𝑖and 3 bitsfor the isometry 
mapping 𝜏𝑖 . There is no need to store the position of 𝑅𝑖because it canbe determined implicitly from the transformations 
ordering. Thus, the fractal code of thewhole image requires approximately 15872 bytes of the storage, whereas the 
original imagerequires 65,536 bytes of storage, giving a compression ratio of 4.2:1. 

In our system each range block needs one bit to be marked as a smooth region ornot, and 8 bits to code the smooth 
region to store its average, unless its code will be thecorresponding fractal local transformation parameters. Hence, the 

total space cost of therange block 𝑅𝑖 is 9 bits if 𝑖 ∈ 𝐼 , otherwise it costs 32 bits. 
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