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ABSTRACT 

This paper develops primarily an analytical solution for sound, electromagnetic or any other wave propagation described 
by the Helmholtz equation in the case of N circular obstacles. Then, it proposes a fast iterative numerical method, using 
Toeplitz block structure, for computing the solution of a complex, dense and large linear system. Finally, it shows the 
efficiency of this numerical strategy via a numerical study of the convergence rate with respect to different geometrical 
parameters of the problem. 
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1. INTRODUCTION  

Waves are interesting physical phenomena with important practical applications. Physicists and engineers are interested 
in the reliable simulation of processes in which waves are scattered from obstacles (Scattering problems). 

"Multiple scattering" means different things to different scientists, but a general definition might be "the interaction of fields 
with two or more obstacles" [16]. The problem of solving multiple scattering problems efficiently has received considerable 
attention in a broad rang of areas of applied sciences like acoustics, electromagnetism, elasticity and marine engineering. 
The aim of these research efforts is to devise efficient and robust numerical methods which allow the study of the 
scattering behaviour of general configurations of arbitrary shaped obstacles. 

 In many cases the obstacles are circular, or can be modeled as such. For example, we are exploring the modeling of the 
human head and body using two circular disks representing the head and the torso respectively.  In fluid mechanical 
problems, bubbles or dust particles can be assumed circular. A typical multiple-scattering problem in classical physics is 
the scattering of sound waves by two rigid spheres. Further examples, such as the scattering of spherical electron waves 
by a cluster of atoms, can be found in condensed-matter physics [5,11,12, 13].  The scattering field in a multiple-scattering 
problem results from the complex interaction between the incident excitation fields and the separate obstacles on the one 
hand and between the different scatterers on the other hand. The strength and nature of these interactions depend largely 
on the shape and surface properties of the obstacles, their relative position with respect to each other and the physical 
proprieties of the surronding medium. Due to the complex nature of these phenomena, the development of numerical 
methods to study this type of problems requires special attention, especially when a large number of obstacles is present 
and/or when the frequency of interest is high. The waves scattered by a single obstacle can be calculated in various well-
known ways, such as by the variables separation methods, T-matrix methods or integral-equation methods, which are 
discussed in detail by Martin [16]. 

 For instance, Zaviska considered multiple scattering from an array of parallel circular cylinders [22]. He derived an infinite 
linear system or the unknown Fourier coefficients of the scattered field, which involve Fourier expansions of the purely 
outgoing wave fields about individual cylindrical obstacles. Unlike the case of one object where the Mie series solution 
expressed by the Fourier coefficients is explicitly obtained through the inversion of a diagonal matrix, the case of multiple 
scattering is more complex and requires the use of numerical methods. Indeed, it can be shown that the scattered field 
admits an expansion of a superposition of Fourier series. Therefore, the set of Fourier coefficients is the solution of a non-
diagonal and dense complex linear system which can be extremely large for many obstacles at high-frequency. The 
numerical solution of this system has been already obtained by some authors [19, 20, 21, 23, 14].  However, this method 
remains restricted to low- and mid-frequencies. Alternative solutions using a generic numerical methodology based on a 
"multi-level" modeling approach are proposed by Genechten et al. [10], the generic character of the method is achieved by 
integrating the multiple-scatterer interactions in an exiting numerical modeling frame work. This is applicable to the study 
of a configuration of well separated obstacles of arbitrary shape on which any type of acoustic boundary condition can be 
applied. However, this method is applied to low and mid- wave numbers. 

  For multiple scattering problems with high-frequency Ecevit and Reitich  [9] present an analysis of a recently proposed 
integral-equation method for the solution of electromagnetic and acoustic scattering problems. It delivers error-controllable 
solutions in frequency-independent computational times. Antoine et al. [1] analyzed numerically the problem for a two-
dimensional case and for circular objects of the same sizes. However, Bruno and co-authors  [3-4] analysed the multiple 
scattering problem for two- and three-dimensional cases by convex and non convex objects. The present paper focuses 
on the scattering problem by circular obstacles using the multipole expansion and on developing a reliable and robust 
accurate numerical solution for high frequencies and for many circular objects of different sizes. 

 The outline of the paper is organized as follows: 

Section 2: We present the statement of the scattering problem by N circular disjoint obstacles situated in a homogenous 
acoustic medium. 

Section 3: We recall some classical results using multipole expansion formulation for solving this kind of multiple 
scattering problems. 

Section 4:  We show that the Fourier coefficients of the local scattered field solve an infinite, complex, dense and large 
linear system (see (29)). Then, we explain how to truncate the above infinite system suitably to get an accurate numerical 
solution. 

Section 5:  We reduce the memory storage and accelerate the computation of the matrix vector product of the linear 
system by using Toeplitz structure. Then, we present a numerical study of the convergence rate with respect to different 
geometrical parameters of the problem.  

Section 6:  We conclude by summing up our results. 

2. STATEMENT OF THE PROBLEM  

Consider the problem of sound scattering by N disjoint scatterers  S1,...,SN  with radii a1,...,aN and situated in an 
homogeneous acoustic medium filling  the whole space R. We denote by Ω- = the domain occupied by the 

obstacles. The scattering problem in the frequency domain is reduced to solution of the Helmholtz equation for complex 
potential u(r), 
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                                                                                                                        (1) 

with the following impedance boundary conditions on the surface Sp of the pth obstacle 

                                                                                                             (2) 

where k  is the wavenumber, σ is a constant characterizing impedence of obstacle, α is a constant and  . In the 

particular case of sound-hard surfaces (σ=0 and α≠0), we have the Neumann boundary conditions, 

                                                                                                                              (3) 

and in the case of sound-soft surfaces (σ≠0 and α=0) we have the Dirichlet boundary conditions, 

                                                                                                                               (4) 

 In our work, we consider the scattering problem of an incident plane wave 

                                                                                                                    (5) 

of direction β by Ω-, where the time dependence is assumed to be of the form  and where the wavenumber k is real. 

Far from the region occupied by the obstacles the complex potential tends to the potential of the incident wave   

                                                                                                               (6) 

Usually the potential is represented in the form 

                                                                                                       (7) 

where  is the potential of the scattered field. Far from the region occupied by the obstacles, the scattered field 

should satisfy the Sommerfeld radiation condition in two dimensions 

                 (8) 

3. SOLUTION USING MULTIPOLE ESPANSION METHOD 

3.1 Decomposition of the scattered field 

Due to the linearity of the multiple scattering problem, we have the following result 

Theorem 1 [2] Let  be the solution of the multiple scattering problem. Then, the family of  coupled single 

scattering problems for : 

 

admits a unique solution . Furthermore, the following decomposition holds 

 .                                                                                                          (9) 

Where  can be thought of as the field scattered by the pth obstacle. Each potential  is regular outside the pth 

scatterer and satisfies the Sommerfeld radiation condition 

                      (10) 
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 3.2 Notation 

 In this work, we are interested in the case of circular scattering obstacles  of centers  and radii . Any 

point  of the plane will be described by its cartesian coordinates  or by its polar coordinates (see Fig. 1). 

 

We will also use in the sequel the local polar coordinates of the point  in the orthonormal system of coordinates 

associated to the obstacle . 

 

We set for all : 

  

And for all   with : 

                               

 

Figure 1: Notation for scattering by two circular obstacles. 

 3.3 Multipole expansion method 

Definition 1 Let    The outgoing cylindrical wavefunction   is defined by 

 

Similarly, the regular cylindrical wavefunction  is defined by 

 

Where   is the nth order Bessel function and    is the nth order Hankel function of the first kind. 

Definition 2   and for ,  the local cylindrical wavefunctions associated with the obstacle  are defined by 
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With the above notation, the incident wave can be expanded as 

                                         (11) 

where , with  describes the direction of the incident plane wave. 

Similarly, the scattered field by the obstacle  can be expanded as  

                                                (12) 

where the complex coefficients   are determined by imposing the boundary condition on the boundary of the 

obstacle . 

According relations (7) and (9), the complete potential can be expressed as follow 

                                                                 (13) 

and satisfies all the boundary conditions on the surface of each obstacle. 

To solve this problem let us consider the pth obstacle. Near the center of this disk, all the potentials   are regular 

for . Each  can be then re-expanded into a series as follows (see Ref. 16): 

Theorem 2 [16] Let  with . Then, we have the following relations 

                                                                    (14) 

where we have set 

                                   (15) 

The infinite matrices   and  are called separation matrices as they 

depend on the distance  between obstacles. 

Substituting (11), (12) and the first equation in (14) into (13) we obtain the following representation of the field near the pth 
obstacle: 

                      (16) 

Let us change the order of summation in the latter term and substitute expressions for  and  from definition 2, 

the expression (16) can be rewritten as 

                    (17) 

3.4 Boundary conditions 

From the last equation, we have the following relations for the boundary values of  and its normal derivative on the 

surface of the pth disk: 

               (18) 

             (19) 

Appling boundary condition (2) on the surface of the pth obstacle, we obtain 

 (20)                                                                                                 

Orthogonality of   gives 



ISSN 2347-1921 

975 | P a g e                                                      F e b r u a r y  1 0 ,  2 0 1 4  

                   (21) 

Finally, and  we have the following relation 

              (22) 

For the particular case of sound-hard surfaces    we have the equation associated to the Neumann 

boundary conditions, while for sound soft surfaces  we obtain the equation associated to the Dirichlet 

boundary conditions. 

4. MATRIX REPRESENTATION 

4.1  Infinite linear system 

Equation (22) forms an infinite linear system which can be written in the more compact matrix-vector form 

                                         (23) 

where 

  

   is the transpose of the separation matrix  defined by   

and  . 

  is the diagonal infinite matrix, with diagonal terms  

                                               (24) 

 , where  

The  infinite linear systems (23) can be written in the abstract form 

                                                    (25) 

where 

                                                                         (26) 

                                  

 is the Kronecker delta,  for  and  for   
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 4.2  Finite dimensional approximation 

 An important issue is the truncation of the infinite linear system (25) which corresponds to the truncation of the associated 

matrices. A first step is to select a number  of modes to retain for each expansion. We assume that we keep only the 

modes  such that , then the length of each vector  and  will be  and the size of 

each sub-matrix  will be , the size of the total vectors  and  will be  and 

the size of the total matrix  will be . 

 With this notation, (25) should be truncated to the finite system 

                                    (27) 

where 

  

   is the finite dimensional separation matrix. 

  is the diagonal infinite matrix, with diagonal terms  

 

 , where  

The  coupled finite dimensional systems (27) can equivalently be written as 

                                                                                    (28) 

Where  is the full complex square matrix of size  defined by 

              (29) 

 

 is the Kronecker delta. 

Two complex-valued vector fields 

 

For our simulations, the truncation number   is selected using the following formula 

                                                (30) 

where  denotes the integer part of a real number , and  is the desired error bound on the Fourier coefficients. The 

above formula has been proposed in the literature in the contexts of multipole methods [1,6] and single scattering [8]. 
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5. NUMERICAL RESOLUTION OF THE PROBLEM 

      5.1  Geometrical configurations 

        In our numerical computations, we consider two kinds of geometrical configurations: 

 Single-row configuration:  This structure is composed of  equally spaced obstacles aligned along the x-

axis, the distance between two successive disks is denoted by , and  denotes the distance separating 

the origins of two successive scatterers (see Fig. 2). 

 

Figure 2: Single-row configuration with  disks. 

 Rectangular configuration:  We consider here a rectangular lattice composed from  disks. We 

restrict our experiments to a rectangular lattice which is composed of  uniformly spaced single-rows with 

respect to , each row being composed from  equally spaced disks according to  (see 

Fig. 3). 

 

Figure 3: Rectangular configuration with  disks. 

 5.2  Compressed version of matrix  

 Matrix  has a particular structure. Each one of its off-diagonal blocks is obtained by multiplying the diagonal matrix  

 by the matrix  which has a Toeplitz structure [7] since 

. 

Definition 3 A Toeplitz matrix is a matrix of the type 

 

The generating vector 

                                                         (31) 

of  is called root vector. 

A Toeplitz matrix is determined by its first row and first column. 
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Consequently, using the notation from Ref. [7], the storage of  can be optimized using a compressed version based 

on the root vector 

                                                (32) 

To show the improvement induced by the compressed storage version using (32) over the full version, we show in Fig. 4 

the CPU time reduction with respect to the wavenumber , to build the global matrix  compared to the compressed 

version in the single-row configuration with  and  for Robin problem  

 

Figure 4: Variation of the CPU time in terms of the wavenumber  for building matrix in the full and in the 

compressed version. 

5.3  Iterative solver  

The linear system (28) can be solved through an iterative linear solver [17,18]. We consider the GMRES, possibly with a 

restart parameter , denoted by GMRES( ) [15]. The tolerance error of the iterative solver is set to tol and the number of 

iterations to get this tolerance is denoted by n
iter

. 

 We denote that all our numerical simulations and algorithms are developed under Matlab. 
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Figure 5: Variation of number of iterations in terms of truncation number   (Dirichlet problem). 

5.3.1  Influence of the order of truncation  on the convergence 

 The order of truncation  must be fixed carefully e.g. through formula (30).  must be large enough to compute the 

solution accurately, but not too large to avoid the stagnation of the iterative solver. To make this statement precise, let us 

consider three different rectangular configurations: the first two form respectively a uniform square lattice with  and 

for  with  and , and the third one is composed of   obstacles of 

different radii , the wavenumber . The linear system (28) is solved by 

the GMRES with . For a given value of  and along the paper, we fix  in formula (30) and the angle of 

incidence . 

Concerning the first two configurations, we report the number of iterations versus . For a Dirichlet problem (see Fig. 5) 

we observe three distinct zones. First, from  to  the number of iterations 

increases. This means that the computation of a correct solution requires more harmonics. 

This is obtained in the second stable zone for  of rectangular lattice with scatterers of the same radii 

 and  for  . However, if we include too many harmonics (third zone), typically  

for and  for  we obtain a break down of the GMRES as can be remarked in Fig. 5, also in Fig. 6 

where we represent the relative error with respect to . 
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Figure 6: Variation of relative error in terms of truncation number  (Dirichlet problem). 

 We notice the same remarks for a Neumann problem (see Fig. 7 and Fig. 8), only for this kind of problem of sound-hard 
obstacles the stable zone is wider than that of sound-soft obstacles. According to the truncation formula (30) and for 

obstacles with the same radius , we have . So it is better to study a Dirichlet problem and estimate that  

  than to study a Neumann problem and estimate that . Moreover, for a rectangular 

configuration with sound-soft obstacles of different radii  we observe two distinct stable zones: 

The first one for  and the second one for  (see Fig. 5), which is not the case for Neumann 

problem (see Fig. 7). Even more, for a rectangular configuration with scatterers of different radii we represent the evolution 

of the residuals with respect to the number of iterations for  (see Fig. 9). We notice 

the convergence of the iterative solver for  corresponding to obstacles with radii   for 

obstacles with radii . In contrast we observe the stagnation of the solver for , which is not the case for 

Neumann problem (see Fig. 10). 

 

Figure 7: Variation of number of iterations in terms of truncation number  (Neumann problem). 
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Figure 8: Variation of relative error in terms of truncation number  (Neumann problem). 

 

 

      

Figure 9:  Variation of residuals in terms of number of iterations  

(Dirichlet problem). 
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Figure 10: Variation of residuals in terms of number of iterations   

(Neumann problem). 

If we summarize, a representation of the number of iterations with respect to  gives the following ideas: The first one 

concerns the size of scatterers. In fact, the number of iterations increases with the size of obstacles. The second is about 
the nature of the configuration which is uniform (with the same radii) and not uniform (with different radii). Finally, we 
notice that the choice of the truncation formula (30) is better used for the Dirichlet problem (Sound-soft obstacles) than the 
Neumann problem (Sound-hard obstacles). For this reason, from now, we restrict our numerical simulations to the 
Dirichlet case. 

5.3.2  Fast matrix vector-product (MVP) for Toeplitz matrices 

Let us recall that the main CPU cost of the GMRES is due to one matrix-vector product (MVP) per iteration. But to 
calculate the matrix-vector product we can use two algorithms, the first one is direct and the second is fast. 

 Direct algorithm 

The direct computation of a MVP: can be computed by blocks. Let us consider: 

 

       Then, from the structure of  given by (29), we directly obtain: 

             (33) 

        The computation of  is very costly especially when the frequency is high. 

 Fast algorithm 

Another way of computing a Toeplitz MVP for a matrix of size  is to use the fast algorithm explained by K. 

Chen [7]. In the following section we attempt to explain the main steps to achieve the fast algorithm. Now, we 

consider how to compute  quickly for a Toeplitz matrix   . The idea consists in building an associated 

circulant matrix  using the Toeplitz matrix  as follows 

 

                                                                             (34) 

 

where 
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                                                        (35) 

 

To compute , we need to define 

                                                                                      (36) 

substituting (34) into (36) we obtain 

 

                                                                    (37) 

 

Where  denotes a zero vector of size . 

 

On the other hand, we have 

 

                                                                                (38) 

Where 

 :  is the Fast Fourier Transform (FFT). 

 : is the inverse of Fast Fourier Transform (IFFT). 

 : denotes the first column of . 

We see clearly, from relations (37) and (38), that  is precisely the first half of vector . 

Numerically, an example is given in Fig. 11, showing the CPU time reduction in terms of wave number  using the 

fast MVP algorithm compared to the direct algorithm in the single-row configuration with  if  is odd and 

 if  is even . 

5.3.3  Numerical study of the convergence rate 

 Single-row configuration 

Fig. 12  shows the dependence of the number of MVPs on the size of the scatterers.  As previously seen, for this 

configuration , the number of MVPs increases linearly with the obstacles radii. 

For a fixed wavenumber, we also observe a dependence of MVPs with respect to the distance  between two 

successive obstacles. This is observed in Fig. 13 where the number of MVPs is given according to  in logarithmic 

scale for  and . We see that the number of MVPs strongly decreases as the separation distance  

tends to infinity, i.e.  (where   is the wavelength). This corresponds to a weaker coupling between the 

obstacles in the multiple scattering phenomenon. For small values of  , the number of MVPs strongly 

increases, because the linear system becomes ill-conditioned. Finally, we observe an intermediate resonance region 

for  where we have a few peaks in the number of MVPs. 
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Figure 11: CPU time for calculating one Matrix-Vector product via the direct and fast algorithms 

(Dirichlet problem). 

 

    

Figure 12: Variation of MVPs in terms of the rays of obstacles for the single-row configuration, 

 , GMRES(50),  (Dirichlet problem). 

 

 Rectangular configuration 

Now, we analyze the rectangular configuration. A first test-case is given in Fig. 14 and Fig. 15. We consider a rectangular 

lattice with  and the rays of obstacles increase with  direction  (see configuration 1 in Fig. 

14) or decrease (see configuration 2), the number of MVPs required by the GMRES(50) is represented as a function of  . 

In Fig. 15 we observe stabilization with the frequency but the number of MVPs increases with the thickness of layers 
according to the increase of obstacles radii. This is consistent with the previous observations in the single-row case. 
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Figure 13: Variation of MVPs in terms of the distance  separating two obstacles. We fix: ,  

obstacles, GMRES(50),  (Dirichlet problem). 

A more difficult problem is considered in Fig. 16, where we represent the number of MVP with respect to the wavenumber 

 of a rectangular lattice with different radii  if  is odd and  if  is even  for a fixed  

and different values of . We observe that the number of MVPs is again slightly dependent on  but strongly varies with 

the number of scatterers  , characterizing the size of layers, and thus, with . 

 

        

Figure 14: Rectangular configurations with different distribution. 
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Figure 15: Variation of MVPs in terms of the wavenumber   for different rectangular configurations. We fix: 

 GMRES(50),  (Dirichlet problem). 

 

 

Figure 16: Variation of MVPs in terms of the wavenumber  for rectangular configuration. We 

fix: , GMRES(50),  (Dirichlet problem). 

6. CONCLUSION 

In this paper, we investigated the numerical simulation of high frequency multiple scattering by circular scatterers. The 

main difficulty in this context being the complex dense linear system to be solved which is very large and ill-conditioned. 

This is in particular true when the number of obstacles is large and the frequencies are high. Taking advantage of the 

particular block Toeplitz structure of the matrix of the linear system, we proposed an adapted storage of the system and an 

iterative algorithm of resolution, based on a fast MVP computation. Finally, we presented a numerical study of the 

convergence rate with respect to different geometrical parameters of the problem (the wavenumber, the configuration of 

scatterers, the distance, the radii and the number of obstacles). 
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