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ABSTRACT 
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of compatibility of source and target maps of symplectic groupoids with symplectic form and generalized contact maps.  
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1  Introduction 

A groupoid G  consists of two sets 1G  and 0G , called arrows and the objects, respectively, with maps 01:, GGts   

called source and target. It is equipped with a composition 12: GGm   defined on the subset 

)}(=)(|),{(= 112 htgsGGhgG  ; an inclusion map of objects 10: GGe   and an inversion map 11: GGi  . 

For a groupoid, the following properties are satisfied: )(=)( hsghs , )(=)( gtght , )(=)( 1 gtgs 
, )(=)( 1 gsgt 

, 

fghhfg )(=)(  whenever both sides are defined, )(

1 1= gsgg 
, )(

1 1= gtgg 
. Here we have used xgh,1  and 

1g  

instead of ),( hgm , )(xe  and )(gi . Generally, a groupoid G  is denoted by the set of arrows 1G . From above 

definition it follows that a groupoid is a small category in which all morphisms are invertible. 

A topological groupoid is a groupoid 1G  whose set of arrows and set of objects are both topological spaces whose 

structure maps miets ,,,,  are all continuous and ts,  are open maps. 

A Lie groupoid is a groupoid G  whose set of arrows and set of objects are both manifolds whose structure maps 

miets ,,,,  are all smooth maps and ts,  are submersions. The latter condition ensures that s  and t -fibres are 

manifolds. One can see from above definition the space 2G  of composable arrows is a submanifold of 11 GG  . We note 

that Lie groupoid introduced by Ehresmann [4]. 

On the other hand, Lie algebroids were first introduced by Pradines [10] as infinitesimal objects associated with the Lie 

groupoids. More precisely, a Lie algebroid structure on a real vector bundle A  on a manifold M  is defined by a vector 

bundle map TMAA : , the anchor of A , and an -Lie algebra bracket on AA ][,),(  satisfying the Leibnitz rule  

  )(],[=],[ )( fLff
A

AA   

 for all )(),(, MCfA  , where )(
A

L  is the Lie derivative with respect to the vector field )(A . And 

)(A  denotes the set of sections in A . 

On the other hand, Hitchin [7] introduced the notion of generalized complex manifolds by unifying and extending the usual 
notions of complex and symplectic manifolds. Later the notion of generalized Kähler manifold was introduced by Gualtieri 
[5] and submanifolds of such manifolds have been studied in many papers. 

As an analogue of generalized complex structures on even dimensional manifolds, the concept of generalized almost 
contact manifolds were introduced in [8] and such manifolds have been also studied in, [14] and [12], [11]. 

Recently, Crainic [3] showed that there is a close relationship between the equations of a generalized complex manifold 
and a Lie groupoid. More precisely, he obtained that the complicated equations of such manifolds turn into simple 
structures for Lie groupoids. 

In this paper, we investigate relationships between the normality conditions of generalized contact structures and 
symplectic groupoids. We showed that the equations of such manifolds are useful to obtain equivalent results on a 
symplectic groupoid. 

2  Preliminaries 

 In this section we recall basic facts of Poisson geometry, Lie groupoids and Lie algebroids. More details can be found in 

[9] and [13]. A central idea in generalized geometry is that MTTM   should be thought of as a generalized tangent 

bundle to manifold M . If X  and   denote a vector field and a dual vector field on M respectively, then we write 

),( X  (or X ) as a typical element of MTTM  . The Courant bracket of two sections ),(),,(  YX  of 

=MTTM  TM  is defined by  

 ),(
2

1
],[=)],(),,[(  YXYX iidLLYXYX   

where d , XL  and Xi  denote exterior derivative, Lie derivative and interior derivative with respect to X , respectively. 

The Courant bracket is antisymmetric but, it does not satisfy the Jacobi identity. We adapt the notions 

),(=)( #   and ),(=))((# YXYX   which are defined as TMMT :# , MTTM :#  for 
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any 1-forms   and  , 2-form   and bivector field  , and vector fields X  and Y . Also we denote by ][, , the 

bracket on the space of 1-forms on M  defined by  

 ).,(=],[ ## 
 dLL   

On the other hand, a symplectic manifold is a smooth (even dimensional) manifold M  with a non-degenerate closed 2-

form )(2 M .   is called the symplectic form of M . Let G  be a Lie groupoid on M  and   a form on Lie 

groupoid G , then   is called multiplicative if  

 ,= 21    prprm  

 where GGGpri : , 1,2=i , are the canonical projections. If a Lie groupoid G  is endowed with a symplectic 

form which is multiplicative, then G  is called symplectic groupoid. 

We now recall the notion of Poisson manifolds. A Poisson manifold is a smooth manifold M  whose function space 

,(MC
), is a Lie algebra with bracket }{, , such that the following properties are satisfied;   

    1.  },{=},{ fggf    

    2.  0=}},{,{}},{,{}},{,{ gfhfhghgf    

    3.  },{},{=},{ hfghgfhfg  .  

 If M  is a Poisson manifold, then there is a unique bivector  , called the Poisson bivector, and a unique homomorfizm 

TMMT :#  of vector bundles with TMMT  )(#  such that },{=)(=),( # gfgdfdgdf  . It is also 

possible to define a Poisson manifold by using the bivector  . Indeed, a smooth manifold is a Poisson manifold if 

0=],[  , where ][,  denotes the Schouten bracket on the space of multivector fields. 

We now give a relation between Lie algebroid and Lie groupoid. Given a Lie groupoid G  on M , the associated Lie 

algebroid )(= GLieA  has fibres )),((=)(= xGTdsKerA xxx  , for any Mx . Any )(A  extends to a 

unique right-invariant vector field on G , which will be denoted by same letter  . The usual Lie bracket on vector fields 

induces the bracket on )(A , and the anchor is given by TMAdt := . 

Given a Lie algebroid A , an integration of A  is a Lie groupoid G  together with an isomorphism )(GLieA  . If such a 

G  exists, then it is called that A  is integrable. In contrast with the case of Lie algebras, not every Lie algebroid admits an 

integration. However if a Lie algebroid is integrable, then there exists a canonical source simply connected integration G , 

and any other source simply connected integration is smoothly isomorphic to G . From now on we assume that all Lie 

groupoids are source-simply-connected. 

In this section, finally, we recall the notion of IM  form (infinitesimal multiplicative form) on a Lie algebroid [2]. More 

precisely, an IM  form on a Lie algebroid A  is a bundle map  

 MTAu :  

 satisfying the following properties 

  

    1.   )(),(=)(),(  uu   

    2.  ))(())((=]),([   uLuLu   

 )(),( ud   

for )(, A , where ,  denotes the usual pairing between a vector space and its dual. 

If A  is a Lie algebroid of a Lie groupoid G , then a closed multiplicative 2-form   on G  induces an IM  form u  of 

A  by  
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 ).,(=),( XXu    

 For the relationship between IM  form and closed 2-form we have the following.  

Theorem 1 [2] If A  is an integrable Lie algebroid and if G  is its integration, then  u  is an one to one 

correspondence between closed multiplicative 2-forms on G  and IM forms of A .  

 

Similar to 2-forms, given a Lie groupoid G , a (1,1)-tensor TGTGJ :  is called multiplicative [3] if for any 

GGhg ),(  and any GTv gg  , GTw hh   such that ),( hg wv  is tangent to GG  at ),( hg , so is 

),( hg JwJv , and  

 )).,()((=),()( ,, hghghghg wvdmJJwJvdm  

3  Lie Groupoids and Generalized Contact Structures 

Let J  be a complex structure on IR12 nM  such that (i) J  is invariant by translation along  and (ii) 

TMTJ )IR( . Then J  is said to be M -adapted. If we denote by t  the coordinate on , J  is an M -adapted 

structure iff  

 ,=
t

ZdtFJ



   

 where )(),(),( 1 MMZTMEndF   . Accordingly, condition IdJ =2
 becomes  

 1,=)(0,=0,=,=2 ZFZFZIdF    

 and the triple ),,( ZF  is called an almost contact structure on M . If the adapted structure J  is integrable, the almost 

contact structure ),,( ZF  is normal and the normality condition is  

 0,=dZNF   (1) 

 where FN  is the Nijenhuis tensor of F [1] . We note that a contact manifold is a smooth (odd dimensional) manifold M  

with 1-form )(1 M  such that 0)(  nd .   is called the contact form of M . 

In this section we begin by giving a characterization for generalized contact manifolds, then we obtain certain relationships 
between generalized contact manifolds and symplectic groupoids. But we first recall that a generalized almost complex 

structure J  is an endomorphism on TM  such that Id=2J  and J  is anti-symmetric with respect to the canonical 

symmetric bilinear operation given by  

 .,ionsforallsect))()((
2

1
=, TM YXXYYX   

A generalized almost complex structure can be represented by classical tensor fields as follows:  

                      J

















 a

a

#

#

= 



 (2) 

 where   is a bivector on M ,   is a 2-form on M , TMTMa :  is a bundle map, and MTMTa  :  is 

dual of a . 

We now give brief information on the geometry of generalized almost contact manifolds and its normality conditions taken 
from [11].  

Definition 1  A generalized, almost complex structure J  on IRM   is said to be M-adapted if it has the following three 

properties (a) J   is invariant by translation along , (b) J (TIR MT *00)  , (c) J 0)*(0  TMIRT . 
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The invariance of J  by translations means that the Lie derivatives tL  \  of the classical tensor fields of J  (defined by (2)) 

vanish. If conditions (b), (c) are also imposed, it follows that the classical tensor fields of an M-adapted, generalized, 
almost complex structure are of the form  

 ,=,=,= dt
t

ZPFa 



   

 where )(),(),(, 122 MMZMTMP   . 

Furthermore, condition IdJ =2
 is equivalent to  

 
1.=)(0,=0,=)(,=

0,=0,=,=,=

#

#2

##

##

ZFZFZPIdF

PiiFFFPPF Z



 









 (3) 

 The triple ),,( PF  defines and endomorphism F of TM of matrix form  

 F .= #

#

































 






X
F

PF
X

 (4) 

 The pair ),( Z  defines the endomorphism Z of TM  of matrix form  

 Z ,)(0

0

= 



































 








X
Z

Z
X

 

 where TMTMZ  :  is the evaluation of   and MTMTZ **:)(    is the evaluation of Z . The 

conditions (3) are equivalent to  

 °F  ° = 0 1.=0,=,=, 2

g
ZId  ZFZF   (5) 

 (The first condition (5) ensures that P  and   are skew symmetric, and g  is the neutral metric of TM .).  

Definition 2 [11] A generalized almost contact structure on M  is a couple )),(),(( TMTMF  ZEnd  that 

satisfies (5). Equivalently the structure is a system of classical tensor fields ),,,,(  ZFP  that satisfies (3).  

It is easy to see that a classical almost contact structure is a generalized almost contact structure with 0=0,= P  

A generalized, almost contact structure will be called normal if the corresponding M-adapted, generalized, almost 

complex structure on IRM   is integrable. Thus, the normality conditions are [11]  

 0,=],[(1) PP  

 ,=(2) ## FPFP  

 ),,(=],[ ## 


  FdPFFF
PPP LL  

 ,=(3) #

#2 ZIdPF    (6) 

 ,)),(()(=),( )(

# ZYXddiPYXN YXF    

 ,=(4) ## FF   

 ),,,(=),,( 321(1,2,3)321 XXFXdXXXd CyclF    
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 0,=))(())((0,=0,=(5) XLYLFLL FYFXZZ    

 0.=0,=0,= # 
PZZ LLPL  

 

We now give the definition of odd dimensional symplectic manifolds which has been given recently.  

Definition 3 [6] Suppose that M  is a manifold of dimension 12 n  with a volume form   and a closed form   of 

maximal rank. Then the triple ),,( M  is called an odd dimensional symplectic manifold.   

Example 1 [6] Any contact manifold with a contact form   can be viewed as an odd dimensional symplectic manifold in 

the obvious way:  

  d=  

 is the symplectic 2-form,   is the connection form, and hence the volume form is  

 .
!

)(
=

n

d n
   

  

We now start to investigate relationships between normality conditions and Lie groupoids.  

Lemma 1 Let M  be a generalized almost contact manifold. If P  is a non-degenerate bivector field on 

}{SpanTM  , d  is the inverse 2-form (defined by 
1#

# )(=)( Pd ) and P  satisfies (6) then 

)(=  didFd Z 
.  

  

Proof. For )(MX  , we apply #)( d  to (6) and using the dual structure 
F , we have  

 ))(()())(()()()(=)()( ##

#

##

2

# ZXdXPdXdXFd    

 ).,)(())((),(=),( #

2 YZXdYXYXdYXFd    

 Since d  and F  commute, we obtain  

 ),()(),(),(=),( YZdXYXYXdFYFXd    

 ).,()(),(),(=),( YZdXYXYXdYXdF  
 (7) 

Since the equation (7) is hold for all X  and Y , we get  

 ).(=  didFd Z 
 (8) 

 From now on, when we mention a non-degenerate bivector field P , we mean it is non-degenerate on 

}{SpanTM  . We note that if d  is the inverse 2-form of P , non-degenerate P  on }{SpanTM   implies 

that d  is also non-degenerate on }{ZSpanTM  . 

(8) is called the twist of Hitchin pair ),( Fd . On the other hand, a symplectic+contact structure on M  is a couple 

),( Id  consisting of a symplectic form d  and a contact structure I  on M , which commute.  

Lemma 2 Let M  be a symplectic manifold, d  is the symplectic form. Then ),( Fd  is a symplectic+contact 

structure if and only if  ddidF Z  )(= .  

Proof. We will only prove the sufficient condition. It is trivial that 0=)( dd  and 0=)( Fdd  , where 

),(=),()( YFXdYXd F  . Since )(=  diddF Z
, by using the following equation (see [3]),  
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 ))(())((=)(),(  ddiddidi FYFXFFYXYFXYX
F

N    

 )),(( dFdi YX



  (9) 

we get )((=))((=)(),(  dididFdidi ZYXYXYX
F

N  




. Then we have  

 ),,))(((=))(( KYXdiddidi ZZYX    

 ),,))(((= KYXdid Z    

 ),),((= KZYXdd   

 Thus we derive,  

 ).,),((=)),,(( KZYXddKYXNd F    

Hence we get ZYXdYXNF ),(=),(  , for }{, ZspanTMYX   due to d  is non-degenerate. Thus (1) (see 

also;[8]) implies that F  is a contact structure. Then we have  

 0.=),)((),(),( YXdiYXdYXdF Z  
 

 Since 
F  is the dual contact structure, we get  

 0.=))()((),(),( YdiXYXdFYFXd Z    

 Substituting FX  by X , and using contact structure property.  

 0.=),(),)(( YFXdFYZXXd    

 Hence we obtain  

 0=),(),( YFXdFYXd    

 which shows that d  and F  commute. The converse is clear.  

 

Next we relate (1) and the 2-form d .  

Lemma 3  Let P  be a non-degenerate bivector on a generalized almost contact manifold M , and d  the inverse 2-

form (defined by 
1#

# )(=)( Pd ). Then P  satisfies (1).   

Proof. Since d  is a closed form, it is obvious due to Lemma 2.7 of [3].  

 Thus, we have the following result which shows that there is close relationship between condition (1) and a symplectic 

groupoid. Since 
#P  and P][,  define a Lie algebroid structure on MT 

, one can obtain the following result.  

Theorem 2 Let M  be a generalized contact manifold. Then, there is a symplectic groupoid ),( d  over M .   

Proof. It is a well known fact that there is a one to one correspondence between integrable Poisson structures on M  and 

symplectic groupoids over M . In fact, the condition (1) tells that P  is an integrable Poisson structure.  

 We recall the following result from [3].  

Lemma 4 [3] Given a symplectic form  , the associated non-degenerate bivector field P , i.e., (
1

#

# = P ) and a 

bundle map a , then P  and a  satisfy (2) if and only if P  and a  commute and a  is closed.  

 

For our situation, Fd )(   is closed we get the following.  
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Remark 1  Let M  be a generalized almost contact manifold and d  the symplectic form. Given a non-degenerate 

bivector P  on }{spanTM  (i.e. 
1

#

# ))((= dP ) and a map TMTMF : , then P  and F  satisfy (2) if and 

only if d  and F  commute.  

 We now give a correspondence between generalized contact structures with non-degenerate P , and Hitchin pairs 

),( Fd .  

Proposition 1 There is a one to one correspondence between generalized contact structures given by (2) with P  non-

degenerate, and Hitchin pairs ),( Fd . In this correspondence, P  is the inverse of d , and   is the twist of the 

Hitchin pair ),( Fd .   

Proof. Since ),( Fd  is Hitchin pair, then d  and Fd )(   are closed. Using (9), we get  

 )).((=)(),(  dFdidi YXYX
F

N



  (10) 

 Since )(=  didFd Z 
, we derive  

 )))(((=)),(()( #  didiYXNd ZYXF    (11) 

 Applying 
#P  to (11), then we get 

 

 ))))((((=),( #  didiPYXN ZYXF    

 ))))(()((=),( ##  didiPdiPYXN ZYXYXF    

 .),()(=),( )(

# ZYXddiPYXN YXF    (12) 

 (12) is the second equation of (3). Now we show that FF ## = . From (7), we obtain  

 ).)))((())(()((= ####  didFdFF Z 
 

 Hence, we have  

 .)))((())(()(= #### FdiFdFFdF Z   
 

 From definition of twist, we get  

 .= ## FF   

 This equation is the first equation of (4). Now, we will obtain  

 ),,(),,(),,(=),,( 321321321321 FXXXdXFXXdXXFXdXXXd F    

which is second equation of (4). Writing the equation as  

 ))(()(=)(
21212121

 diFdidi XXFXXXFXFXX 



   

and since )(=  didFd Z 
, then we should find  

 )))(((=))))((())((((
212121

 didFdididFdi ZFXXXFXFZFXX  





  

 )))).((((
21

 didFdiF ZXX  




 

 A straightforward computation shows that  

 ))).((())((=)))((((
21212121

 dFdiFdFdidFdi XXFXXXFXFXX











   

 Using (9), then we get  
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 .)())((=)))(((( )
2

,
1

(
212121

FXX
F

NFXXXFXFXX didFdidFdi  






 (13) 

 Since )(=))(( )
2

,
1

()
2

,
1

(  diFdi XXNFXXN


, applying )(=)( )

2
,

1
(

21
 didFdi XX

F
NXX 


 to (13), we have  

 ))).((())((=)))((((
21212121

 dFdiFdFdidFdi XXFXXXFXFXX











   

The converse is clear from Lemma 3 and Remark 1.  

 Note that it is well known that there is one to one correspondence between (1,1)-tensors F  commuting with d  and 2-

forms on M . On the other hand, it is easy to see that (2) is equivalent to the fact that 
F  is an IM  form on the Lie 

algebroid MT 
 associated Poisson structure P . Thus from the above discussion, Lemma 1 and Theorem 1, one can 

conclude with the following theorem.  

Theorem 3  Let M  be a generalized contact manifold. Let P  be an integrable Poisson structure on M , and ),( d  

a symplectic groupoid over M . Then there exist multiplicative (1,1) -tensors I  on   with the property that ),( dI  is 

a Hitchin pair.   

Proof. From Theorem 3.3 of [3], we know that there is a one to one correspondence between (1,1)-tensors F  on M  

satisfying (2) and multiplicative (1,1)-tensors I  on   with the property that ),( dI  is a Hitchin pair.  

We recall the notion of generalized contact map between generalized contact manifolds. This notion is similar to the 
generalized holomorphic map given in [3]. 

Let ),( iiM F , 1,2=i , be two generalized contact manifolds, and let iii PF ,,  be the components of iF  in the matrix 

representation (4). A map 21: MMf   is called generalized contact iff f  maps 1F  into 2F , 1F  into 2F , 1P  into 2P , 

12 =f  and )(=)( 21 dfFFdf  . 

We now state and prove the following theorem which gives equivalent assertions between the condition (3), twist   of 

),( Id  and contact maps for a symplectic groupoid over M .  

Theorem 4 Assume that ),( FP  satisfy (1), (2) with integrable P , and let ),,( Id  be the induced symplectic 

groupoid over M  and I  the induced multiplicative (1, 1)-tensor. Then, for a 2-form   on M , the following assertions 

are equivalent:   

    1.  (3) is satisfied,  

    2.     tsdidId Z = ,  

    3.  MMst :),(  is generalized contact map; (condition of generalized contact map on M  is 

)(=)( 21 dtFFdt  , this condition on M  is )(=)( 21 dsFFds   ).  

Proof. (i)  (ii): Define    st
~

= , such that )(=
~

 didId Z 
 and MdskerA |)(= . We 

know from Theorem 1 that closed multiplicative 2-form   on   vanishes if and only if IM  form 0=u , i.e. 

0=),(  X , such that TMX  , A . This case can be applied for forms with higher degree, i.e. 3-form   

vanishes if and only if 0=),,(  YX . 

Since d  and Id )(   are closed, from (9) we get  didIdi YX
I

NYX ),(=))(( 

 . Putting 

)(=
~

 didId Z 
, we obtain  

 .=))(
~

( ),(  dididi YX
I

NZYX   (14) 

 Since 0=),,(0=  YXdd  , we have  

 0.=),,)((),,)((),,(
~

0=),,(  YXsdYXtdYXdYXd    
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 On the other hand, we obtain  

 )).(),(),((=),,)((  dtYdtXdtdYXtd 
 (15) 

 If we take =dt  in (15) for A , we get  

 )).(),(),((=),,)((  YdtXdtdYXtd 
 (16) 

 On the other hand, from [2] we know that  

 ).,(=  IdtmId   (17) 

 Differentiating (17), we obtain  

 ).(= XdtX  (18) 

 Using (18) in (16), we get  

 )).(,,(=),,)((  YXdYXtd 
 

 In a similar way, we see that  

 )).(),(),((=),,)((  dsYdsXdsdYXsd 
 

 Since kerds , then 0=)(ds . Hence 0=)( sd . Thus we obtain  

 )).(,,(=),,(
~

 YXdYXd  (19) 

 Using (14) in (19), we derive  

 )).(,,(=)),,((),,))(((  YXdYXNdYXdid IZ   (20) 

 On the other hand, it is clear that 0=
~

0=    st . Thus we obtain  

 )).(,(=),(
~

 XX  

 Since )(=
~

 didId Z 
, we get  

 )).(,(=),))(((),(),(  XXdiIIXdXd Z  (21) 

 Since Poisson structure P  is integrable, it defines a Lie algebroid whose anchor map is 
#P . Let us use 

#P  instead of 
  in (20) and (21), then we get  

 )),(,,(=)),,((),,))((( #  PYXdYXNdYXdid IZ   (22) 

  

 )).(,(=),))(((),(),( #  PXXdiIIXdXd Z  (23) 

 Since )(=),( XXd  , )(=),()( IXXd I  , from (22) we have  

 ))(,,(=)),(()),(( #  PYXdYXNZYXd F  

 ))((= #  Pdi YX   

 ))((= #  Pdi YX   

 ),(=  diP YX   

 )),((= #  diP YX   

 i.e. ))((=)),(),(( #  diPYXNZYXd YXF  . Since above equation holds for all non-degenerate  , we get  
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 ).(=),(),( #  diPYXNZYXd YXF   (24) 

 On the other hand, from (23) we obtain  

 ),(=)()()()( 2  XiPZXXFX   

 ).(= #

# XP   

 Thus we get  

 .=#

#2 ZIdPF    (25) 

 Then (i) (ii) follows from (24) and (25). 

(ii) (iii):    tsdidId Z =  says that ),( st  is compatible with 2-forms. Also it is clear that 

),( st  and bivectors are compatible due to   is a symplectic groupoid. We will check the compatibility of ),( st  and 

(1,1) -tensors. From compatibility condition of t  and s , we will get dtFIdt  =  and dsFIds  = . 

For all A  and ),(V  we have  

 ),(=),( dtVdVd   

 which is equivalent to  

 .),(=)(  dtVuV d    

 Since Idud =  and 
Fu

I
d =)(  , we get  

 )))(((=))((, VdtFVdtF    

 ))((= VdtF   

  Vu
I

d ,= )(   

 ),(= IVd   

 ))(,(= IVdtd   

 .)(,=  IVdt  

 Since this equation holds for all A , )(=)( IdtdtF . Using its = ,  

 VitFdVdsF )(=))((   

 )))(((= VdidtF  

 ))((= VdtF  

 ),(= IVds  

 which shows that )(=)( IdsdsF  . Thus proof is completed.  
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