)

Symplectic Groupoids and Generalized Almost Contact Manifolds

Fulya Sahin
Department of Mathematics, Inonu University, Malatya 44280, TURKEY
fulya.sahin@inonu.edu.tr

ABSTRACT
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1 Introduction

A groupoid G consists of two sets G, and G, , called arrows and the objects, respectively, with maps S,1:G, = G,
called source and target. It is equipped with a compositon M: G2 —> Gl defined on the subset
G, ={(9,h) e G, xG, | s(g) =t(h)}; aninclusion map of objects €: G, — G, and an inversionmap i:G, > G,.
For a groupoid, the following properties are satisfied: s(gh) = s(h), t(gh) =t(g). s(g ™) =t(g). t(g ") =s(g).
g(hf) = (gh) f whenever both sides are defined, g g = 1 99 1= 1,(g)- Here we have used gh,1, and gt

instead of m(g,h), e(x) and i(g). Generally, a groupoid G is denoted by the set of arrows G,. From above
definition it follows that a groupoid is a small category in which all morphisms are invertible.

A topological groupoid is a groupoid G1 whose set of arrows and set of objects are both topological spaces whose
structure maps S, 1, €, i, M are all continuous and S,1 are open maps.

A Lie groupoid is a groupoid G whose set of arrows and set of objects are both manifolds whose structure maps
s,t,e,i,m are all smooth maps and S,t are submersions. The latter condition ensures that S and -fibres are

manifolds. One can see from above definition the space G, of composable arrows is a submanifold of G, x G, . We note
that Lie groupoid introduced by Ehresmann [4].

On the other hand, Lie algebroids were first introduced by Pradines [10] as infinitesimal objects associated with the Lie
groupoids. More precisely, a Lie algebroid structure on a real vector bundle A on a manifold M is defined by a vector

bundle map o, : A—TM , the anchor of A, and an IR-Lie algebra bracket on I'(A),[,], satisfying the Leibnitz rule
[, 1B1a = fla. Bla+ L, (F)5

forall ¢, BT’ (A), f €C*(M), where LpA(a) is the Lie derivative with respect to the vector field 0, (). And
I'(A) denotes the set of sections in A.

On the other hand, Hitchin [7] introduced the notion of generalized complex manifolds by unifying and extending the usual
notions of complex and symplectic manifolds. Later the notion of generalized Kahler manifold was introduced by Gualtieri
[5] and submanifolds of such manifolds have been studied in many papers.

As an analogue of generalized complex structures on even dimensional manifolds, the concept of generalized almost
contact manifolds were introduced in [8] and such manifolds have been also studied in, [14] and [12], [11].

Recently, Crainic [3] showed that there is a close relationship between the equations of a generalized complex manifold
and a Lie groupoid. More precisely, he obtained that the complicated equations of such manifolds turn into simple
structures for Lie groupoids.

In this paper, we investigate relationships between the normality conditions of generalized contact structures and
symplectic groupoids. We showed that the equations of such manifolds are useful to obtain equivalent results on a
symplectic groupoid.

2 Preliminaries

In this section we recall basic facts of Poisson geometry, Lie groupoids and Lie algebroids. More details can be found in
[9] and [13]. A central idea in generalized geometry is that TM @ T M should be thought of as a generalized tangent
bundle to manifold M . If X and & denote a vector field and a dual vector field on M respectively, then we write

(X,&) (or X +¢&) as a typical element of TM @T "M . The Courant bracket of two sections (X,&),(Y,77) of
TM @T"M = TM is defined by

[0, (1= DX, YT+ L= L= d =i 6),

where d , LX and ix denote exterior derivative, Lie derivative and interior derivative with respect to X, respectively.
The Courant bracket is antisymmetric but, it does not satisfy the Jacobi identity. We adapt the notions

B(r*a) = n(a, B) and @,(X)(Y)=aw(X,Y) which are defined as 7" : T"M —-TM, @, :TM =>T'M for
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any 1-forms & and [, 2-form @ and bivector field 77, and vector fields X and Y . Also we denote by [,]”, the

bracket on the space of 1-forms on M defined by
[a.B], = Lﬂ#aﬁ_ Lﬂ#ﬂa —dz(a, B).

On the other hand, a symplectic manifold is a smooth (even dimensional) manifold M with a non-degenerate closed 2-
form @ e Q*(M). @ is called the symplectic form of M . Let G be a Lie groupoid on M and @ a form on Lie
groupoid G , then @ is called multiplicative if

m*e = pr, @+ pr, o,
where pr,:GxG — G, 1=1,2, are the canonical projections. If a Lie groupoid G is endowed with a symplectic
form which is multiplicative, then G is called symplectic groupoid.

We now recall the notion of Poisson manifolds. A Poisson manifold is a smooth manifold M whose function space
C” (M, IR), is a Lie algebra with bracket {, }, such that the following properties are satisfied;

1 {f,g}=-o, f}
2. {f.{9,h}}+{g.{h, F}}+{h{f,g}}=0
3. {fg,h}= f{g,h}+o{f,h}.

If M is a Poisson manifold, then there is a unique bivector 77, called the Poisson bivector, and a unique homomorfizm

77 :T*"M = TM of vector bundles with 7z (T M) cTM such that 7z(df ,dg) = 7*(df )g ={f, g}. Itis also
possible to define a Poisson manifold by using the bivector 7. Indeed, a smooth manifold is a Poisson manifold if
[7z,77] = 0, where [,] denotes the Schouten bracket on the space of multivector fields.

We now give a relation between Lie algebroid and Lie groupoid. Given a Lie groupoid G on M , the associated Lie
algebroid A= Lie(G) has fibres A, = Ker(ds), =T,(G(—, X)), for any xe M . Any @ € T'(A) extends to a

unique right-invariant vector field on G , which will be denoted by same letter ¢ . The usual Lie bracket on vector fields
induces the bracket on I'(A), and the anchoris givenby p=dt: A—>TM .

Given a Lie algebroid A, an integration of A is a Lie groupoid G together with an isomorphism A= Lie(G). If such a

G exists, then itis called that A is integrable. In contrast with the case of Lie algebras, not every Lie algebroid admits an
integration. However if a Lie algebroid is integrable, then there exists a canonical source simply connected integration G ,

and any other source simply connected integration is smoothly isomorphic to G . From now on we assume that all Lie
groupoids are source-simply-connected.

In this section, finally, we recall the notion of IM form (infinitesimal multiplicative form) on a Lie algebroid [2]. More
precisely, an IM form on a Lie algebroid A is a bundle map

u:A->T'M

satisfying the following properties

1. (u(a), p(B)) = —u(p), p(a))
2. u([a, A = L, (u(p)) — Ly (u(a))
+d(u(a), p(B))

for ¢, f € T'(A), where (,) denotes the usual pairing between a vector space and its dual.

If A is a Lie algebroid of a Lie groupoid G , then a closed multiplicative 2-form @ on G induces an IM form u, of
A by
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W, (@), X) = o, X).
For the relationship between IM form and closed 2-form we have the following.

Theorem 1 [2] If A is an integrable Lie algebroid and if G is its integration, then @wr>Uu, is an one to one

correspondence between closed multiplicative 2-forms on G and IM forms of A.

Similar to 2-forms, given a Lie groupoid G, a (1,1)-tensor J : TG —>TG is called multiplicative [3] if for any
(9,h)eGxG and any v, eT,G, W, €T,G such that (V,,W,) is tangent to GxG at (g,h), so is

vy, Iw, ), and

(dm)g,h (‘ng ' JWh) =J ((dm)g,h (ngwh))'
3 Lie Groupoids and Generalized Contact Structures

Let J be a complex structure on M ?™ x IR such that () J is invariant by translation along IR and (i)

J(TIR) cTM . Then J is said to be M -adapted. If we denote by t the coordinate on IR, J is an M -adapted
structure iff

J=F+dt®z-c0l,
ot

where F € End(TM), Z € x(M), & € Q' (M) . Accordingly, condition J? = —1ld becomes
F?=—1d+£®Z,E0F =0,FZ =0,£(2) =1,

and the triple (F,Z,&) is called an almost contact structure on M . If the adapted structure J is integrable, the almost
contact structure (F,Z, &) is normal and the normality condition is

N: +Z®d<& =0, (1)
where N ¢ Is the Nijenhuis tensor of F [1] . We note that a contact manifold is a smooth (odd dimensional) manifold M

with 1-form & € Q' (M) such that & A (dE)" #0. &£ is called the contact form of M .

In this section we begin by giving a characterization for generalized contact manifolds, then we obtain certain relationships
between generalized contact manifolds and symplectic groupoids. But we first recall that a generalized almost complex

structure J is an endomorphism on TM such that J*=—Id and J is anti-symmetric with respect to the canonical
symmetric bilinear operation given by

(a+X,p+Y)= %(a(Y) + (X)) forallsections ¢+ X, f+Y € TM.

A generalized almost complex structure can be represented by classical tensor fields as follows:

a T

J=|o, -a @)

where 77 is a bivectoron M, o isa2-fomon M, a:TM —TM is a bundie map, and @" :T°"M =>T"'M is
dual of a.

We now give brief information on the geometry of generalized almost contact manifolds and its normality conditions taken
from [11].

Definition 1 A generalized, almost complex structure J on M X IR is said to be M-adapted if it has the following three

properties (a) J is invariant by translation along IR, (b) J(TR®0) c0D@T*M,(c) J (0DT *IR) cTM ©0.
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The invariance of J by translations means that the Lie derivatives La\at of the classical tensor fields of J (defined by (2))

vanish. If conditions (b), (c) are also imposed, it follows that the classical tensor fields of an M-adapted, generalized,
almost complex structure are of the form

a=F,7r=P+Z A§,¢720+§/\dt,

where PeT A’ TM, 0 Q*(M),Z € (M), & e Q' (M).
Furthermore, condition J? = —Id is equivalent to

FoP*=P*oF",6,0F =F"06,,i,0=0,i,P =0,

®)
F?=-I1d-P*00,+£Q®Z,F(Z2)=0,E0F =0,8(2) =1.
The triple (F, P, @) defines and endomorphism F of TM of matrix form

F P’
X I'x
F = 9# —F . (4)
a a

The pair (Z,&) defines the endomorphism Z of TM ' of matrix form

Z®& 0

X X
z| "=l o @zey ||
(04 (04

where Z®&:TM —TM s the evaluation of & and (Z®&) :T'M =T M s the evaluation of Z . The

conditions (3) are equivalent to

bgF+F  b,=0,F*=-1d+Z FoZ=0,[Zz®¢] =1 (5)

(The first condition (5) ensures that P and & are skew symmetric, and g is the neutral metric of ™).

Definition 2 [11] A generalized almost contact structure on M is a couple (F e End(TM),(Z,&) eI'TM) that
satisfies (5). Equivalently the structure is a system of classical tensor fields (P, 0,F.Z, f) that satisfies (3).

It is easy to see that a classical almost contact structure is a generalized almost contact structure with P =0, =0

A generalized, almost contact structure will be called normal if the corresponding M-adapted, generalized, almost
complex structure on M x IR is integrable. Thus, the normality conditions are [11]

(DIP,P1=0,

(2)FP* = P*F",

FI¢mls =L, Fn-L, F'¢~dP(F'¢ ),

R)F2+P*0,=-Id+£®7Z, (6)
Ne (X,Y) = P*(ix ., d0) — (d&(X,Y))Z,

(4)F*6, = 6,F,

6, (X4, X5, X5) = e aarsdOFXy, Xy, Xo),
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(5) Lz‘f = 01 Lz F= 01 (LFX ":)(Y)_(LFvé)(X) = 01
L,P=0,L,0=0,L, £=0.

We now give the definition of odd dimensional symplectic manifolds which has been given recently.

Definition 3 [6] Suppose that M is a manifold of dimension 2n+1 with a volume form  and a closed form @ of
maximal rank. Then the triple (M, Q, @) is called an odd dimensional symplectic manifold.

Example 1 [6] Any contact manifold with a contact form & can be viewed as an odd dimensional symplectic manifold in
the obvious way:

w=d¢&

is the symplectic 2-form, (f is the connection form, and hence the volume form is

PN

We now start to investigate relationships between normality conditions and Lie groupoids.

Lemma 1 Let M be a generalized almost contact manifold. If P is a non-degenerate bivector field on
TM™ —Span{é&}, d& is the inverse 2-form (defined by (d&), =(P*)™) and P satisfies (6) then
0=-d&-Fd&+&E®(i,dE).

Proof. For X € (M), we apply (d¢), to (6) and using the dual structure F*, we have
(d&),F*(X) =—(d&),(X) - (d&),(P"6,(X)) +(d&),,(£(X)Z)
d&(F2X,Y) = —-d&(X,Y) - 0,(X)(Y) +d&(&(X)Z,Y).

Since d& and F commute, we obtain

d&(FX,FY) =—d&(X,Y)—-6(X,Y)+&(X)dE(Z,Y)

FrdS(X,Y)=-d&(X,Y)-0(X,Y)+S(X)dE(Z,Y). (7)
Since the equation (7) is hold forall X and Y , we get
0=—-dé—F'dE+E®(i,dE). ®)

From now on, when we mention a non-degenerate bivector field P, we mean it is non-degenerate on
TM™ —Spar{&}. we note that if A& is the inverse 2-form of P, non-degenerate P on TM™ — Spar{&} implies
that d¢ is also non-degenerate on TM —Spar{Z}.

(8) is called the twist of Hitchin pair (d§, F). On the other hand, a symplectic+contact structure on M is a couple
(d&, 1) consisting of a symplectic form d& and a contact structure | on M, which commute.

Lemma 2 Let M be a symplectic manifold, d& is the symplectic form. Then (d&, F) is a symplectic+contact
structure if and only if F*'d& =£® (i,d&)—d<.

Proof. We will only prove the sufficient condition. It is trivial that d(d&)=0 and d(d&)e =0, where
(d&)-(X,Y) =d&(FX,Y). since F'dé =—-d&+&®(i,dE), by using the following equation (see [3]),
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v ) (A9) = ey xary (A(AE)e) =l ey (d(dS))

—lix,v (d(FdS)), ©)
we get iNF(ny)(df) =—i, ([d(F'd&)) =—i,,,d(E®(i,dS) . Then we have

iy, d(E®(i,dS)) =d(S®(i,d))(X,Y, K)
= (d&®(i,d&))(X,Y,K)
=d&(dE(X,Y)Z,K)
Thus we derive,
d&(NL(X,Y),K) ==d&(d&(X,Y)Z,K).
Hence we get N (X,Y)=—-d&(X,Y)Z, for X,Y € TM —spar{Z} due to d¢ is non-degenerate. Thus (1) (see

also;[8]) implies that F is a contact structure. Then we have
Frd&(X,Y)+d&(X,Y)-£®(i,d5)(X,Y) =0.
Since F " is the dual contact structure, we get
d&(FX, FY)+dS(X,Y)-&(X)(i,d&)(Y) = 0.
Substituting FX by X , and using contact structure property.
dé(—X +&(X)Z,FY)+d&(FX,Y) =0.
Hence we obtain
—d&(X,FY)+d&(FX,Y)=0

which shows that d& and F commute. The converse is clear.

Next we relate (1) and the 2-form dé‘ '

Lemma 3 Let P be a non-degenerate bivector on a generalized almost contact manifold M , and d§ the inverse 2-
form (defined by (d&), = (P*)™). Then P satisfies (1).

Proof. Since df is a closed form, it is obvious due to Lemma 2.7 of [3].

Thus, we have the following result which shows that there is close relationship between condition (1) and a symplectic
groupoid. Since P* and [,]P define a Lie algebroid structure on T*M , one can obtain the following result.

Theorem 2 Let M be a generalized contact manifold. Then, there is a symplectic groupoid (Z, df) over M .

Proof. It is a well known fact that there is a one to one correspondence between integrable Poisson structures on M and
symplectic groupoids over M . In fact, the condition (1) tells that P is an integrable Poisson structure.

We recall the following result from [3].

Lemma 4 [3] Given a symplectic form @, the associated non-degenerate bivector field P, ie., (P# = a);l) and a

bundle map a, then P and a satisfy (2) if and only if P and @ commute and @, is closed.

For our situation, (df),: is closed we get the following.
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Remark 1 Let M be a generalized almost contact manifold and dgﬁ the symplectic form. Given a non-degenerate
bivector P on TM—spar{&} (i.e. P* = ((d£),) ™ ) andamap F:TM —TM , then P and F satisfy (2) if and
only if d& and F commute.

We now give a correspondence between generalized contact structures with non-degenerate P, and Hitchin pairs

(dS,F).

Proposition 1 There is a one to one correspondence between generalized contact structures given by (2) with P non-
degenerate, and Hitchin pairs (df, F). In this correspondence, P is the inverse of df, and @ is the twist of the
Hitchin pair (d&, F).

Proof. Since (d&, F) is Hitchin pair, then d& and (d&) . are closed. Using (9), we get

iNF(X,Y)(dé:) =iy, (d(F"d%)). (10)
Since @ = —d&—F'dE+£®(i,dE) , we derive
(d2),(Ne (X,Y)) =iy, (d(-0+£®(i,d2))) (11)

Applying P* to (11), then we get

Ne(X,Y) ==P*(i, . (d(-0+£®(i,dE))))

N (X,Y) = P*(iy,, () - P*(iy,, & ®(i,dE))))

N:(X,Y) = P#(i(XAy)dQ)—dé(X,Y)Z. (12)
(12) is the second equation of (3). Now we show that F "6, = 6,F . From (7), we obtain

F°0, = F*(-(dS), —(F"(d9)), + (S ® (i, (d))),).

Hence, we have

F°0, = —(dS),F —(F"(d5)),F + (S & (i, (d5)),F.

From definition of twist, we get
Fo,=6,F.
This equation is the first equation of (4). Now, we will obtain
do- (X, X,, X;) =dO(FX,, X,, X;)+dO(X,, FX,, X;)+da(X,, X,, FX,)

which is second equation of (4). Writing the equation as
i ox, (65) = e o o, (@0) +F (i (06))
and since 6 = —d&—F d&+£®(i,dE) , then we should find
i, (A((F" (D) +(E® (i, (AD))r) = i ox, o x e, (A(F AE+E® (i, dE))
+F (i x, (d(-F'dE+£ @ (1,d2)).

A straightforward computation shows that
iy o, (AF " (@9)e) = i o, ey, (A(FTAE) + F (i (d(F dE))).

Using (9), then we get
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ixlez (d((F (d&)e) = iFXl/\X2+Xl/\FX2 (d(Fdg)) - iNF(xl,xz)(df)F- (13)
Since iN(Xl,Xz)((dg)F) = F*iN(Xl,Xz)(d‘f) » applying ixlezd(F*dg) = _iNF(xl,xz)(df) to (13), we have

o, (AF (D)) =i o, e, (A(FTAEN) + F (i (A(F DE))).

The converse is clear from Lemma 3 and Remark 1.
Note that it is well known that there is one to one correspondence between (1,1)-tensors F commuting with df and 2-

forms on M . On the other hand, it is easy to see that (2) is equivalent to the fact that F* isan IM form on the Lie

algebroid T*M associated Poisson structure P . Thus from the above discussion, Lemma 1 and Theorem 1, one can
conclude with the following theorem.

Theorem 3 Let M be a generalized contact manifold. Let P be an integrable Poisson structure on M , and (Z,d&)

a symplectic groupoid over M . Then there exist multiplicative (1,1) -tensors | on Z with the property that (I,d&) is
a Hitchin pair.

Proof. From Theorem 3.3 of [3], we know that there is a one to one correspondence between (1,1)-tensors F on M
satisfying (2) and multiplicative (1,1)-tensors | on X with the property that (I,d&) is a Hitchin pair.

We recall the notion of generalized contact map between generalized contact manifolds. This notion is similar to the
generalized holomorphic map given in [3].

Let (M;,F), 1 =1,2, be two generalized contact manifolds, and let F;, P, & be the components of F, in the matrix

representation (4). Amap f : M, — M, is called generalized contact iff f maps F, into F,, F, into F,, P, into P,,
f*0, =6 and (df )oF, = F,o(df).

We now state and prove the following theorem which gives equivalent assertions between the condition (3), twist & of
(d&, 1) and contact maps for a symplectic groupoid over M .

Theorem 4 Assume that (P, F) satisfy (1), (2) with integrable P, and let (X,d&,1) be the induced symplectic

groupoid over M and | the induced multiplicative (1, 1)-tensor. Then, for a 2-form & on M |, the following assertions
are equivalent:

1. (3)is satisfied,
2. dé+1"dé-£®i,dE=5"0-1"0,
3. (t,S):Z—) M XM is generalized contact map; (condition of generalized contact map on M is

(dt)o F, = F, o(dt), this condition on M is (ds)o F, =—F, o (ds)).

Proof. (i) <> (ii): Define ¢ = 0 —t"0+5"@, suchthat @ = —d& —1"'dE+E®(i,dE) and A=ker(ds) |, . we
know from Theorem 1 that closed multiplicative 2-form {7 on 2 vanishes if and only if IM form u, = 0, ie.

l//(X,a) =0, suchthat X eTM, a € A. This case can be applied for forms with higher degree, i.e. 3-form /4
vanishes if and only if /(X,Y,a) =0.

since d& and (d&), are closed, from (9) we get ixAY(dU*dé‘)):—iNl(x,Y)di- Putting
6 =—dé—1"dE+E®(i,dE), we obtain

iy, (=0 + £ ® (i,dE)) = =iy (., dE. (14)
Since dg =0 <= dg(X,Y,a) =0, we have

dé(X,Y,@) =0 da(X,Y,a)—d(t"0)(X,Y,a) +d(s"0)(X,Y,a) = 0.
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On the other hand, we obtain
d(t"0)(X,Y,a) =da(dt(X),dt(Y),dt(x)). (15)
If we take dt = p in (15) for A, we get
d(t"0)(X,Y,a) =da(dt(X),dt(Y), o(«)). (16)
On the other hand, from [2] we know that
lds =mo(t,1d,). 17)
Differentiating (17), we obtain
X =dt(X). (18)
Using (18) in (16), we get
dt"0)(X,Y,a) =do(X,Y, p(a)).
In a similar way, we see that
d(s"0)(X,Y,a) =do(ds(X),ds(Y),ds(x)).
Since a e kerds, then ds(«) = 0. Hence d(s°@) = 0. Thus we obtain
dO(X,Y,a) =do(X,Y, p(a)). (19)
Using (14) in (19), we derive
d(E®(1,dE)(X,Y,a)+d&E(N, (X,Y),a) =dO(X,Y, p(a)). (20)

On the other hand, it is clear that ¢ = 0 <> 6 —t"6+5*0 = 0. Thus we obtain
0(X,a) = 0(X, p(a)).
since 6 = —d&— 1"dé + & @ (i,dE) , we get
—d&(X,@)—dS(IX, la) + (£ ® (i, d2)(X, a) = O(X, p(a)). (21)

Since Poisson structure P is integrable, it defines a Lie algebroid whose anchor map is P* Letus use P* instead of
L in (20) and (21), then we get

d(E®((I,dENX,Y,a)+d&E(N, (X,Y),a) =+dO(X,Y,P*(a)), (22)

—d&(X,a)=dE(IX, 1a) + (£ ® (i, dEN(X, &) = A(X, P*(a)). (23)
since d&(a, X) = a(X), (d&), (a, X) = a(1X), from (22) we have
—a(d&(X,Y)Z)~a(N:(X,Y)) =dO(X,Y, P*(a))
=ixd0(P* ()
=ixd0(P* ()
= P(a,iy,,d6)
=—a(P*(ix . d0)),

ie. a(dE(X,Y)Z +N.(X,Y))=a(P*(i,.,d6)). since above equation holds for all non-degenerate & , we get
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dE(X,Y)Z + N (X,Y) = P¥(i, ,do). (24)
On the other hand, from (23) we obtain

a(X)+a(F*X)-E(X)a(Z) = P(a,i, 0)

=—a(P*9,X).
Thus we get

F?+P%0,=-1d+£®Z. (25)
Then (i) < (i) follows from (24) and (25).

(i) < (iii): dE+1"dE - E®i,dE =50 —170 says that (t,S) is compatible with 2-forms. Also it is clear that
(t, S) and bivectors are compatible due to X is a symplectic groupoid. We will check the compatibility of (t, S) and
(1,1) -tensors. From compatibility condition of t and S, we will get dto | = Fodt and dsol =—F ods.

Forall @ € A and V € y(X), we have
dé(e,V) =dé(a,dtV)
which is equivalent to

V) = Uy (), GV,

Since Uy, = Id and U, = F*, we get

(e, F(dt(V))) = a(F(dt(V)))
= F a(dt(V))
= (Uggey, V)
=d&(a, IV)
=d&(e,dt(1V))
={a,dt(IV)).
Since this equation holds for all @ € A, F(dt) =dt(l). using s=toi,
F(ds(V)) = Fd(tei)V
= F(dt(di(V)))
=—F(dt(v))
=—ds(IV),

which shows that F(ds) = —ds(l) . Thus proof is completed.
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