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Harmonic Matrix and Harmonic Energy 
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Abstract 

We define the Harmonic energy as the sum of the absolute values of the eigenvalues of the Harmonic matrix, and establish 

some of its properties, in particular lower and upper bounds for it.  
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1. Introduction: Randic matrix and Harmonic Matrix 

Let G be a simple graph and let n21  v ; v;v   be its vertices. For n ; 2; 1;  i  , we denote the degree (the number of 

first neighbors) of the vertex vi by id . Then the molecular structure descriptor, put forward in 1975 by Milan RandiĆ 
[11]

, is 

defined as 

                              
ji~ jidd

1
 R(G)  R                                                (1) 

Where 
ji~

indicates summation over all pairs of adjacent vertices   v;v ji . Nowadays, R is referred to as the Randic 

index . 

The summands on the right hand side of formula (1) may be understood as matrix elements. This observation may serve as 

a motivation for conceiving a symmetric square matrix, called the RandiĆ matrix. 

 )(R  R(G)  R ij of order n , defined via 
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Harmonic index and graph radius. The Harmonic index is defined by Fajtlowicz
[3] 

as follows.  Given any graph G, the 

Harmonic index of G is 





ji~ ji d  d

2
 H(G)  H  

where the sum is over all edges vivj of the graph G. 

Then, we can a symmetric matrix )(Hij of order n , defined via 
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At this point it is purposeful to recall the definition of the adjacency matrix A of the graph G. Its (i; j)-entry is defined as: 
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We can call (Rij ) and (Hij) “weighted adjacency matrices”. 

2. Energies 

Graph spectral theory, based on the eigenvalues of the adjacency matrix, has well and long known applications in 

chemistry [5-7]. One of the chemically (and also math- ematically) most interesting graph energy, defined as follows. 

Let G be a simple graph on n vertices, and let A be its adjacency matrix. Let¸ n21  ; :; ;    be the eigenvalues of A. 

These are said to be the eigenvalues of the graph G and to form its spectrum. The energy E(G) of the graph G is defined as 

the sum of the absolute values of its eigenvalues 

                             



n

i

i

1

|| E(G)  E                                                         (3) 

For details on graph energy see the reviews. 

In view of the evident success of the concept of graph energy, and because of the rapid decrease of open mathematical 

problems in its theory, energies based of the eigenvalues of other graph matrices have been introduced. Of these, the 

Laplacian energy LE(G) , pertaining to the Laplacian matrix, seems to be the first [1, 2]. Burcu Bozkurt et al
[9] 

defined the 

RandiĆ energy, as the sum of absolute values of the eigenvalues of the RandiĆ matrix. They studied the Bounds for Randic 

energy. 

Along these lines of reasoning, we could think of the Harmonic energy, as the sum of absolute values of the eigenvalues of 

the Harmonic matrix. More formally: Let n21  ,, ,   be the eigenvalues of the Harmonic matrix H(G) . Knowing that 

these eigenvalues are necessarily real numbers, and that their sum is zero, the Harmonic energy can be defined as 

                         
1

( ) | |
N

I

I

HE HE G 


                                           (4) 

This definition is applicable to all graphs. 

3 Bounds for Harmonic energy 

In this section we first calculate tr(
2H ) , tr(

3H ) , and tr(
4H ) , where tr denotes the trace of a matrix. Moreover, using 

these equalities we obtain an upper and a lower bound for Harmonic energy of the graph G. 

In order to obtain our main results we give the following: 

Lemma 1. Let G be a graph with n vertices and Harmonic matrix H. Then 
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Proof. By definition, the diagonal elements of H are equal to zero. Therefore the trace of H is zero. 

Next, we calculate the matrix H
2
 . For i = j 
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Where as for i   j 
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Since the diagonal elements of R
3 
are 
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We now calculate tr(
4H ) . Because tr(

4H ) = 
22 |||| FH , where FH |||| 2

  denotes the Frobenius norm of H
2
 , we obtain  
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Theorem 2. Let G be a graph with n vertices. Then 

                    




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                                     (7) 

Proof. The variance of the numbers ,n ,2, 1;  i |,| i   is equal to 
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and is greater than or equal to zero. Now, 
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 Inequality (7) follows from Lemma 1. 

Theorem 3 Let G be a graph with n vertices and at least one edge. Then 
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Proof. Our starting point is the Holder inequality 
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which holds for any non-negative real numbers ii b ,a ; n, 1,2,  i   . Setting 23  p , ||  b , || a 34
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If G has at least one edge, then not all i „s are equal to zero. Then 0||
1

4 
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i

i and (8) can be rewritten as 
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Theorem 3 is now obtained from Lemma 1.  

We conclude this section by a simple identity for the Harmonic energy of regular graphs. 

Theorem 4. If the graph G is regular of degree r ; r > 0 , then  

)(
1

)( GE
r

GHE 
 

If, in addition r = 0 , then HE = 0 . 

Proof. Since G is regular of degree r, then  

jiji dddd
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Hence, R(G)=H(G). Theorem 4 follows from theorem 6 of [9] 
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