Relationship between Path and Series Representations for the Three Basic Univalent G-functions

Amir Pishkoo ${ }^{1,2}$, Maslina Darus ${ }^{2}$
${ }^{1}$ Nuclear Science Research School (NSTRI) P.O. Box 14395-836, Tehran, Iran apishkoo@gmail.com (corresponding author)
${ }^{2}$ School of Mathematical Sciences, Faculty of Science and Technology UniversitiKebangsaan Malaysia, 43600 Bangi, Selangor Darul.Ehsan, Malaysia maslina@ukm.my

Abstract

In this paper we demonstrate how series representation for the three basicunivalent G-functions, namely $G_{0,2}^{1,0}, G_{1,2}^{1,1}$, and $G_{1,1}^{1,1}$ can be obtained from theirMellin-Barnes path integral representations. In two special cases, the images of thirdbasic univalent G-function $G_{1,1}^{1,1}$ are derived by the Biernacki and Libera operators.

Keywords: Meijer's G-function; Univalent function; Univalent G-function; Biernackioperator; Libera operator.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 6, No 1
editor@cirworld.com
www.cirworld.com, member.cirworld.com

INTRODUCTION

In mathematics, the Meijer's G-function was introduced by Cornelis Simon Meijer(1946) as a very general function intended to include all elementary functions andmost of the known special functions, for instance:

$$
\begin{array}{ll}
\text { • } \sin z=\sqrt{\pi} G_{0,2}^{1,0}\left(\left.\frac{z^{2}}{4}\right|_{\frac{1}{2}, 0} ^{-}\right), & -\frac{\pi}{2}<\arg z \leq \frac{\pi}{2} \\
\text { - } \cos z=\sqrt{\pi} G_{0,2}^{1,0}\left(\left.\frac{z^{2}}{4}\right|_{0, \frac{1}{2}} ^{-}\right), & \forall z \\
\text { - } \ln z=G_{2,2}^{1,2}\left(z-\left.1\right|_{1,0} ^{1,1}\right), & \forall z \\
\text { - } J_{\nu}(z)=G_{0,2}^{1,0}\left(\left.\frac{z^{2}}{4}\right|_{\frac{\nu}{2}, \frac{-\nu}{2}} ^{-}\right), & -\frac{\pi}{2}<\arg z \leq \frac{\pi}{2}
\end{array}
$$

A definition of the Meijer's G-function is given by the path integral in the complexplane, called Mellin-Barnes type integral see [1-3]:

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{l}
a_{1} \ldots a_{p} \tag{1.1}\\
b_{1} \ldots b_{q}
\end{array} \right\rvert\, z\right)=\frac{1}{2 \prod i} \int_{L} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} z^{s} d s
$$

For the function

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p} \tag{1.2}\\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)
$$

The integers $m ; n ; p ; q$ are called orders of the G-function; \mathbf{a}_{p} and $\mathbf{b}_{\mathbf{q}}$ are called "parameters"and in general, they are complex numbers. The definition holds under theassumptions: $0 \leq m \leq q$ and $0 \leq n \leq p$, where m, n, p, and q are integer numbers. $\ln [4]$ the univalent Meijer's G-functions are classified into three types in the form of thefollowing proposition:

Proposition 1.1 All of the univalent Meijer's G-functions, $G_{p, q+1}^{1, p}$, can be considered as the generalised (q-tuple) fractional differ-integrals of one of the three simplest univalent G-functions, namely, $G_{0,2}^{1,0} ; G_{1,2}^{1,1}$; and $G_{1,1}^{1,1}$, depending on whether $p<q$; $p=q ; p=q+1$.
In [5-8] G-functions are directly obtained as the solution in Micro- and Nano-structures, and in physical models such as Diffusion equation, Laplace's equation, and Schrodingerequation, respectively.

The classical Erdélyi-Koberoperators $I_{i, m}^{(2),\left(\alpha_{4}\right)} ; m$ transform one univalent Meijers G-function of the lower rank to another univalent Meijers G-function of the upper rankas the following lemma:

Lemma 1.2 Let $|\lambda|<1$ ($|\lambda|<1$ forp $=q+1$), then

$$
G_{p, q+1}^{1, p}\left(\left.\begin{array}{ll}
1-a_{1}, \ldots, 1-a_{p} \tag{1.3}\\
0,1-b_{1}, \ldots, 1-b_{q}
\end{array} \right\rvert\,-z\right)= \begin{cases}I_{1,1}^{a_{p}-1, b_{q}-a_{p}}\left\{G_{p-1, q}^{1, p-1}\left(0,1-b_{1}, \ldots, 1-b_{q-1} \mid-z\right)\right\} & \text { if } \\
b_{q}>a_{p} \\
D_{1,1}^{b_{q}-1, a_{p}-b_{q}}\left\{G_{p-1, q}^{1, p-1}\left(a_{0,1-a_{1}, \ldots, 1-a_{p}, 1-1-b_{q-1}}^{1-2} \mid-z\right)\right\} & \text { if } \quad b_{q}<a_{p}\end{cases}
$$

Under the following conditions:

$$
\begin{equation*}
\delta_{k}>0, \mu=1, \gamma_{k}>-2 \tag{1.4}
\end{equation*}
$$

these operators in the space of analytic functions, A, maps the class A onto itself.

$$
\begin{equation*}
I_{1, m}^{\left(\gamma_{k}\right),\left(\delta_{k}\right)} f(z)=z \sum_{n=0}^{\infty} a_{n} \prod_{k=1}^{m} \frac{\Gamma\left(\gamma_{k}+n+2\right)}{\Gamma\left(\gamma_{k}+\delta_{k}+n+2\right)} z^{n} \tag{1.5}
\end{equation*}
$$

maps the class A onto itself [9]. In [10] Kiryakova et al. introduced other form of definitions for well-known operators by using generalised fractional calculus. For instance form of the Biernacki and Libera operators are respectively as follows:

$$
\begin{equation*}
B f(z)=\int_{0}^{z} \frac{f(\xi)}{\xi} d \xi=\int_{0}^{1} \frac{f(z \sigma)}{\sigma} d \sigma=I_{1}^{-1,1} f(z), \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
L f(z)=\frac{2}{z} \int_{0}^{z} f(\xi) d \xi=2 \int_{0}^{1} f(z \sigma) d \sigma=2 I_{1}^{0,1} f(z) \tag{1.7}
\end{equation*}
$$

2 MAIN RESULTS

2.1The Firstbasicunivalent G-function

In the study of basic univalent G-functions we first determine the position of poles andzeroes of functions inside the path integral.

$$
\begin{equation*}
G_{0,2}^{1,0}\left[\bar{b}_{1}, b_{2} \mid z\right]=\frac{1}{2 \pi i} \int_{L} \frac{\Gamma\left(b_{1}-s\right) z^{s}}{\Gamma\left(1-b_{2}+s\right)} d s . \tag{2.1}
\end{equation*}
$$

Here we see that:

1. Position of poles $\Gamma\left(b_{1}-s\right): s=b_{1}+n ; n=0,1,2, \ldots$.
2. Position of zeroes $\frac{1}{\Gamma\left(1-b_{2}+s\right)}: s=b_{2}-1-n ; n=0,1,2, \ldots$.

We obtain the following
Theorem 2.3/f L in (2.1) is a loop beginning and ending at $+\infty$, encircling all polesof $\Gamma\left(b_{1}-s\right)$ exactly once in the negative direction, then

$$
\begin{equation*}
G_{0,2}^{1,0}\left[\overline{b_{1}, b_{2}} \mid z\right]=\sum_{n=0}^{\infty} \frac{1}{\Gamma\left(1+b_{1}-b_{2}+n\right)} \frac{z^{b_{1}+n}}{n!} \tag{2.2}
\end{equation*}
$$

Proof 1At a simple pole, the residue of function f is given by

$$
\operatorname{Res}(f, c)=\lim _{s \rightarrow c}(s-c) f(s) .
$$

So the residueis given by $\frac{(-1)^{n-1}}{n!}$. Then by putting $\mathrm{s}=\mathrm{n}+\mathrm{b}_{1}$ in expression $\frac{z^{s}}{\Gamma\left(1-b_{2}+s\right)}$ we obtain (2.2).

Example 2.1 If $\boldsymbol{b}_{1}=0 ; b_{2}=1 / 2$ and $z \rightarrow \frac{z^{2}}{4}$ in (2.1), then we get

$$
\begin{equation*}
\cos z=G_{0,2}^{1,0}\left[\Gamma_{0, \frac{1}{2}} \frac{z^{2}}{4}\right]=\sqrt{\pi}\left(\frac{1}{2 \pi i}\right) \int \frac{\Gamma(-s) z^{2 s}}{4 \Gamma\left(\frac{1}{2}+s\right)} d s \tag{2.3}
\end{equation*}
$$

Corollary 2.4Pulting $b_{1}=0 ; b_{2}=1 / 2$ and $z \rightarrow \frac{z^{2}}{4}$ in (2.2) gives

$$
\begin{equation*}
\cos z=G_{0,2}^{1,0}\left[\left.-\frac{-, \frac{1}{2}}{} \right\rvert\, \frac{z^{2}}{4}\right]=\sum_{n=0}^{\infty} \frac{1}{\Gamma\left(\frac{1}{2}+n\right)} \frac{z^{2 n}}{4^{n} n!} \tag{2.4}
\end{equation*}
$$

while $\Gamma\left(\frac{1}{2}+n\right)=\frac{(2 n)!}{4^{n} n!} \sqrt{\pi}=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}$ we obtain

$$
\begin{equation*}
\cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!} \tag{2.5}
\end{equation*}
$$

Figure 1: Poles and zeroes of $\cos z=G_{0,2}^{1,0}\left[\frac{-1, \frac{1}{2}}{4}\right]$
It is noted that the product of all the odd integers up to some odd positive integer kiscalled the double factorial of k, and denoted by k!!. Next,
Theorem 2.5 Let $p=1, q=2$ in Lemma 1.2 such that

$$
G_{1,3}^{1,1}\left[\left.\begin{array}{l}
a_{1} \\
a_{1}, b_{2}, b_{3}
\end{array} \right\rvert\,-z\right]=I_{1,1}^{-a_{1}, a_{1}-b_{3}} G_{0,2}^{1,0}\left[-\overline{0, b_{2}} \mid-z\right],
$$

then (2.2) implies that

$$
\begin{equation*}
G_{1,3}^{1,1}\left[0_{0, b_{2}, b_{3}}^{a_{1}} \mid-z\right]=\sum_{n=0}^{\infty} \frac{\Gamma\left(1-a_{1}+n\right)}{\Gamma\left(1-b_{2}+n\right) \Gamma\left(1-b_{3}+n\right)} \frac{z^{n}}{n!} \tag{2.6}
\end{equation*}
$$

2.2 The secondbasicunivalent G-function

$$
\begin{equation*}
\left.G_{1,2}^{1,1}{ }_{b_{1}, b_{2}}^{a_{1}} \mid z\right]=\frac{1}{2 \pi i} \int_{L} \frac{\Gamma\left(b_{1}-s\right) \Gamma\left(1-a_{1}+s\right) z^{s}}{\Gamma\left(1-b_{2}+s\right)} d s \tag{2.7}
\end{equation*}
$$

Here we see that:

1. Position of poles $\Gamma\left(b_{1}-s\right): s=b_{1}+n ; n=0,1,2$,
2. Position of poles $\Gamma\left(1-a_{1}+s\right)$: $s=a_{1}-1-n ; n=0,1,2, \ldots$.
3. Position of zeroes $\frac{1}{\Gamma\left(1-b_{2}+s\right)}: s=b_{2}-1-n ; n=0,1,2, \ldots$.

Here we have
Theorem 2.6 If $a_{1}-b_{1} \neq 1,2,3, \ldots$, which implies that no pole of $\Gamma\left(b_{1}-s\right)$ coincideswith any pole of $\Gamma\left(1-a_{1}+s\right)$, then

$$
\begin{equation*}
G_{1,2}^{1,1}\left[b_{1}, b_{2} \mid z\right]=\sum_{n=0}^{\infty} \frac{\Gamma\left(1-a_{1}+b_{1}+n\right)}{\Gamma\left(1+b_{1}-b_{2}+n\right)} \frac{z^{b_{1}+n}}{n!} \tag{2.8}
\end{equation*}
$$

Proof 2. At a simple pole, the residue of function f is given by

$$
\operatorname{Res}(f, c)=\lim _{s \rightarrow c}(s-c) f(s)
$$

L in (2.7) is a loop beginning and ending at $+\infty$, encircling all poles of $\Gamma\left(b_{1}-s\right)$ exactlyonce in the negative direction, but not encircling any pole of $\Gamma\left(1-a_{1}+s\right)$. So the residueis given by $\frac{(-1)^{n-1}}{n!}$. Then by putting $s=n+1$ in $\frac{\Gamma(1-\mathrm{a} 1+\mathrm{s}) z^{s}}{\Gamma\left(1-b_{2}+s\right)}$ we obtain (2:8).
Example 2.2 If $a_{1}=1+l, b_{1}=0$ and $b_{2}=-i+1 / 2$ in (2.7), then we have

$$
\left.\left.G_{1,2}^{1,1} L_{0, i+\frac{1}{2}}^{1+i} \right\rvert\, z\right]=\frac{1}{2 \pi i} \int_{L} \frac{\Gamma(-s) \Gamma(-i+s)}{\Gamma\left(\frac{1}{2}+i+s\right)} z^{s} d s
$$

Figure 2: Poles and zeroes of $G_{1,2}^{1,1}\left[{ }_{0, i+\frac{1}{2}}^{1+i} z\right]$
If equal parameters appear among the a_{p} and b_{q} determining the factors in the numerator and the denominator of the integrand, the fraction can be simplified, and the order of the function thereby be reduced. If $a_{1}=b_{2}$ then

$$
\begin{equation*}
G_{1,2}^{1,1}\left[a_{b_{1}, b_{2}} \mid z\right]=G_{0,1}^{1,0}\left[-b_{1} \mid z\right]=\frac{1}{2 \pi i} \int_{L} \Gamma\left(b_{1}-s\right) z^{s} d s \tag{2.9}
\end{equation*}
$$

Here we see that:

1. Position of poles $\Gamma\left(b_{1}-s\right): s=b_{1}+n ; n=0,1,2, \ldots$.
2. Position of zeroes: there are no zeroes.

Example 2.3 If we put $b_{1}=0$ in (2.9); then we get exponential function

$$
\begin{equation*}
e^{-z}=G_{0,1}^{1,0}[0 \mid z]=\frac{1}{2 \pi i} \int_{L} \Gamma(-s) z^{s} d s \tag{2.10}
\end{equation*}
$$

Corollary 2.7 Putting $a_{1}=b_{2}$ and $b_{1}=0$ in (2.8) verifies (2.10)

$$
e^{-z}=G_{0,1}^{1,0}[0 \mid z]=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Next an interesting result as follows:
Theorem 2.8 Let $p=2, q=2$ in Lemma 1.2 such that

$$
G_{2,3}^{1,2}\left[\left.\begin{array}{l}
a_{1}, a_{2} \\
0, b_{2}, b_{3}
\end{array} \right\rvert\,-z\right]=I_{1,1}^{-a_{2}, a_{2}-b_{3}} G_{1,2}^{1,1}\left[\left.\begin{array}{l}
a_{1} \\
0_{1}, b_{2}
\end{array} \right\rvert\,-z\right],
$$

then (2.8) implies that

$$
\begin{equation*}
\left.G_{2,3}^{1,2}\left[0, a_{1}, a_{2}, b_{3}\right) \mid-z\right]=\sum_{n=0}^{\infty} \frac{\Gamma\left(1-a_{1}+n\right) \Gamma\left(1-a_{2}+n\right)}{\Gamma\left(1-b_{2}+n\right) \Gamma\left(1-b_{3}+n\right)} \frac{z^{n}}{n!} \tag{2.11}
\end{equation*}
$$

Proof 4 Using (1.5) with $\gamma_{k}=-a_{2} ; \delta_{k}=a_{2}-b_{3} ; m=1 \operatorname{and} f(z)=G_{1,2}^{1,1}\left[{ }_{b_{1}, b_{2}}^{a_{1}} \mid z\right]$ givenby (2.8) yields series representation for $\left.G_{2,3}^{1,2}\left[\begin{array}{l}a_{1}, b_{2}, b_{3}\end{array}\right]-z\right]$.

2.3 The third basic univalent G-function

We begin with the definition of third basic univalentG-function, $G_{1,1}^{1,1}$, asfollows:

$$
\begin{equation*}
G_{1,1}^{1,1}\left[b_{b_{1}}^{a_{1}} \mid-z\right]=\frac{1}{2 \pi i} \int_{L} \Gamma\left(b_{1}-s\right) \Gamma\left(1-a_{1}+s\right)(-z)^{s} d s \tag{2.12}
\end{equation*}
$$

Here we see that:

1. Position of poles $\Gamma\left(\mathrm{b}_{1}-\mathrm{s}\right): \mathrm{s}=\mathrm{b}_{1}+\mathrm{n} ; \mathrm{n}=0,1,2, \ldots$.
2. Position of poles $\Gamma\left(1-a_{1}+s\right): s=a_{1}-1-n ; n=0,1,2, \ldots$.
3. Position of zeroes: there are no zeroes.

Theorem 2.9 Let $a_{1}-b_{1} \neq 1,2,3, \ldots$, which implies that no pole of $\Gamma\left(b_{1}-s\right)$ coincides with any pole of $\Gamma\left(1-a_{1}+s\right)$, then

$$
\begin{equation*}
G_{1,1}^{1,1}\left[b_{1}^{a_{1}} \mid-z\right]=\sum_{n=0}^{\infty} \frac{\Gamma\left(1-a_{1}+b_{1}+n\right)}{n!} z^{b_{1}+n} \tag{2.13}
\end{equation*}
$$

Proof 5 At a simple pole, the residue of function \boldsymbol{f} is given by

$$
\operatorname{Res}(f, c)=\lim _{s \rightarrow c}(s-c) f(s)
$$

L in (2.12) is a loop beginning and ending at $+\infty$, encircling all poles of $\Gamma\left(b_{1}-s\right)$ exactly once in the negative direction, but not encircling any pole of $\Gamma\left(1-a_{1}+s\right)$. So the residue is given with $\frac{(-1)^{n-1}}{n!}$. Then by putting $s=n+1$ in $\Gamma\left(1-a_{1}+s\right)(-z)^{s}$ we obtain (2.13).

Example 2.4 If we puta ${ }_{1}=0$ andb $_{1}=1$ then the Koebe function can be obtained

$$
\begin{equation*}
K(z)=\frac{z}{(1-z)^{2}}=G_{1,1}^{1,1}\left[\left.\frac{0}{1} \right\rvert\,-z\right]=\frac{1}{2 \pi i} \int_{L} \Gamma(1-s) \Gamma(1+s) z^{s} d s \tag{2.14}
\end{equation*}
$$

Figure 3: Poles of Koebe function $G_{1,1}^{1,1}\left[{ }_{1}^{0}-z\right]$
Corollary 2.10 Putting $a_{1}=0$ and $b_{1}=1$ in (2.13) verifies (2.14)

$$
\left.G_{1,1}^{1,1}{ }_{1}^{1} \mid-z\right]=\sum_{n=0}^{\infty} \frac{\Gamma(2+n)}{n!} z^{n+1}=\sum_{n=0}^{\infty}(n+1) z^{n+1}=z+2 z^{2}+3 z^{3}+\ldots
$$

Theorem 2.11 Let $p=2 ; q=1$ in Lemma 1.2 such that

$$
G_{2,2}^{1,2}\left[{ }_{0, b_{2}}^{a_{1}, a_{2}} \mid-z\right]=I_{1,1}^{-a_{2}, a_{2}-b_{2}} G_{1,1}^{1,1}\left[{ }_{0}^{a_{1}} \mid-z\right],
$$

then (2.13) implies that

$$
\begin{equation*}
G_{2,2}^{1,2}\left[a_{0, b_{2}}^{a_{1}, a_{2}} \mid-z\right]=\sum_{n=0}^{\infty} \frac{\Gamma\left(1-a_{1}+n\right) \Gamma\left(1-a_{2}+n\right)}{\Gamma\left(1-b_{2}+n\right)} \frac{z^{n}}{n!} \tag{2.15}
\end{equation*}
$$

Proof 6 Using (1.5) with $\gamma_{k}=-a_{1} ; \delta_{k}=a_{1}-b_{2} ; m=1$ and $f(z)=G_{1,1}^{1,1}\left[{ }_{1}^{a_{1}} \mid-z\right]$ givenby (2.13) yields series representation for $\left.G_{2,2}^{1,2}\left[\begin{array}{c}a_{1}, a_{2} \\ 0, b_{2}\end{array}\right]-z\right]$.
Corollary 2.12 Putting $\mathrm{a}_{2}=1$ and $\mathrm{b}_{2}=0$ in (2.15), and using of (1.6) gives imageof $G_{1,1}^{1,1}$ by Biernacki operator

$$
G_{2,2}^{1,2}\left[a_{0,0}^{a_{1}, 1} \mid-z\right]=I_{1,1}^{-1,1} G_{1,1}^{1,1}\left[a_{0}^{a_{1}} \mid-z\right]=\sum_{n=0}^{\infty} \Gamma\left(1-a_{1}+n\right) \frac{z^{n}}{(n+1)!}
$$

Corollary 2.13 Putting $\mathrm{a}_{2}=0$ and $\mathrm{b}_{2}=0$ in (2.15), and using of (1.7) gives imageof $G_{1,1}^{1,1}$ by Libera operator

$$
\left.G_{2,2}^{1,2}[0,-1) \mid-z\right]=I_{1,1}^{0,1} G_{1,1}^{1,1}\left[{ }_{0}^{a_{1}} \mid-z\right]=\sum_{n=0}^{\infty} \Gamma\left(1-a_{1}+n\right)(n+1) \frac{z^{n}}{(n+2)!}
$$

ACKNOWLEDGMENTS

This work was supported by MOHE with the grant number:ERGS/1/2013/STG06/UKM/01/2.

REFERENCES

[1] Klimyik, A. 2001. Meijer G-function, Springer, Berlin, 2001.
[2] Askey, R. 2010. Meijer G-function. Cambridge: Cambridge University Press.
[3] Erd’elyi, A., Magnus, W., Oberhettinger, F.
\&Tricomi, F. 1953. Higher transcendentalfunctions. New York: McGrawHill.
[4] Pishkoo, A. \&Darus, M. 2012. Fractional differintegral transformations of univalent Meijers G-functions. Journal of Inequalities and Applications (2012): Article 36.
[5] Pishkoo, A. \&Darus, M. 2013. Some Applications of Meijer G-functions as Solutions of Differential Equations in Physical Models Journal of Mathematical Physcis, Analysis, Geometry3 (9): 379-391.
[6] Pishkoo, A. \&Darus, M. 2013. Meijers G-functions (MGFs) in Micro- and Nano-structures. Journal of Computational and Theoretical Nanoscience 10 (10): 2478-2483.
[7] Pishkoo, A. \&Darus, M. 2012. Meijers G-functions as the solution of Schrodinger equation. Proceeding of the 43rd Iranian Mathematics Conference. University of Tabriz, Tabriz, Iran.
[8] Pishkoo, A. \&Darus, M. 2013. G-function solutions for Diffusion and Laplace's equations, Journal of Advances in Mathematics, 4(1): 359-365.
[9] Kiryakova, V. 1994. Generalized fractional calculus and applications., Vol. 301. Chapman \& Hall/CRC.
[10] Kiryakova, V. ,Saigo, M. \&Srivastava, H., 1998. Some criteria for univalence of analyticfunctions involving generalized fractional calculus operators, Fract. Calc. Appl. Anal. 1 (1):79--104.

