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ABSTRACT 

In this paper we demonstrate how series representation for the three basicunivalent G-functions, namely 𝐺0,2
1,0

,𝐺1,2
1,1

, and 

𝐺1,1
1,1

 can be obtained from theirMellin-Barnes path integral representations.In two special cases, the images of thirdbasic 

univalent G-function 𝐺1,1
1,1

 are derived by the Biernacki and Libera operators. 
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INTRODUCTION 

In mathematics, the Meijer's G-function was introduced by Cornelis Simon Meijer(1946) as a very general function 
intended to include all elementary functions andmost of the known special functions, for instance: 

 

A definition of the Meijer's G-function is given by the path integral in the complexplane, called Mellin-Barnes type integral 
see [1-3]: 

 

For the function 

 

The integers m; n; p; q are called orders of the G-function; ap and bq are called "parameters"and in general, they are 
complex numbers. The definition holds under theassumptions: 0≤ m≤ q and 0≤ n ≤ p, where m, n, p, and q are integer 
numbers. In[4] the univalent Meijer's G-functions are classified into three types in the form of thefollowing proposition: 

Proposition 1.1All of the univalent Meijer's G-functions, 𝐺𝑝 ,𝑞+1
1,𝑝

, can be considered as the generalised (q-tuple) fractional 

differ-integrals of one of the three simplest univalent G-functions, namely, 𝐺0,2
1,0

; 𝐺1,2
1,1

; and 𝐺1,1
1,1

, depending on whether p < q; 

p = q; p = q+1. 

In [5-8] G-functions are directly obtained as the solution in Micro- and Nano-structures,and in physical models such as 
Diffusion equation, Laplace's equation, and Schrodingerequation, respectively. 

The classical Erdélyi-Koberoperators ;m transform one univalent MeijersG-function of the lower rank to another 
univalent MeijersG-function of the upper rankas the following lemma: 

Lemma 1.2 Let ǀzǀ <1 (ǀzǀ <1 forp = q + 1), then 

 

Under the following conditions: 

 

these operators in the space of analytic functions, A, maps the class A onto itself. 

 

maps the class A onto itself [9]. In [10] Kiryakova et al. introduced other form of definitions for well-known operators by 
using generalised fractional calculus. For instance form of the Biernacki and Libera operators are respectively as follows: 
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and 

 

2 MAIN RESULTS 

2.1The Firstbasicunivalent G-function 

In the study of basic univalent G-functions we first determine the position of poles andzeroes of functions inside the path 
integral. 

 

Here we see that: 

1. Position of poles Γ(b1-s): s = b1 + n; n = 0,1,2,….   . 

2. Position of zeroes 
1

Γ(1−𝑏2+s)
:s = b2-1-n; n = 0,1,2,…   . 

We obtain the following 

Theorem 2.3If L in (2.1) is a loop beginning and ending at +∞, encircling all polesof Γ(b1-s) exactly once in the 

negative direction, then 

 

Proof 1At a simple pole, the residue of function f is given by 

 

 

So the residueis given by 
(−1)𝑛−1

𝑛 !
. Then by putting s = n + b1 in expression

𝑧 𝑠

 Γ(1−𝑏2+s)
 we obtain (2.2). 

 

Example 2.1If b1 = 0; b2 = 1/2 and 𝑧 →
𝑧2

4
 in (2.1), then we get 

 

Corollary 2.4Putting b1 = 0; b2 = 1/2 and 𝑧 →
𝑧2

4
 in (2.2) gives 
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Figure 1: Poles and zeroes of cos z = 𝐺0,2
1,0[ ǀ

𝑧2

40,
1

2

− ] 

It is noted that the product of all the odd integers up to some odd positive integer kiscalled the double factorial of k, and 
denoted by k!! . Next, 

Theorem 2.5 Let p=1,q=2 in Lemma 1.2 such that 

 

then (2.2) implies that 

 

2.2 The secondbasicunivalent G-function 

 

 

Here we see that: 

1. Position of poles Γ(b1-s): s = b1 + n; n = 0,1,2,….   . 

2. Position of poles Γ(1-a1+s): s = a1-1-n; n = 0,1,2,…   . 

3. Position of zeroes 
1

Γ(1−𝑏2+s)
:s = b2-1-n; n = 0,1,2,…   . 

Here we have 

Theorem 2.6 If a1-b1≠ 1,2,3,… , which implies that no pole of Γ(b1-s) coincideswith any pole of Γ(1-a1+s), then 

 

 

Proof 2. At a simple pole, the residue of function f is given by 
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L in (2.7) is a loop beginning and ending at +∞, encircling all poles of Γ(b1-s) exactlyonce in the negative direction, but not 

encircling any pole of Γ(1-a1+s). So the residueis given by 
(−1)𝑛−1

𝑛 !
. Then by putting s = n + 1 in 

Γ(1−a1+s)𝑧 𝑠

 Γ(1−𝑏2+s)
 we obtain (2:8). 

Example 2.2 If a1 = 1 + I, b1 = 0 and b2 = -i + 1/2 in (2.7), then we have 

 

 

Figure 2: Poles and zeroes of 𝐺1,2
1,1[ ǀ𝑧]

0,𝑖+
1

2

1+𝑖  

If equal parameters appear among the ap and bq determining the factors in the numerator and the denominator of the 
integrand, the fraction can be simplified, and the order of the function thereby be reduced. If a1 = b2 then 

 

Here we see that: 

1. Position of poles Γ(b1-s): s = b1 + n; n = 0,1, 2,…   . 

2. Position of zeroes: there are no zeroes. 

Example 2.3 If we put b1 = 0 in (2.9); then we get exponential function 

 

Corollary 2.7 Putting a1 = b2 and b1 = 0 in (2.8) verifies (2.10) 

 

 

Next an interesting result as follows: 

Theorem 2.8 Let p = 2, q = 2 in Lemma 1.2 such that 
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then (2.8) implies that 

 

Proof 4 Using (1.5) with 𝛾𝑘 = −𝑎2 ; 𝛿𝑘 = 𝑎2 − 𝑏3 ;𝑚 = 1and𝑓 𝑧 = 𝐺1,2
1,1[ ǀ𝑧]𝑏1,𝑏2

𝑎1 givenby (2.8) yields series  representation 

for 𝐺2,3
1,2[ ǀ − 𝑧].0,𝑏2,𝑏3

𝑎1,𝑎2  

 

2.3 The third basic univalent G-function  

We begin with the definition of third basic univalentG-function, 𝐺1,1
1,1

,asfollows: 

 

 

Here we see that: 

1. Position of polesΓ(b1-s) : s=b1+n; n=0,1,2,…   . 

2. Position of polesΓ(1-a1+s) : s=a1-1-n; n=0,1,2,…   .  
3. Position of zeroes: there are no zeroes. 

 

Theorem 2.9 Let a1-b1≠1,2,3,…, which implies that no pole of Γ(b1-s) coincides with any pole of Γ(1-a1+s), then 

 

Proof 5 At a simple pole, the residue of function f is given by 

 

 

L in (2.12) is a loop beginning and ending at +∞, encircling all poles of Γ(b1-s) exactly once in the negative direction, but 

not encircling any pole of Γ(1-a1+s).  So the residue is given with 
(−1)𝑛−1

𝑛 !
. Then by putting s=n+1 in Γ(1-a1+s)(-z)

s 
we obtain 

(2.13). 

Example 2.4 If we puta1= 0andb1 = 1then the Koebe function can be obtained 
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Figure 3: Poles of Koebe function 𝐺1,1
1,1[ −𝑧]1

0  

Corollary 2.10 Putting a1 = 0 and b1 = 1 in (2.13) verifies (2.14) 

 

Theorem 2.11 Let p = 2; q = 1 in Lemma 1.2 such that 

 

then (2.13) implies that 

 

Proof 6 Using (1.5) with 𝛾𝑘 = −𝑎1 ;  𝛿𝑘 = 𝑎1 − 𝑏2 ;𝑚 = 1 and 𝑓 𝑧 = 𝐺1,1
1,1[ ǀ − 𝑧]0

𝑎1 givenby (2.13) yields series  

representation for 𝐺2,2
1,2[ ǀ − 𝑧].0,𝑏2

𝑎1,𝑎2  

Corollary 2.12 Putting a2 = 1 and b2 = 0 in (2.15), and using of (1.6) gives imageof 𝐺1,1
1,1

 by Biernacki operator 

 

Corollary 2.13 Putting a2 = 0 and b2 =0 in (2.15), and using of (1.7) gives imageof𝐺1,1
1,1

by Libera operator 
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