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ABSTRACT 

Option contracts can be valued by using the Black-Scholes equation, a partial differential equation with initial conditions. 
An exact solution for European style options is known. The computation time and the error need to be minimized 
simultaneously. In this paper, the authors have solved the Black-Scholes equation by employing a reasonably accurate 
implicit method.  Options with known analytic solutions have been evaluated. Furthermore, an overall second order 
accurate space and time discretization has been accomplished in this paper. 
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INTRODUCTION 

Suppose a person possessing Microsoft shares, calls in today with the following offer: in 3 months’ time, you have the 
option to purchase Microsoft shares from him for $50 per share. 

The key point is that an individual has the option to buy the shares. Three months from now, he/she will check the market 
price and decide whether to exercise that option. This deal has no downside - three months from now he/she either makes 
a profit or walks away unscathed, On the other hand, the seller has no potential gain and an unlimited potential loss

*
. To 

compensate, there will be a cost for the individual to enter into the option contract. He/she must pay the seller some 
money up front. 

The option valuation problem [1, 7] is thus to compute a fair value for the option. More precisely, it is to compute a fair 
value at which the option may be bought and sold in an open market. This option is described as a European Call or 
vanilla option.  

RELATED WORK 

Digital options are exotic options with a discontinuous initial condition [8]. Whereas Crank-Nicolson shows oscillations in 
hedge parameter [8], BDF4 [5, 8] is accurate in all hedge parameters. With the transformed fourth order accurate scheme, 
the coordinate S = E must be exactly between two grid points for fourth order convergence. Then, also for digital options, 
a small error is obtained with a few grid points. The implied volatility modeling is also used to value an option with given 
option and asset contracts. The solution is typically obtained in fewer than 10 iterations by applying the inverse quadratic 
interpolation [9]. The error decreases almost quadratically. 

 Numerical experiments are necessary to determine the values of European Call/Put options and test for accuracy. The 
reasons behind Choosing Crank-Nicholson Scheme are second order accuracy and unconditional stability. The methods 
mentioned above don’t posses unconditional stability and is the strength of the proposed finite difference method [4]. 

Our work is organized as follows: Section III briefly discusses the governing differential equation, followed by section IV 
where the numerical framework is elucidated. Section V contains a couple of illustrations involving the Put/Call [7] options. 
Notations and terminologies are defined in appendices A and B respectively. Appendix C contains a brief discussion of the 
analytical solution to the Black-Scholes partial differential equation for the general readership. 

 THE BLACK-SCHOLES EQUATION 

Assumptions:  

The fundamental assumption made about the random movement of asset prices for a more flexible hypothesis. 

o We assume that present price is a full reflection of the past history experienced. And does not contain any more 
information;  

o We assume that we would obtain immediate response for updated information about an asset. 

Model: 

Asset price modeling identifies modeling the arrival of new information which affects the price of an asset. Absolute 
change in an asset is a relative measurement of the change in price. This is a better indicator of its size aspect than 
absolute measures. 

Let’s consider that at time t , the asset price is S . Let us consider a small subsequent time interval dt , during which S  

changes to dSS  . Now, there is deterministic and anticipated return represented by dt , where   is known as drift. 

The other factor affecting the asset price is the random change in the asset price in response to external effects. It is 

represented by a random sample drawn from a normal distribution with mean zero denoted as dX , 

Putting the above two factors together we obtain a stochastic differential equation, 

                                                dtdX
S

dS
  ,  (1)                                                  

which is the mathematical representation for generating asset prices [1, 3]. 

The equation (1) gives interesting and important information concerning the behavior of S in a probabilistic sense. At 

time
'tt  , suppose the price is

'S , and then 
'S  will be distributed about 0S  with a probability density function.  The 

future asset price
'S  is thus most likely to be close to 0S  and less likely to be far away. Thus, the equation generates time 

series – each time the series is restarted a different path results. Each path is called a realization of the random walk.  

The Black-Scholes Partial Differential Equation, the derivation of which is well-known, is given below  
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If ES  at expiry, then in financial sense, for call option, there will be profit ES  , handing over an amount E , to obtain 

an asset worth, while, if ES  , then there will be loss of SE  . Thus the value of the call option at expiry can be written 

as  

                                                  0,max, ESTSC                                           (3)                                          

 

As the time tends to expiry date the value of call option approaches (6), it is known as pay-off function for European Call 
Option. This is known as the final condition of PDE (12).  

Now, from (1), if 0S then 0dS  which means pay-off is also zero. Thus, the call option is worthless on 0S even 

if there is long time to expiry. Hence, we have 

               0,0 tC                                                                    (4)                                                          

And if S  i.e. the asset price increases without bound it becomes ever more likely that the option will be exercised 

and the magnitude of the exercise price becomes less and less important. Thus as S the value of the option 

becomes that of the asset and so 

                                                     StSC ~, as S                                                 (5)                                             

 

Thus, the Black Scholes equation and boundary condition for a European Call Option is given by equations (2)-(5). 

For European Put Option, the final condition is the payoff 

                                                  0,max, SETSP                                      (6)                                                

And the initial condition  tP ,0 is determined by calculating the present value of an amount E received at timeT . For 

time-dependent interest rate, the boundary condition at 0S is  

                                                       
 




T

t

dTTr

EetP ,0                                             (7)                                               

And, 

                                                       0, TSP as S                                      (8)                                               

Thus, the Black Scholes equation and boundary conditions for a European Put Option are given by equations (2), (6)-(8). 

The analytical solution to the BSDE is not the focal point of the paper but given below, nonetheless as   

       21, dNEedSNtSC tTr                                                                                                            (9)                                       

            where 
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The corresponding calculation for a European Call Option follows similar lines. 
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NUMARICAL SOLUTION 

A. Finite Difference Methods 

The finite difference method essentially converts the ODE [2] into a coupled set of algebraic equations, with one balance 
equation for each finite volume/node in the system. The general technique is to replace the continuous derivative within 
the ODE with finite-difference approximation on a grid of mesh points that spans the domain of interest. A very interesting 
implicit method, The Runge-Kutta method has been detailed in [5]. 

A key step in the finite difference method is to replace the continuous derivative in the original ODE with appropriate 
approximation in terms of the dependent variable evaluated at different mesh points. Let’s evaluate the continuous 

variable x at discrete points ix  

ihxxixxi  00 ; 

 
xh   

For the dependent variable,  xf  the discrete representation becomes  

  ii fxf   

                      
  1 ii fhxf  

                      
  1 ii fhxf  

Using Taylor Series for i+1 and i-1 and subtracting,  we obtain 

                    

   

   

1 1

3

2 ' 2 ''' ..........
3!

i i

i i

f x h f x h

h
f x h f x

    

 
 

                                              
     211

2
' hO

h

hxfhxf
xf ii

i 


 
                                                          (10)                          

where  2hO  is the truncation error of the order of 
2h . This is the First Order Differentiation approximation. 

Similarly by adding equations for i+1 and i-1, we have 

                              
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                                                                  (11)                             

This is known as the Second Order Differentiation approximation. 

Crank-Nicholson’s Implicit Method 

The heat equation in one spatial variable accompanied by boundary conditions appropriate to a certain physical 
phenomenon is given as 
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                 with initial conditions                                  (12) 

 
    0,1,0  tutu  

                   and boundary condition 

 
  xxu sin0,   
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Now, substituting equation (10) and (11) in the differential equation (12), with possibly different step lengths h  and k , the 

central differences at ( , )
2

k
x t 

 

the result turns out to be 
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The locations of the six points in the equation in the figure below –  
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The computational form of this equation is 
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with  sr  12 and  

       kthiuktihuskthiubi  ,)1(,12,)1(  

Numerical Stability of Crank-Nicholson’s Method: 
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If we evaluate the right-hand side partly (wholly) at the end of time step 1nt , then C-N method involves the average of 

right-hand side b/w the beginning and end of time step. 

 

         2

2

1

2

2

2

1 ,

2

,

2

,,
hO

x

txFD

x

txFD

k

txFtxF nnnn 










 
 

 

The accuracy of Crank-Nicholson method is  2hO  as seen from above. 

Using Central Difference to approximate 
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Using this C-N scheme becomes 
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Now using Von Neumann stability analysis, 
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Using equations (16) and (17), 
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Since, the amplification factor is less than 1 regardless of the input values the Crank-Nicholson method is unconditionally 
stable.  

So, we obtain a tri-diagonal matrix linking 
1n

iF  and 
n

iF at every step of the scheme. Thus the price we pay for the high 

accuracy and unconditional stability of the scheme is the necessity to invert a tri-diagonal matrix equation at each time 
step. But the trade-off is profitable enough! 

Implementation Details: the pseudo code 

% Finite Difference Methods used to solve the Black-Scholes PDE equation, a parabolic Partial Differential Equation 

% Type of Option 

opt = input('Call or Put Option(0 or 1): '); 

% % Parameters 

E=input('Agreed Exercise Price(Money): '); 

r=input('Continously Compounded Interest Rate: '); 

T=input('Expiry Date(in years): '); 

% sig=input('Volatility of the Assest(0<=sigma<=1): ');  

a = rand(5);  

for i = 1:size(a) 

    for j = 1:size(a) 

        sig(i,j) = a(i,j);         

        Nx=11;  Nt=29; L=10; {Set the parameters} 

        % Call the CrankNicholsonMethod 

        u2 = CrankNicholsonMethod(opt,E,sig(i,j),r,T,Nx,Nt,L); 

%         u2 = CrankNicholsonMethod(opt,E,sig,r,T,Nx,Nt,L); 

        surf(u2) 

        hold on 

    end 

end; 

 Assign Labels: xlabel('Asset Value');ylabel('Time');zlabel('Payoff/Exercise Value'); 

CrankNicholsonMethod 

% Pricing a European option using the Crank-Nicolson method on the Black-Scholes PDE 

function [U] = CrankNicholsonMethod(type,K,sigma2,r,T,N,M,Xmax) 

 fdeltat = T/N; deltaX = Xmax/M; (Threshold)  

% Initializing matrices according to the tri-diagonal structure 

X = [];     % Exercise Price;U = [];temp = zeros(M-1,M+1); 

for i = 1:M+1 

Use U to compute the payoff matrix; 

 % The boundary values for two different types- Put and Call 

if type == 0 

    for j = 2:N+1 
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        U(1,j)=0; 

        U(M+1,j) = Xmax - K*exp(-r*((j-1)*deltat)); 

    end 

else 

    for j = 2:N+1 

        U(1,j) = K; 

        U(M+1,j) = 0; 

    end 

end 

Compute  the Matrices and diagonalize;   

% Execute the time loop 

for j = 1:N 

    matrixB = U(:,j); 

    matrixC(1,1) = temp(1,1)*U(1,j+1); 

    matrixC(M-1,1) = temp(M-1,M+1)*U(M+1,j+1); 

    known = matrixA*matrixB - matrixC; 

    U_jplus1 = zeros(M-1,1); 

    U_jplus1 = inv(matrixD)*known; 

    for k = 1:M-1 

        U(k+1,j+1)= U_jplus1(k,1); 

    end 

end 

 

% Function of the payoff 

function y = payoff(type,z,K) 

if type == 0 

    y = max(z-K,0);   % Call Option 

else y = max(K-z,0);  % Put Option 

end 

 

SIMULATION RESULTS 
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For Call Option, Agreed Price = $10, Rate of Interest = 0.1, Expiry Date = 6 months. 

The Black Scholes model is obtained as a solution to a parabolic PDE (called the Black Scholes PDE) for pricing an option 
for an underlying asset. If the asset is volatile then pricing the option through a model is particularly helpful to determine 
the Payoff function. Crank Nicholson implicit scheme is more realistic among the finite difference methods in the sense 
that it is stable regardless of the parameters. Although it is more complicated to implement Crank Nicholson scheme, 
unconditional stability is too good an issue to compromise and hence used as the numerical technique to solve the PDE in 
our work. Future work may include looking at parallel computing methods to arrive at the result faster. 

  

 

For Put Option, Agreed Price = $100, Rate of Interest = 0.25, Expiry Date = 12 months. 

 

 

The simulation study results in obtaining/fixing the price of a European option with given agreed prices for Call and put 
options respectively. The output is a time –series representation when the volatilities are varied in the range of 0 and 1. 
The results show the advantages of such modeling e.g. 

 

 The asset price follows lognormal random walk. 

 The underlying asset doesn’t pay any dividends during the lifespan of the option. 

 There are no arbitrage possibilities. 

 Trading of the underlying asset could be continuous. 
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 Short selling is permitted and the assets are divisible. 

 

The volatility of the asset is well captured and the profile doesn’t become unbounded in finite time i.e. stability is 
accomplished which is the key reason for employing Crank-Nicholson’s method. 
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Appendix A: Notation Table 

1.) t   - Time 

2.) S 0
 - Value of the asset at tt 

0
 

3.) S  -  Asset Price 

4.) E - Exercise Price 

5.) *d - Change in any  quantity over a time interval 

6.)  - Measure of the average rate of growth of the asset price 

7.)  - Volatility, measures the standard deviation of the returns 

8.) dX - Random variable, drawn from a normal distribution 

9.)   - A random variable from a standardized normal distribution 

10.)  *F  - Function 

11.) r - Risk-free interest rate 

12.) V - Value of an option, a function of S and t  

13.) C - Call Option function 

14.) P - Put Option function 

Appendix B: Terminologies 

1.) Writer: The person selling the asset. 

2.) Holder: The person buying the asset. 

3.) Expiry Date: At a prescribed time in the future, the holder/writer of the option may purchase/sell a prescribed 
asset. 

4.) Underlying Asset: The holder/writer may purchase/sell a prescribed asset at a prescribed time. 

5.) Exercise Amount/Strike Price: The holder/writer purchases a prescribed asset at a prescribed time at a 
prescribed amount. 
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6.) Arbitrage: In financial terms, there are never any opportunities to make an instantaneous risk-free profit. 

7.) Risk: Risk is commonly of two types – specific and non-specific, specific risk is the component of risk associated 
with a single asset, whereas non-specific risk is associated with factors affecting the whole market. 

Appendix C. Analytical Solution 
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This is, in-fact, the pay-off function for the BS Differential equation.  

Lets denote the Fourier transform of  ,xu  by 
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Next, evaluate the inner integral,  
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where  xu0  is given by equation (iii). Again using the change of variable,  
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is the cumulative distribution function for the normal distribution. The calculation of 2I  is identical to that of 1I except that 

 1k is replaced by  1k throughout. 

Now, substituting from equation (i) to recover 
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The corresponding calculation for a European Put Option follows similar lines. Its transformed pay-off is  
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and can be computed as above. However, having evaluated the Call, a simpler way is to use the put-call parity formula 
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for the value P of a Put, given the value of the Call. This yields 
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