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Abstract 

In this paper, a new iterative method (DGJM) is used to solve the nonlinear fractional initial-value problems(fIVPs). The 
fractional derivative is described in the Caputo sense. Approximate analytical solutions of the fIVPs are obtained. The 
results of applying this procedure to the studied cases show the high accuracy and efficiency of the approach. 
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1  INTRODUCTION 

 In the last few years, fractional differential equations (FDEs) are gaining importance owing to their applications in the field 
of visco-elasticity, feed-back amplifiers, electrical circuits, electroanalytical chemistry, fractional multipoles, neuron 
modelling, encompassing different branches of Physics, Chemistry and Biological Sciences[1-5]. The Fractional differential 
equations have recently been addressed by several researchers for a variety of problems[6, 7]. Some analytic methods for 
solving nonlinear problems were invented, including the Adomian decomposition method (ADM)[8-11, 27], Homotopy-
perturbation method (HPM)[12, 13], Variational iteration method (VIM)[14, 15], Homotopy analysis method (HAM)[16-20, 
28] and a new iterative method-DGJM [23-25]. 

 In the present paper, DGJM is applied to solve the nonlinear fractional initial-value problems (fIVPs). A nonlinear example 
shall be presented to show the efficiency and accuracy of DGJM. Furthermore, the Taylor series expansion shall be 
employed to avoid the difficulties with radical nonlinear terms. 

2  Preliminaries 

 In this section, we give some definition and properties of the fractional calculus[21]. 

 Definition 1. A real function )(xg , 0>x , is said to be in the space C , R , if there exists a real number 

>p , such that )(=)( 1 xgxxg p
, where )(0,)(1 Cxg , and it is said to be in the space 

n

C  if and only if 

C)(ng , Nn . 

 Definition 2. The Riemann-Liouville fractional integral operator )( J  of order 0 , of a function Cg , 1 , is 

defined as  
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 where )(z  is the well-known Gamma function. Some of the properties of the operator 
J , which we will need here, 

are as follows: 

 For Cg , 1 , 0,  and 1 : 
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 Definition 3. The fractional derivative )( D  of )(xg  in the Caputo’s sense is defined as 
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 for nn �<1  , Nn , 0>x , 
ng 1C . 

 The following are two basic properties of the Caputo’s fractional derivative[22]: 

 (1)Let 
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3  New iterative method-DGJM 
Daftardar-Gejji and Jafari[23] first proposed a New Iterative Method (DGJM) to solve non-linear functional equations in 
2006. They have considered the following functional equation:  

 ),()(= uNuLfu   (4) 

 where L  is a linear operator, N  is a nonlinear operator and f  is a known function. 

 We are looking for a solution u  of Eq.(4) having the series form:  
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  Since L  is a linear operator,  
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 The nonlinear operator N  is decomposed as[23-25]  
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 From Eqs.(5)–(7), Eq.(4) is equivalent to  
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  We define the recurrence relation  
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 Then,  
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 It is clear from Eq.(11) that ii u 0=  is solution of Eq.(4). Where ,0,1,2,=, iui  are given by algorithm (9). Also, the 

k -term approximate solution of Eq.(4) can be given by  
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4  Convergence of DGJM 
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 In[26], S. Bhalekar and V. Daftardar-Gejji presented the following theorems for convergence of DGJM. 

 Theorem 4.1. If N  is 
)(C  in a neighborhood of 0u  and  

 ,}1,1:),...,)(({=)( 10
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)( LnihhhuNSupuN in

nn PPPP  (12) 

 for any n  and for some real 0>L  and 1,2,...,=,1/< ieMui PP  then the series nn G 0=  is absolutely 

convergent, and moreover,  
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Theorem 4.2. If N  is 
)(C  and 

1

0

)( )(  eMuN n PP , for all n , then the series nn G 0=  is absolutely 

convergent.  

5  Numerical Example 

 In this section, we shall illustrate the applicability of DGJM to nonlinear fIVPs. We consider the following 
nonlinear fIVPs:  
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 The exact solution of the initial-value problem (14) for 2= , is  
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 In the case, Behiry obtained the series solution of the fIVPs by using differential transformation [27]. In general 
circumstances, Hashim etl. obtained the HAM series solution of the fIVPs by using homotopy analysis method [28]. Now 

we solve the fIVPs with DGJM. Firstly, expanding the nonlinear term, u , in (14)  by using the Taylor series, we get  
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 Then, the fIVPs (14)  can be approximated by  
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  According to the DGJM, in view of the algorithm(9), we construct the following recurrence relation:  
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 Then, the DGJM series solution of the initial-value problem (14) can be approximated as  
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 For the particular case 2= ,  
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Table  1: Approximate solution of (12) for some values of   using the 4-term DGJM approximation 

t   

1.25=   

 

1.5=   

 

1.75=   

 

2= (DGJM)  

 

2= (HAM)Ref.

[28]  

 

2= (Exact)  

0.0   
1.00000000  

 
1.00000000  

 
1.00000000  

 
1.00000000  

 
1.00000000  

 
1.00000000  

.1   
1.37836275  

 
1.28266260  

 
1.23784129  

 
1.21698338  

 
1.21288993  

 
1.21697814  

.2   
1.87256490  

 
1.65206467  

 
1.53461631  

 
1.47108115  

 
1.45375932  

 
1.47099037  

.3   
2.47577265  

 
2.10126029  

 
1.89032411  

 
1.76756504  

 
1.72601125  

 
1.76704923  

.4   
3.20808013  

 
2.63904388  

 
2.31109936  

 
2.11264153  

 
2.03325161  

 
2.11074085  

.5   
4.10959976  

 
3.28316063  

 
2.80697386  

 
2.51389524  

 
2.37939713  

 
2.50828745  

.6   
5.24986919  

 
4.06387321  

 
3.39325199  

 
2.98109536  

 
2.76882583  

 
2.96661654  

.7   
6.74211990  

 
5.03100449  

 
4.09358872  

 
3.52757869  

 
3.20658281  

 
3.49343764  

.8   
8.76231359  

 
6.26447112  

 
4.94501176  

 
4.17250918  

 
3.69865784  

 
4.09732727  

.9   
11.5736021  

 
7.88903647  

 
6.00549352  

 
4.94442762  

 
4.25235505  

 
4.78782299  

.0   
15.5570562  

 
10.0943002  

 
7.36491769  

 
5.88665211  

 
4.87678065  

 
5.57552765  

 

 Numerical results with comparison to Ref.[28] is given in Table 1 on the [0,1] . We can see that the numerical solution is 

in very good agreement with the exact solution when 2= . Therefore, we hold that the solution for 1.25= , 

1.5=  and 1.75=  is also credible. 

6  Conclusions 
 In this work, new iterative method-DGJM was used to derive approximate analytical solutions of the nonlinear fIVPs. The 
nonlinear terms involving radical powers were expanded by Taylor series. The DGJM is effective for the nonlinear 
fractional initial-value problems (fIVPs), and hold very great promise for its applicability to other nonlinear fractional 
differential equations.  
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