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ABSTRACT 

      This paper is devoted to derive the approximate solutions for the time-fractional (Caputo sense) coupled 

Burger’s equations with implementation of the homotopy perturbation method. The numerical results are compared 

with the exact solution. The results reveal that the presented technique is very effective and simple. 
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INTRODUCTION  

In this paper, we will implement one of these methods, namely, homotopy perturbation method (HPM) ([7]-[10]), to 

solve the propsed problem ([1], [3], [6], [12]). Unlike the traditional numerical methods, such as, the finite element 

method [5] and the finite difference method [19], HPM does not need, discretization or linearization. Recently, the 

applications of homotopy theory among scientists appeared, and the homotopy theory becomes a powerful 

mathematical tool, when it is successfully coupled with perturbation theory. Many authors (see [4], [11], [15]-[17]) are 

pointed out that HPM can overcome the difficulties arising in calculation of Adomian’s polynomials in Adomian 

decomposition method. 

Definition 1. 

The Caputo fractional derivative of the function  ( )g t  is defined as follows:
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In the following proposition, we will state a basic property. 

Proposition 1. [13]    
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The Caputo fractional derivative operator is satisfied the linear relationship and the so-called Leibnitz rule, that's: 
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where 
1

c  and 
2

c  are constants, ( )f x is continuous in [a,x] and ( )g x has n+1 continuous derivatives in [a,x]. For the 

Caputo's derivative we have 0,    C is a constant,  andD C


  [18] 
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For more details on fractional derivatives definitions and their properties see ([13], [18]). 

 Approximate Solution using HPM 

    In this section, we will illustrate how implement HPM to obtain the approximate solutions of the fraction non-linear 

coupled system of Burger's equations of the following form: 

 

                                                    2 ( ) 0,               0 1,  t > 0,D u u uu uvxx x x


                                                        (5) 

                                                    2 ( ) 0,               0 1,D v v vv uvxx x x


                                                                 (6) 

subject to the following initial conditions: 

 

                                                    ( , 0) ( , 0) ( ) sin( ).u x v x f x x                                                                                        (7) 

The exact solution of (5)-(6) for the special case 1    is given by: 

                                                    ( , ) ( , ) sin( ).
t

u x t v x t e x


                                                                                             (8) 

 

In fact, different response systems can be obtained when at less one of the parameters  and   varies. 

when 1    the fractional equations reduce to the classical coupled Burger's equations.  

Now, we will apply the HPM to obatin the approximate solutions of the system (5)-(6). 

Using the HPM, we can construct the following simple homotopies:  

 

                                                    ( , ) [ 2 ( ) ] 0,
1

H u q D u q u uu uvxx x x


                                                                        (9) 

                                                    ( , ) [ 2 ( ) ] 0,
2

H v q D v q v vv uvxx x x


                                                                     (10) 

where [0,1]q is an embedding parameter. In case q = 0, Eqs. (9)-(10) become linear equations, which are easy to solve, 

and when q = 1, Eqs.(9)-(10) turn out to be the original equations (5)-(6). 

Now, we will use the homotopy parameter q to expand the solutions: 

                                                                         2 3
( , ) ...,0 1 2 3u x t u qu q u q u                                                        (11) 

                                                                         2 3
( , ) ...,0 1 2 3v x t v qv q v q v                                                          (12) 

the approximate solution can be obtained by setting q = 1 in equations (11)-(12): 

 

                                            ( , ) ... ,               ( , ) ...  .0 1 2 3 0 1 2 3u x t u u u u v x t v v v v                                       (13) 

Substituting from (11)-(12) into (5) and (6),  respectively, and equating the terms with the identical powers of 

q, we can obtain a system of linear equations. Here we only write the first few linear equations: 
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( , ) 0,                                                                                                                                                       ( , 0) sin( ),
0 0

D u x t u x x


   (14) 

( , ) 0,                                                                                                                                                       ( , 0) sin( ),
0 0

D v x t v x x


   (15) 

( , ) 2 ( ),                                                                                                       ( , 0) 0,
1 0 0 0 0 0 0 0 1

D u x t u u u u v v u u x
xx x x x


       (16) 

( , ) 2 ( ),                                                                                                       ( , 0) 0,
1 0 0 0 0 0 0 0 1

D v x t v v v u v v u v x
xx x x x


        (17) 

( , ) 2( ) ( ),                                                            ( , 0) 0,
2 1 0 1 1 0 0 1 1 0 0 1 1 0 2

D u x t u u u u u u v u v v u v u u x
xx x x x x x x


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( , ) 2( ) ( ),                                                            ( , 0) 0.
2 1 0 1 1 0 0 1 1 0 0 1 1 0 2

D v x t v v v v v u v u v v u v u v x
xx x x x x x x


          (19) 

Take the inverse operator  J


 and J


 on both sides of the Eqs.(14)-(19), we will use the initial conditions in 

the following form: 

                                                    ( , ) sin( ),         ( , ) sin( ).
0 0

u x t x v x t x                                                                                         (20) 

So, we can obatin the approximate solutions of the system (14)-(19) in the following form: 
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Therefore, the approximate solution can be presented by the same iterative process, in the following series 

form: 

                                         
2

( , ) (1 3 )  ...,
(1 ) (1 2 ) (1 )

t t t
u x t f f f f f f

x x

   

   



     
      

                                           (25) 

                                         
2

( , ) (1 3 )  ....
(1 ) (1 2 ) (1 )

t t t
v x t f f f f f f

x x

   

   



     
      

                                           (26) 

Where f = f(x) = sin(x). In order to illustrate the advantages and the accuracy of HPM for solving the presented problem, 

we calculate the second order approximation, i.e.: 

                                            ( , ) ... ,               ( , ) ...  .0 1 2 0 1 2u x t u u u v x t v v v
HPM HPM

                                  (27) 

The behavior of the approximate solution is given the figure 1 and compared with the exact solution in figure 2.  

Conclusion and General Remarks 
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        In this article, we implemented HPM for obtaining the approximate solution of the time-fractional coupled 

Burger's equations. From the introduced numerical results, we can conclude the following properties of the presented 

method:  

(1) HPM gives a simple and a powerful mathematical tool for solving the FDEs;  

(2) HPM is an efficient and powerful method for solving a wide class of fractional differential equations;  

(3) HPM is straightforward without any restrictive assumptions and special techniques;  

(4) HPM gives the approximate solution with higher accuracy and fast convergence rate. 

 

 

 

Figure 1: The behavior of the approximate solutions ( , )u x t
HPM

 (Left), ( , )v x t
HPM

 (Right). 

 

 

Figure 2: The behavior of the exact solution u(x, t) (Left), v(x, t) (Right). 
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