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ABSTRACT

We consider the problem of the classification of an object from the observation after its numerical characteristic in case of
three prescribed classes. We also study a problem on finding and asymptotic behaviour of threshold-based classification
rules constructed from a sample from a mixture with varying concentrations.
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1. INTRODUCTION

Object classification by its numerical characteristic is an important theoretical problem and has practical
significance, for example, the definition of a person as “not healthy”, if the temperature of its body exceeds 37°C.
To solve this problem we consider the threshold-based rule. According to this rule, an object is classified to
belong to the first class if its characteristic does not exceed a threshold 37°C; otherwise, an object is classified to
belong to the second class. The empirical Bayes classification (EBC) (Devroye and Giorfi, 1985; Ivan’ko and
Maiboroda, 2002) and minimization of the empirical risk (ERM) (Vapnik, 1989; Vapnik, 1996) are widely used
methods to estimate the best threshold. The case when the learning sample is obtained from a mixture with
varying concentrations is considered in (lvan’ko and Maiboroda, 2006).

However, it is often necessary to classify an object in case of more than one threshold, for example, the
definition of a person as «not healthy», if the temperature of its body exceeds 37°C or lower then 36°C. Another
example: the person is sick, if the level of its haemoglobin exceeds 84 units or lower than 72 units. In particular,
this problem is discussed in (Kubaychuk, 2008; Kubaychuk, 2010).

In all previous examples we have only two prescribed classes. The case of two thresholds and three
prescribed classes deserves special attention. An example is the classification of the disease stages. Thus,
during the diagnosis of breast cancer a tumor marker CA 15-3 is used. If the value is less than 22 IU/ml, then the
person is healthy; if its level is in the range from 22 to 30 IU/ml —precancerous conditions can be diagnosed; if the
index is above 30 IU/ml — patient has cancer. When solving some technical problems it is needed to consider the
substance in its various aggregate forms: gaseous, liquid, solid. The transition from state to state occurs at a
specific temperature. According to this, a boiling point and a melting point are used.

2. THE SETTING OF THE PROBLEM

The problem of the classification of an object O from the observation after its numerical characteristic & = &(O)
is studied. We assume that the object may belong to one of the three prescribed classes. An unknown number of
a class containing O is denoted by INd(O). A classification rule (briefly, classifier) is a function
g:00 ->{,,2,3} that assigns a value to INd(O) by using characteristic&. In general, classification rule is

defined as a general measurable function, but we restrict the consideration in this paper to the so-called
threshold-based classification rules of the six forms

1, &<, 2, &<, 1, &<t
9, (©)=124<8<t,. 9] (§)=114<E<t,,, g° () =134 <E<t,,

3, &>t 3, &>t 2, &>t
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3, &<t 3, &<t 2, &<,
g:’tz(g): 21, <5<, g:tz(g): Ly <8<t g:,tz(é:): 3t <g<t,
1, &>t 2, &>t 1, &>t,.
The a priori probabilites p, = P(ind(O) =1i), i=1,3 are assumed to be known. The characteristic & is

assumed to be random, and its distribution depends on ind(O):P(&(0) < x|ind ©O)=i)=H,(x).i =13.
The distributions Hi are unknown, but they have continuous densities hi with respect to the Lebesgue measure.

The family of classifiers is denoted by G :{gt tell 2}. The probability of error of such a classification rules
are given by

L(g,) = L'(t) = L'(t,,t,) = P{g,(&(0)) # ind ()} =
= (pz + ps)H1(t1)_(p1+ p3)H2(t1)+(p3 + pl)HZ(tZ) _(pz + pl)H3(t2) + pz + pl'

Analogically,
L(9¢) = (P, + Po)Ha(t) — (P, + Pa) H, (1) + (P + Ps)H, (1) — (P, + Ps)Hy(t,) + P, + Ps-
Furthermore, L'(t,,t)=-L*(t,t,)+2p, + p,+p,.

Further, similarly
L(9¢) = (P, + Ps)H,(6) = (P, + Ps)H, () — (P, + P H,(6,) + (P, + po)H, (L) + P, + Py,
L(97) = (P, + P,)Ha(t) — (P + Po)Hy(6) — (s + PO H, (&) + (P, + ) H, (5,) + P+ Py,
L (6, t) =—L(t, t,) + 2p, + P, + P,
L(9;) = (P, + P)Hy(t) = (P + P)H, (L) + (P, + P)(Hs (L) —Ha(t)) + s + Py,
L(9;) = (P, + P)H,(t,) + (P, + po)H, (6) + (P, + P,)(Hs(t,) — Ha (1)) + p, + s,
L(t,,t) =L (t,5,) +2ps + P, + P,

A classification rule gB € G s called a Bayes classification rule in the class G, if L(Qg) attains its minimum at

g° (g® =argminL(g,)). The threshold t® for a Bayes classification rule is called the Bayes threshold:
geG

t® =argmin L(t) @)

ted ?

For L\, i=1,6 we have: t® =argmin L'(t,,t,) = (argmin L. (t,),argmin L(t,)) , and

el el el tell

Li(6) = (P, + P H, (6) — (P, + P)H, (),

L5 (6,) = (ps + P H, () — (p, + P)H (L) + P, + P,
L (t) =~(p, + P)H. (L) + (P, + P)H, (L),
L5(6,) = (ps + P,)Hy () — (P, + P)H (L) + P, + P,
() =~(p, + P,)Hy(6) + (Ps + P)H, (1),
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L5(t,) =—(ps + PIH,(5) + (P, + P)H5(t) + py + ps.
Ly (6) = (P, + P)H, (&) + (P, + P Ho (L),
L5(t,) = (s + P)H, () — (P, + P)Hy (4,) + Py + P,
L7 (t) = (P, + P,)Ha(6) —(ps + P,)Hy (4.
L5(t,) =—(Ps + PYH,(6,) + (P, + Pa)Hy(t,) + Py + P,
L2 (t) = (P, + Pa)H, (L) = (P, + P)H, (L),
L5(6,) = —(Ps + P)H (5) + (P, + P)H3 () + ps + P, -
Let us consider the threshold rule @ , . The functions H; (and, hence h;) are unknown. One can estimate these

functions from the data {fj:N}’j\‘:l, being a sample from a mixture with varying concentrations, where fj:N are

independent, if N is fixed and P{&; < X}=W}:N Hl(X)+WiNH2(X)+W?:NH3(X). Here W;:N,i =13 is a
known concentration in the mixture of objects of the i-th class at the moment when an observation | is made

3 .
(Maiboroda, 2003), Zile}:N =1.

To estimate the distribution function Hi , empirical distribution function

is used, where I{A} is the indicator of an event A and a‘j:N are known weight coefficients (Maiboroda, 2003,
Sugakova, 1998)

1 S ki
aIj(:N - detAN Z(_l) ykiwlj(:N

i1
r - 3 1 o

defined if detAy #0, where A, =(<Wk,W'>) is the Gramm matrix, where <Wk,WI> == wiw

k,1=L N =Rk

and 7, is the (K,i) main minor of A .

One can apply kernel estimators to estimate the densities of distributions hi :

where K is a kernel (the density of some probability distribution), kN >0 is a smoothing parameter (Sugakova,
1998; Ivan’ko, 2003).

Let us construct the threshold estimator using EBC method (Kubaychuk, 2008). The empirical Bayes estimator is
constructed as follows. First, one determines the sets TN1 and TN2 of all solutions of the equations

(P, + PN (€) — (P, + PR (©) =0, and (p, + pa)hY' (t) — (p, + P,)' (1) =0

respectively. Second, one chooses
t¢ = argmin L (t,.t,),

t1eTN1 theTy ) <ty
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as an estimator for '[B, where
Ly (tt,) =
= (P, + PYH (0) — (P + PYHL () +(ps + POHL (1) — (P, + PIHI () + Py + P,
and L}, (t,,1,) is the estimator for L'(t;,t,):

L, () = (p, + P)HN (©) - (P, + P)H (1),

I—lN2 (t,)=(p;+ pl)ﬁzN(tz)_(pz + pl)ﬁzN(tz)"' P+ P,

fNEch =argmin LlNl (t) ,fNEZBC =argmin |_1N2 (t,).

tleTN1 teTy B

The sets TN1 and TN2 are constructed under condition t1 <t2.

Let the densities hi exist and be S times continuously differentiable in some neighborhood of the points tlB , tf .

Put
d°h d°h
f2(t) = (-1 — o — I
0= )((pﬁpl) — (P, + ) dtsJ
d*h, d*h
f2(t) =(-1)° —. 8 E 2 |}
s (M) =( )((pﬁpl) pre (p;+py) dts}
Let's assume, limr, =r, i =12 exist. Put

N—w !

My, = |:N_l N (b;:N )2 [M:Nhl(tiB)-i'Wim h, (tiB)+W?:N h, (tiB )ﬂ? i=12, where

j=1
i 1 2 2 = 7 3
bin = (P, + Ps)ajy — (P + Ps)ajy . biy = (P + Ps)ajy — (P + Py)agy -

Let’s denote

2 1 1
W, ()=N? (LlNi [tf " N%j— L, (t°)-L (tf‘ + N3rj+ L (t? )j =12

3. MAIN RESULTS

In what follows we assume that:

( A) the threshold t® defined by (1) exists and it is the unique point of the global minimum for Ll(t) (tlB is

the unique global minimum point for L(t,), t2 is the unique global minimum point for L, (t,) ).
M
(B) The limits Lim infdetI', >c >0 exist; ’Lim Z<(ak)2,Wf)N ‘h.(x), 1<k<M, M =3.
—>0 —0 pry

Remark 1. condition (B) is sufficient for limr, =r,, i =12 existence.
N—oow 1

Theorem 1. Let conditions (A) and (B) hold. Assume that the densities h. exist and are continuous,

ky =0 as NkN — o0, K is the continuous function, and
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zdif 2
d2 = [ k*(t)dt < oo.
—o0

LEBC B (fEBC B {EBC By - .
Then t™ —>t7(t,~ >t —t,) in probability.
Proof. According to Theorem 1 of (Sugakova, 1998), the assumptions of the theorem imply that
h" (X) — h (X) in probability at every point X €[] . Therefore

Uy, () = (P, + PR (%) = (py + P (X)) 1, (%) = (P, + PN () = (P, + P5)N, (X)),
Uy, (X) = (P, + PR () = (py + PR (X)) = U, (%) = (P, + PN, () = (P + P,)Ns(X))
in probability.
Put A, (5) ={thereexists t, :Jt; ~t°| <5, uy, (t;) =0} for & > 0. We can show that
P(Ay(5)) >1, N > 2
since t is the point of minimum L(t), t; is the point of minimum L,(t), (Li(t))=uy (t) and

(HG)) =Uy, (t) are continuous functions, it follows that Uy (t) changes sign in the neighborhood of t° . This

means that there are t; and tiJr such that

tP =6 <t <t® <t' <t’ +4,
and U (t)u(t) <0, i=12. Thus, P(u;(t7)u;(t") <0)—>1 N —>oo. since Uy (t) are continuous
functions, {U;(t)u. (") <0} < A (S,) . Therefore (2) is proved.

Let us fix an &, i=12. Hence, Li(t) and L,(t) are continuous functions on [J, Lj(-o0)=0,
L(+o)=p,—p,, L(-0)=p,+p, L(+0)=p,+p, and condition (A) is satisfied, then
Vo, >0 dg Vi, ‘ti —tiB‘ >3 it follows that Li(t)>L(t*)+g. Let 0<5 <8 be such that
Vte[t? -5 2 +81: L(t)<L(t?)+& /4. put

By ={ _inf L @®>L@®)+s/2> inf L ©OF

b g 4] teltP = 7+ ]
Fix an arbitrary A >0. Using the uniform convergence LlNi to Lli, we obtain for sufficiently large N that
P(By) >1-A/2. From (2) it follows P(A,(8))>1—4 /2 for sufficiently large N . If the event A (J))
occurs, then there exists t" €Ty, N[t° —& ,t% +3'] such that L, (tl*) <L, (t;) foral t, & [tiB —3,t° +5|]
given the event BNi occurs. Therefore, hence
! 14
P(A(6)NBy ) 2 P(A(S5)) +P(By) -1
it follows that
P{E™ —t7| <5} 21-4,
for sufficiently large N . This completes the proof of the theorem, since 4, 1 =1, 2 is arbitrary.
Remark 2. The estimator H, (obtained by construction) is unbiased iff
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<a"w'“>N =1{m=k} foral m=1....M ,N>M.

Then, it is easy to see that <a>N =1.

Remark 3. oOften, Hk is not a probability distribution, but it is not important. To estimate Hk you can use the
corrected weighted empirical distribution function, if necessary. (Kubaychuk, 2003;Maiboroda and Kubaichuk,
2003; Maiboroda and Kubaichuk, 2004).

For the proof next theorem we need some auxiliary result on the asymptotic behavior of the processes WN1 ,

1=12.

Lemma 1. Let condition (A) hold and 7, < 7,. Put

A =A(r,7,)= [N_j/sflf N_J/sz-z]-

Then
N
Wli (7,) _V\/ri1 (z;)=N 71/32szl'-:N (I{é:j:N e AJ- P{é:j:N €A},
=1
N
erj2 (72)_\,\/52 (7,) = ij/gz JZN (I{é:j:N e A P{‘):Zj:N €eAJ).
=1
Proof.
\Nr\%1 (Tz) _Wl\t (Tl) 3
=N 2/3[L1N1 (EB +N _]/372) - Li(tlB +N _1/372) v I-lN1 (tlB +N _1/371) + Li(tlB +N _1/371)] 3
=N 2/3[ p2|:|lN (tlB +N _1/372) - p1|:|2N (tlB +N _1/372) 5
B p3(|:|1N (tlB + Niﬂgrz) - l:|2N (tlB +N 7]/372)) = pZHl(tlB +N 71/372) + lez(tlB +N 7]/372) '
- ps(Hl(tlB +N 71/31'2) i Hz(tlB +N 7]/372)) il pzl:llN (tlB +N 7]/371) 5 p1|:|2N (tlB +N 7]/371) i
—p,(HN (2 + N Y*2) - HY (t® + N Y1)+ p,H, (t® + N ¥*z) - p,H, (% + N ¥r) +
+p; (H (7 + N ¥7) —H, (17 + N 7)) =
N
- Nil/BZ[pza?:N I{gj:N e AJ- plajz:N I{éj:N e A+
=1
+ ps(a?:N I{é:j:N € AN}_asz I{é:j:N e A+ plaJ?:N P{é:j:N e A}- pZa}:N P{gj:N € A}-
—Ps (a};N P{gj:N € AN}_ a'jz:N P{éj:N € AN})] =
=N _]/32,;‘11[( pZa%:N - plaJ?:N ) + Ps (a}:N - aJ?:N )] :
(Hem e A-P{Em e AL =N b (S, c Ad-PEE < A
Wy, (7,) -Wy, (7,) =
= NZ°[L5, (7 + N7°r) - (17 + N°r,) - L, (7 +N°r) + Lt + N 7)) =
6266 |Page council for Innovative Research
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= N*[(py+ P)H' (& + N7,) = (p, + pYH' (7 + N77,) -
—(p,+ p)HY (2 + N¥r) +(p, + p)HN (t2 + N ¥r) -

—(Py + P)H, (5 + N5,) + (p, + p)H, (5 + N 7,) +

+(py + PYH, (& + N°2) = (p, + p)H, (17 + N 7)) =

= Nimz:-il[( Ps + pl)aJ?:N - ( P, + pl)a?:N ]
(Hg e A3-PLE e AN =N T 02 (M € A3-PEE €A

This completes the proof of the lemma.

In what follows, the symbol = stands for weak convergence.

Theorem 2. Let D(u,) be the space of functions without discontinuity of the second kind equipped with the
uniform metric, W be the two sided standard Wiener process, (B) holds. Then, stochastic processes

W’i’ 1 =1,2 weakly converge as N — oo to the process W in the space D(U;) on an arbitrary finite interval

U =[r_,7.]
Proof.

The trajectories of Wﬁ_, 1 =1,2 are continuous. It is enough to prove: the finite dimensional distributions of

W,i_, i =1,2 are asymptotically Gaussian, the second moments of increments converge and the distributions of
Wy, i=12 are tightin D(U;). See (Billingsley, 1968).

We first compute E(VV,ii (z,) —W,i (z))%, i=12. Let 7, < 7,, by using Lemma 1:
1 N
E(\erllz (z,) _Wle (Tl))z =N 2/3zj:1(bj2:N )2 E(I{é:j:N eA- P{é:j:N = AN})2 =

= N (03 ) T Hy (A + Wy H (A <
><W:j%:N HB(AN)) N (M:N Hl(AN ) +WJ?ZN HZ(AN ) g W?:N HS(AN))Z] 3

EW,, (7,) Wy, (7))° = N2 32?:1(b};N)2E(|{§,-;N eA}-Pln A =

= N3 (0] )W Hy (A + W H, (A) %
Wiy Ha (Ay)) = (Wi Hy (A )+ Wi Ho (A + Wi Ha(A))*].
Taking into account that H,(A,) [ h ()N ¥*(z,~7,),1=12,3, we obtain:
EW,, (7,) -Wy, (7,))* =
= N N ) T by (1) + Wy () + Wiy hy ()] (2, — 7) -
1= N (Wi h (€7) + wighy () + Wiy hy (1)) (7, - 7,)] -
-1 (r,-7)=E(@IW(z,)—rtW(z))* as N - oo,

where

rl - [!jl_rll er ! rN1 - [N 7lz’j\l=l(b}:N )Z[M:N t.h(tlB) + WJ?ZN h2 (tiB) + W?:N h3 (tiB)]]%
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Similarly, ~ taking  into  account  that H.(A)Dh(tS)NY(z,-7,),i=1,2,3, we obtain
E(\Nli2 (z,) _\Nri2 (71))2 - r22 (z, —7) =E(rW(z,) —rW (Tl))z as N —> o0,

where
= lim . n, =[N 08 W P () W2, () + WE (82T

The condition (B) holds, than all terms at sum from lemma 1 are uniformly bounded. Therefore, the finite
dimensional distributions of processes Wé,, i =12 are asymptotically Gaussian in view of the central limit

theorem under the Lindeberg condition. The tightness of family of distributions W,i_, =12 is proving
analogically to (lvan’ko and Maiboroda, 2006). This completes the proof.

Theorem 3. Let conditions ( A) and ( B ) hold. Assume that:

(i) the derivatives N/(t) = d?h, (t)/dt? exist and are bounded in a neighborhood of t2,tY and f(t%) =0,
i=12;

(ii) I_ZzK(z)dz 26, Dzdif j_izzK(z)dz <o andd® <o0;
(iii) ky, =¢/N¥® for some nonrandom € > 0.
Then NZS(£5°C _t*) = A + B}, where
A =D 1, (t7)/ (21 (7). B =dr/(@ £ (t7).

and 7, is a standard Gaussian random variable, i =1,2.

Proof. Let
Uy, (©) = (p, + p)RN @) — (P, + PN (1),
uy, ®) = (P, + PR ®) - (p, + PN ©).

By the definition of t,\E‘_BC we have Uy (t,\El_Bc) =0.Put 5 ztﬁ_Bc —tiB, 1=12. Theorem 1 implies that 5, —0
in probability. Hence

_ W) (e, + PO () —h () = (B + R () —hy (1))

T ACH)
U @) (pt p)(R () —h () - (P + P (R () —hu(t))
U () £2(t5) |

Similarly to the proof of Lemma 2 of (lvan’ko, 2003), we obtain

NZ*(~[(p, + Po)(A (t2) —h (t)) - (p, + pa)(NY' (%) —, (t))])
= D*c** le(tlB)/Z + (drl/Cmo)ﬂlf

N2 ([(p, + pa)(N)' () — h, (€)= (b, + Po) (MY (9 — hy (5 )])
= D’c?* fz2 (tzB)/Z"' (drz/cl/lo)nz

For ky =C/N"® where 7, is a standard Gaussian random variable, i =1,2.
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This completes the proof.

SUMMARY AND CONCLUSIONS

The results obtained in this paper allow one to see the asymptotic behaviour of threshold-based classification
rules constructed from a sample from a mixture with varying concentrations in case of three prescribed classes.
This is another important step to solving the problem of the classification of an object from the observation after
its numerical characteristic. Future research will be devoted to the situation with an arbitrary number of classes.
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