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ABSTRACT 

Long-memory or long-range dependence (LRD) denotes the property of a time series to exhibit a significant dependence 
between very distant observations. The presence of long-memory is established in diverse fields, for example, in 
hydrology, finance, network traffic, psychology, etc. From a practical point of view an important issue is the estimation of 
LRD parameters, especially the estimation of the Hurst parameter proposed in [19]. The Hurst parameter, usually referred 
as the H parameter, indicates the intensity of LRD. 

Various methods for estimating the H parameter in a time series data are available some of which are described in [3]. 
They are validated by appealing to an asymptotic analysis supposing that the sample size of the time series converges to 
infinity. Taqqu et al. [37] investigated empirical performance of nine methods for estimating the LRD in simulated auto 
regressive fractionally integrated moving average (ARFIMA) processes for a fairly large sample size of 10000 terms. 

The bootstrap is a general statistical procedure for statistical inference,originally introduced by Efron [11] that generally 
yields better estimations in finite sample sizes, than the classical methods. In this paper, we consider a bootstrap 
technique, which uses blocks composed  of cycles, to estimate the H parameter in ARFIMA processes. The bias and the 
root mean square error (RMSE) of five estimators and their corresponded bootstrap estimators are obtained by a Monte 
Carlo study. 

Keyword: Time series; long-range dependence; Hurst parameter; block bootstrap; cycling blocks. 

Mathematics Subject Classifications: 62G05, 62G09, 62M10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: Journal of Advances in Mathematics 

Vol 7, No. 2 

editor@cirjam.com 
www.jam.cirworld.com,  www.cirworld.com 
 

http://member.cirworld.com/
http://www.cirworld.com/


ISSN 2347-1921 

1267 | P a g e                           M a r c h  2 4 ,  2 0 1 4  

1. INTRODUCTION 

Time series with long-memory or long-range dependence (LRD) appear in many contexts, for example, in hydrology [28], 
econometrics [2], network traffic [24], finance [26], etc. LRD is the dependence structure across long time periods. It 
denotes the property of a time series to exhibit the persistent behavior. However, there is not a unique theoretical 
definition of the LRD processes (see[10]). Most of the definitions appearing in the literature are based on the second order 
properties of a stochastic process. Such properties include asymptotic behavior of the autocovariance function or the 
spectral density function. In the time domain, if a stationary time series exhibits LRD, its autocovariances decay of 
hyperbolic order sothey are not summable. In frequency domain, if a stationary time series exhibits LRD, its spectral 
density function is unbounded at frequency zero. 

The importance of LRD processes as stochastic models lies in the fact that they provide an elegant explanation and 
interpretation of an empirical law that is commonly referred to as Hurst’s law or the Hurst effect. This feature of many 
natural phenomena has been called the “Joseph effect” by Mandelbrot and Wallis [29], referring to the Old Testament 
prophet who foretold of the seven years of plenty followed by the seven years of famine that Egypt was to experience. The 
intensity of the long memory can be measured by a parameter called the Hurst parameter or the H parameter, which is 
closely related to the order of the decay of the autocovariance function. Various methods for estimating the H parameter in 
a time series data are available. However, they are validated by appealing to an asymptotic analysis where one supposes 
that the sample size of the time series converges to infinity. The finite sample properties of these estimators can be quite 
different from their asymptotic properties. Also, they are biased in the case of the presence of the short memory 
component. 

The Autoregressive Fractionally Integrated Moving Average, ARFIMA model has widely been used to represent a time 
series with long memory. The intensity of the memory can be measured by the fractional difference parameter d, related to 

the H parameter by the equation 0.5H d  .Taqquet al. [37] investigated empirical performance of nine methods for 

estimating the LRD in simulated ARFIMA(0,d,0) processes for a relatively large sample size of 10000 terms. In this paper, 
we investigate the performance of five estimators and their corresponding bootstrap estimator in simulated ARFIMA(1,d,0) 
processes. 

Bootstrap method, originally introduced by Efron [11] is a resample technique that provides better estimations in 
smallsample sizes than the classical methods. The Efron’s bootstrap uses single observations as the resampling units and 
requires independence among the data. Referring to this bootstrap, Singh [36] noted that “the bootstrapshould not be 
expected to provide a consistent approximation even in the case of weak, dependent processes”([36], Remark 2.1, page 
1192). When the data on the hand are not independent and identically distributed (i.i.d.), such as a time series, the 
resample technique must be carried out in such a way that the dependence structure of the original time series to be 
preserved in the bootstrap time series. The most common are the block bootstrap methods. The block bootstrap for time 
series consists of randomly resampling blocks of consecutive values of the given data and aligning these blocks into a 
bootstrap sample. 

In this paper, we consider a bootstrap technique, which uses blocks composed of cycles.A cycle is defined as a pair of 
alternating high and low data that is created when the terms of the time series cross the sample mean. Then we randomly 
resample blocks composed of a fixed number of consecutive cycles and concatenate them to form the bootstrap series. 

The remainder of the paper is as follows. In the next section we describe the notion of LRD and give details of the five 
estimators, used in a Monte Carlo study. In section 3 we describe the block bootstrap method with blocks composed of 
cycles. Section 4 reports the Monte Carlo experiment and presents the results. 

2. LONG-RANGE DEPENDENCE 

2.1. Definitions and models 

Long-memory or long-range dependence (LRD) refers to the property of a time series to exhibit a significant dependence 

between very distant observations. Let t t Z
X


 be a stationary time series with real values. It is intuitively expected that the 

autocorrelation function vanishes when the distance between the data becomes large. So we can suppose that the data 
are asymptotically independent and the autocorrelations are absolutely summable. It is the case in most of stationary time 
series included the vast class of Autoregressive Integrated Moving Average, ARMA models, which are in general 
classified asshort-memory processes [4, 5]. In contrast, LRD is generally defined by the fact that the autocorrelations are 
absolutely non-summable [31]. However, there are several possible definitions of the property of LRD (see [10] for a 
collection of definitions of the LRD notion). Most of the definitions appearing in the literature are based on the second 
order properties of a stochastic process (for more details see [3]). 

For a stationary process t t Z
X


, the autocovariance function is defined by equation ( ) ( , ), 1,2,...t t kk Cov X X k


  , and 

does not depend on the moment t . Then the autocorrelation function is defined by the equation
( )

( ) , 0,1,...
(0)

k
k k





  , 

and the spectral density function is defined by equation
1

( ) ( )
2

ik

k

f k e  






  , where  is the angular frequency. Let us 

mention two common definitions of LRD (given in[3], page 42). 

Definition in time domain: 
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Suppose that there exists a real number  0,1   and a constant 0c   not depended on k such that 
( )

lim 1
k

k

c k 






 . Then

 t t Z
X


 is called a stationary process with long memory or long-range dependence or strong dependence, or a stationary 

process with slowly decaying or long-range correlations. 

Definition in spectral domain: 

Suppose that there exists a real number  0,1   and a constant 0fc   not depended on   such that 
0

( )
lim 1

f

f

c







 . 

Then t t Z
X


 is called a stationary process with long memory or long-range dependence or strong dependence. 

A number of models have been proposed to describe the long-memory feature of time series. The fractional Gaussian 
noise (FGN) model is the first model with LRD introduced by Mandelbrot and Van Ness [28]. Then Hosking [18] and 
Granger and Joyeux [14] proposed the fractionally integrated autoregressive and moving average model, denoted by 

ARFIMA(p,d,q). It is defined by ( )(1 ) ( )d

t tB B X B     where  t t Z
X


 is the time series; B is the backshift operator, that 

is, 
1t tBX X


 ; 2

1 2( ) 1 ... p

pB B B B         and 2

1 2( ) 1 ... p

pB B B B         represent the ordinary autoregressive  

and moving average components; 
t  is a white noise process with zero mean and variance 2

 . When 0.5 0.5d   , 

the ARFIMA(p,d,q) is stationary, and if 0 0.5d   the process presents long-memory behavior. The larger d, the longer 

the memory the stationary process has. When 0d   ARFIMA(p,0,q) model is reduced to an short-memory ARMA(p,q) 

model, popularized by Box and Jenkins [4]. Instead of using d , we may use 0.5H d   which is known as the Hurst 

parameter to measure the long-memory in  t t Z
X


. 

2.2. Estimation of the Hurst parameter 

(a)The rescaled adjusted range (R/S) estimator. 

The rescaled adjusted range method, denoted by R/S was proposed by Hurst [19] and discussed in details in [3, 27, 29, 

30]. For a time series , 1,2,...,tX t N , let 
1

t

t j

j

Y X


  be the aggregated time series. Then we define the adjusted range 

( , )R t k by        
00

( , ) max mint i t t k t t i t t k t
i ki k

i i
R t k Y Y Y Y Y Y Y Y

k k
   

  

   
          

   
. This range can be interpreted as the ideal 

capacity of a water reservoir with in flows at time i  denoted by 
iX  for the time span between t and t k  (see [3]). 

 For the adjusted range ( , )R t k  be independent of a scale, it is standardized by standard deviation

 
2

,

1

1
( , )

t k

i t k

i t

S t k X X
k



 

   , where 
,

1

1 t k

t k i

i t

X X
k



 

  . Then the rescaled adjusted range is given by 
( , )

/
( , )

R t k
R S

S t k
  for all 

possible values of k and t. 

To estimate the LRD parameter H, we plot the logarithm /R S  against logarithm of k for all possible values of t and k. 

Hurst observed that many empirical records may be well represented by the relation log( / ) log( )R S c H k   as k 

becomes large, with typically values of the Hurst parameter in the interval  0.5,1  and c a finite positive constant that does 

not depend on k. Then H can be estimated as the slope ordinary least squares (OLS) estimator. 

Let  , 1,2,...,tX t N  be an observed time series of length N. Then, the algorithm consists asbellow for estimation of the H 

parameter. 

1. Divide the time series into b blocks of length k such that bk N  (supposing that 
N

k
is an integer). 

2. For each block compute
( , )

( / )
( , )

i
ki

i

R t k
R S

S t k
  for 1, 1,2 1,...,( 1) 1it k k b k     . Then, the average value of /R S  for 

length k is computed, that is 
1

1
( / ) ( / )

b

k ki

i

R S R S
b 

   

3. Repeat the steps above by increasing the value of k until 
2

N
k   (such that 

N

k
is an integer). 

4. Plot logarithm of ( / )kR S  against logarithm of k. This plot is sometimes called the pox plot for the /R S  statistic. 

5. The estimated parameter Ĥ  is the estimated slope of the line in the pox plot. 
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The R/S method requires cutting off both the low and high end of the plot to make reliable estimates. 

(b) The detrended fluctuation analysis(DFA) estimator  

Detrended fluctuation analysis (DFA) estimator is introduced by Peng et.al. [32] as an improvement of classical fluctuation 
analysis method and is supposed to deal with power-law correlations in non-stationary time series. The DFA method has 
proven useful in revealing the extent of LRD in time series. The construct of this method consists as bellow. 

1. First, we integrate the time series  , 1,2,...,tX t N obtaining the cumulative sum time series  , 1,2,...,tY t N  (called 

the profile function) where  
1

t

t i

i

Y X X


   and
1

1 N

i

i

X X
N 

  . 

2. Divide the cumulative sum time series into k windows (non-overlapping intervals) of length m observations. Then in any 

box, 
tY  is fitted by an r order polynomial, usually with 1r   or 2r   obtaining the fitted values ( )ˆ m

tY  in any box. 

3. Detrend the  , 1,2,...,tY t N  locally in any box obtaining ( )ˆDET m

t t tY Y Y  . 

4. Calculate the variance about the detrended series for each box, and calculate the average of these variances over all 

boxes of size m,  2 2

1

1
( )

N
DET

t

t

F m Y
N 

  . 

5. Repeat steps 1-4 for increasing values of m. 

6. Regress 2log ( )F m  on logm  and estimate the slope parameter. If ̂  is the OLS slope estimate, then 
ˆ

ˆ
2

H


  is the 

estimate of H. 

(c) The discrete wavelet transforms (DWT) estimator 

Wavelet methods are used in diverse applications in several fields (see [33]). One scientific area where wavelet methods 
have been finding many applications is that of the analysis of discrete time series. The discrete wavelet transform (DWT) 
method for estimating long memory was introduced by Jensen [20] and consists as below (see [1] and [38]) for the 
estimation of long-memory parameter H. 

1. Assume that 2JN   for some positive integer J. 

The discrete wavelet filter h of support 12J j

jL    (length of the filter) is defined so that satisfies the following conditions. 

1

0
jL

i

i

h


 , 
2

1

1
jL

i

i

h


  and 2
1

0
jL

i i m

i

h h




 , with m an integer other than zero. 

Similarly, the scaling filter of support 
jL satisfies the following three conditions. 

2

1

2
jL

j

i

i

g


 , 
2

1

1
jL

i

i

g


  and 2
1

0
jL

i i m

i

g g




  

2. Using these filters the original time series  , 1,2,...,tX t N is transformed to two new series 
,j tW  and 

,j tV  called the 

wavelet coefficient and the scaling coefficient respectively, by recursive equations  1,t tV X , 

1, ( 1),{(2 )mod( /2 )} 1
1

j

j

L

j t i j t i N
i

V gV   


  and 1, ( 1),{(2 )mod( /2 )} 1
1

j

j

L

j t i j t i N
i

W hV   


 , for 2,3,..., 1j J  , and 1,2,..., jt L . 

3. Using the wavelet coefficient 
,j tW  the adjusted wavelet variance is defined by 

2

,
2 1

1
ˆ

2

jL

j t

t
j j

W

 





. If we denote 2 1j

j   , 

then the relation 2 2 1ˆ H

j j    holds. 

4. By taking the logarithm of both sides and regressing 2log ˆ j  on log j  we can calculate the OLS slope estimator ̂

obtaining an estimate of H by equation
ˆ 1ˆ
2

H
 

 . 

It is supposed that the data are generated by an ARFIMA (p,d,q) model for the two following estimators to be valued. 

(d) The Geweke and Porter-Hudak(GPH) estimator 

One possibility of estimating the memory parameter is a log-periodogram regression introduced by Geweke and Porter-
Hudak [13], known as a GPH estimator in literature. The GPH estimator is the slope coefficient estimated in the least-
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squares regression of 2log ( ) log[4sin ( / 2)]j j jI a d e     for 1,2,...,j g , where
1

0

1

1
ˆ ˆ( ) 2 cos( )

2

N

k

k

I k   






 
  

 
  is the 

periodogram of the observed time series;
1

1
ˆ ( )( )

N k

k i k i

i

X X X X
N








   , for 1,2,..., 1k N   are the sample 

autocovariances; and 
2

,  j 1,2,...,
2

j

j N
g

N


     denote the harmonic frequencies.Then, the GPH estimator is given by 

1

2

1

( )log ( )
ˆ

( )

g

j j

j

GPH g

j
j

v v I

d

v v















, where 2log[4sin ( / 2)]j jv    and

1

1 g

j

j

v v
g 

  . Then we have the estimator ˆ ˆ0.5 GPHH d  The 

parameter ( )g g N  is a function of N and has to take an appropriate value since it determines the bias and variance of 

the GPH estimator. 

(e) The smoothed periodogram(SP) estimator. 

Hassler [16], Chen et al. [9] and Reisen [35] all independently suggested an estimate of d based on the regression 

procedure for the logarithm of the smoothed periodogram. The SP estimator, usually denoted by ˆ
SPd , is obtained by GPH 

estimator by replacing the periodogram by a smoothed periodogram function. The SP estimate of the spectral density 

function is 0 0

1

1
ˆ ˆ2 cos( )

2

m

SP k k

k

I k    
 

 
  

 
 , where  , 1,2,...,k k m   is a set of weights called the lag window. 

Reisen[35] used the Parzen lag window given by 

2 3

3

1 6 6 ,0
2

2 1 ,            
2

k

k k m
k

m m

k m
k m

m



    
       

    
 
  

   
 

 

Here, m  is a function of N  and is usually referred to as the truncation point. Then the ˆ
SPd  is given by

1

2

1

( )log ( )
ˆ

( )

g

j SP j

j

SP g

j
j

v v I

d

v v















. Then we have the estimator ˆ ˆ0.5 SPH d  . In this case, we have to choose two tuning 

parameters, the truncation parameter of the regress, ( )g g N  and the truncation point of the lag window, ( )m m N . 

3. THE BLOCK BOOTSTRAP METHOD WITH CYCLING BLOCKS 

Efron’s bootstrap classical application in the context of dependent data, such as a time series, fails to work. In this case, 
the bootstrap technique must be carried out in such a way that the dependence structure of the original time series to be 
preserved in the bootstrap time series. Block bootstrap methods for dependent data were introduced by Hall [15], Carlstein 
[7] and Kunsch [21] among others. The block bootstrap for time series consists of randomly resampling blocks of 
consecutive values of the given data and aligning these blocks into a bootstrap sample. Different methods differ in the way 
as blocks are constructed. These methods are highly adaptive, or non parametric, in the spirit of bootstrap methods. The 
block bootstrap relies on a compromise between preserving dependence within blocks, and destroying it between blocks. 
Kunsch [21] and Liu and Singh [25] have independently formulated a resampling procedure, called the moving-block 
bootstrap (MBB), for general weakly-dependent observations. For a theoretical comparison of some methods see [23]. 

Bootstrap with blocks was used for the estimation of parameters of ARFIMA(p,d,q) model (see for example [12]). Lahiri 
[22] showed that in general, the MBB procedure fails to provide a valid approximation to the distribution of normalized 
sample mean under LRD. One of the reasons behind this is that joining independent bootstrap blocks to form the 
bootstrapped statistic destroys the strong dependence of the underlying observations. Carlstein et al. [8] sampled blocks 
dependently, attempting to follow each block with one that might realistically follow it in the underlying process, to better 
match the dependence structure of the data. Hesterberg [17] used the matched-block bootstrap for LRD processes, 
investigating block matching rules, based on linear combinations of observations in the block.In this paper, we consider 
blocks that are composed of one or more consecutive cycles. 

Let , 1,2,...,tX t N  be a time series. A cycle is defined as a pair of alternating high and low runs of the data that are 

created when the terms of the time series cross the sample mean. Let 1 2, ,..., kC C C  denote the created cycles and let 

, 1,2,...,in i k  be the number of terms of the cycle iC . It is clear enough that 1 2 ... kn n n N    . We suppose that

1X X . Then we can write 
11 1 2{ , ,..., }nC X X X , 

1 1 1 22 1 2{ , ,..., }n n n nC X X X
  

  ,…,
1 2 1 1 2 1... 1 ...{ ,..., }

i i ii n n n n n n nC X X
        

 ,…, 

1 2 1... 1{ ,..., }
kk n n n NC X X
   

 , where 
1 ... kn nX X
 

  and 
1 ... 1kn nX X
  

 , for 1,2,...,i k . Then we define a block composed of 

a predetermined number of consecutive cycles. 
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The cycle lengths and the number of cycles are random variables so long as they are determined automatically by the 
data. The number of cycles of a block is a tuning parameter and is analogous with the block length in MBB. We consider 
the circular moving-block bootstrap approach, which amounts to wrapping the data around in a circle before the blocks are 
created [21, 34]. We treat a cycle as an inseparable observation. Since the cycles, consequently the blocks, are created 
automatically by the series’ crossings of the sample mean, we expect that the transition across joint points of the blocks in 
the bootstrap pseudo series to be more realistic. 

Figures1 and 2 illustrate the bootstrap method with blocks composed of cycles.We simulated a time series of size 40N 

generated by an AR(1) process with coefficient 0.5  . Figure 1(b) illustrates how the cycles are created (the first term of 

the simulated series coincided to be below the sample mean in the case showed in figure). Then we applied the block 
bootstrap method as we described above. For the clarity of the plot,we used a single cycle per block. So, the block is the 
same as the cycle in this example. In figure 2(a) a bootstrap sample is plotted while, the resampled cycles are plotted in 
figure 2(b). Observing figures 1(b) and 2(b) we see that the block joint points in the bootstrap sample have a similar 
structure with the joint points of the blocks in the original sample. In both original and bootstrap samples, the joint points 
have approximate levels, with respect to the sample mean. 

 

Figure 1: Illustration of cycle definition for a simulated AR(1) model  

 

 

Figure 2: Illustration of block bootstrap method with blocks composed of cycles 

 

 

 

 



ISSN 2347-1921 

1272 | P a g e                           M a r c h  2 4 ,  2 0 1 4  

 

4. SIMULATION STUDY 

4.1. Experiment design  

We conducted a relatively extensive Monte Carlo study and investigated the performance of all five estimators described 
in section 2.2 for estimating H in simulated ARFIMA(p,d,q) models. We ran 500 Monte Carlo replications of simulated 
ARFIMA(1,d,0) processes with different lengths, different values of d (consequently of H) and different values of the 
autoregressive coefficient in order to obtain the bias and the root mean square error (RMSE) for each estimator. The 
sample lengths were 128, 256, 512, 1024 and 2048 data points.The d values were between 0 and 0.45 in steps of 0.15 

corresponding to short memory processes for 0d  , and to LRD processes for other values of d. The autoregressive 

coefficient values were 0,0.15,0.3,0.5,0.8,0.95  corresponding to the absence of the short memory part for 0  , and to 

the presence the short memory part for other values of ϕ. Specifically, we simulated ARFIMA(1,d,0) models of the form 

(1 )d

t tB X    for all combinations of values of ϕ and d. In each simulated model we discarded 300 first generated terms 

in order to reduce the effect of initial values. The white noise process  t
was generated from the standard normal 

distribution. 

For each simulated case we calculated the value of d (and therefore of H), estimated by five estimation methods under 

consideration in this paper and by their corresponded bootstrap estimators. We applied the circular cycling block 
bootstrapas we described in section 3, using 800 bootstrap replications for each Monte Carlo simulation.Then we 
calculated the average bias and the RMSE for each estimator based on 500 Monte Carlo replications. The number of 

cycles per block was chosen such that the average block length was at order 0.5( )O N . We used 0.8( )g n N  terms in the 

periodogram regression for GPH estimator (see [6]). For SP estimator we used 0.5( )g n N  regression terms and the 

value 0.9m N  in Parzen lag window (see [35]). For the other three estimators, we used the parameters’ values as they are 
default in the package “fArma” of R-project. We used sample lengths expressible at a power of 2 for the DWT method to 

use all the series terms (the DWT method is forced to truncate the time series to the nearest power of 2) 

4.2. Results 

As the main result, we note that RMSE of bootstrap estimators is almost always smaller than RMSE of the corresponded 
classical estimators. This is true even in the cases when the bootstrap estimator has clearly larger bias in absolute value 
than the corresponded classical estimator. Also, we note that there is no estimator that out performs the others for all 
cases under consideration. 
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Table 1. Bias of estimator (bias) and of bootstrap estimator (B.bias). The ARFIMA(1,0,0) case. (H=0.5) 

Model R/S DFA DWT GPH SP 

AR.coef N bias B.bias bias B.bias bias B.bias bias B.bias bias B.bias 

0.15 

128 .1357 .1275 .0310 .0156 .0128 -.0099 .0845 .0691 -.0460 -.0681 

256 .1134 .1108 .0238 .0111 .0043 -.0072 .0692 .0598 -.0388 -.0572 

512 .1112 .1053 .0186 .0111 .0143 .0044 .0601 .0552 -.0227 -.0339 

1024 .0978 .0911 .0150 .0112 .0085 -.0017 .0447 .0415 -.0223 -.0289 

2048 .0903 .0929 .0172 .0155 -.0030 .0001 .0364 .0332 -.0209 -.0207 

0.3 

128 .1861 .1732 .1093 .0884 .1267 .0965 .2043 .1788 -.0200 -.0541 

256 .1684 .1488 .0771 .0640 .0799 .0647 .1630 .1496 -.0257 -.0488 

512 .1394 .1343 .0666 .0567 .0647 .0513 .1360 .1279 -.0215 -.0370 

1024 .1211 .1208 .0561 .0496 .0481 .0418 .1114 .1072 -.0215 -.0272 

2048 .1282 .1223 .0582 .0545 .0390 .0328 .0881 .0863 -.0178 -.0201 

0.5 

128 .2612 .2362 .2356 .2064 .2892 .2610 .3694 .3400 .0483 -.0006 

256 .2140 .2108 .1805 .1647 .2229 .2060 .3143 .3014 .0080 -.0161 

512 .1917 .1884 .1443 .1357 .1730 .1603 .2769 .2678 -.0070 -.0244 

1024 .1763 .1695 .1196 .1138 .1371 .1268 .2404 .2330 -.0063 -.0189 

2048 .1716 .1697 .1260 .1220 .1017 .0990 .2011 .1976 -.0119 -.0208 

0.8 

128 .3885 .3668 .5375 .5018 .6660 .6483 .7124 .6781 .3059 .2388 

256 .3442 .3415 .4587 .4360 .5832 .5688 .6651 .6374 .2280 .1797 

512 .3217 .3112 .3910 .3746 .4892 .4778 .6082 .5962 .1228 .0943 

1024 .2925 .2864 .3357 .3269 .4041 .3972 .5648 .5575 .0651 .0494 

2048 .2948 .2883 .3385 .3339 .3341 .3255 .5172 .5122 .0307 .0187 

0.95 

128 .4565 .4338 .7805 .7351 .8550 .8529 .9350 .8904 .7356 .6272 

256 .4485 .4335 .7570 .7216 .8476 .8475 .9090 .8834 .6637 .5908 

512 .4353 .4263 .7163 .6906 .8321 .8162 .8796 .8644 .5552 .5007 

1024 .4191 .4126 .6587 .6443 .7681 .7600 .8542 .8443 .4456 .4112 

2048 .4216 .4160 .6661 .6581 .6903 .6836 .8272 .8213 .3268 .3049 

 

Table 1 and 2 report the results of the case of short-memory AR(1) models. The least bias in absolute value of each case 
and the smallest RMSE of each case are printed in bold. As can be seen, all estimators except SP exhibit bias towards 
over estimating H (that equals zero in this case) for any series length. The bias is very serious for short series lengths and 
large values of the AR coefficient. The magnitude of bias appears to increase with increasing AR coefficient and to 
decrease with increasing the sample length. Exception are the bias of DFA estimator and the bias of bootstrap DFA 
estimator that slightly increase when the sample length increases from 1024 to 2048 data points. The same trends are 
obteined for RMSE of all estimators. DWT estimator or bootstrap DWT estimator has the smallest bias in absolute value 

for 0.15   but DFA has the smallest RMSE in this case. The bootstrap SP estimator exhibits the smallest RMSE for 

0.3,0.5 and 0.8  . For 0.95  , the bootstrap R/S estimator performs in general better than the others regarding to 

both bias and RMSE. 
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Table 2. RMSE of estimator (rmse) and of bootstrap estimator (B.rmse). The ARFIMA(1,0,0) case. (H=0.5) 

Model R/S DFA DWT GPH SP 

AR.coef N rmse B.rmse rmse B.rmse rmse B.rmse rmse B.rmse rmse B.rmse 

0.15 

128 .2059 .1367 .1025 .0721 .2672 .1131 .1435 .1044 .1967 .1153 

256 .1655 .1162 .0748 .0529 .1619 .0656 .1034 .0806 .1652 .0927 

512 .1439 .1082 .0548 .0374 .1095 .0424 .0843 .0671 .1338 .0539 

1024 .1285 .0927 .0400 .0265 .0714 .0300 .0600 .0500 .1058 .0436 

2048 .1179 .0938 .0316 .0245 .0616 .0200 .0490 .0400 .0837 .0300 

0.3 

128 .2406 .1797 .1493 .1149 .3022 .1483 .2345 .1957 .2071 .1241 

256 .2074 .1530 .1034 .0825 .1780 .0959 .1792 .1597 .1634 .0954 

512 .1652 .1364 .0837 .0663 .1257 .0671 .1473 .1334 .1323 .0608 

1024 .1473 .1225 .0693 .0574 .0964 .0529 .1183 .1114 .1105 .0480 

2048 .1503 .1229 .0656 .0583 .0714 .0387 .0938 .0889 .0860 .0316 

0.5 

128 .3040 .2417 .2604 .2245 .4039 .2893 .3857 .3506 .2045 .1245 

256 .2456 .2145 .1954 .1752 .2737 .2202 .3254 .3077 .1625 .0975 

512 .2102 .1903 .1539 .1414 .2007 .1682 .2832 .2711 .1261 .0678 

1024 .1921 .1706 .1261 .1175 .1568 .1315 .2439 .2352 .1000 .0520 

2048 .1881 .1703 .1292 .1237 .1170 .1020 .2035 .1990 .0860 .0387 

0.8 

128 .4140 .3705 .5520 .5115 .7215 .6625 .7217 .6842 .3707 .2960 

256 .3624 .3437 .4673 .4422 .6082 .5751 .6698 .6403 .2827 .2254 

512 .3335 .3124 .3956 .3778 .5007 .4808 .6108 .5977 .1806 .1349 

1024 .3022 .2872 .3384 .3286 .4116 .3991 .5663 .5585 .1261 .0906 

2048 .3035 .2888 .3401 .3350 .3394 .3270 .5181 .5127 .0900 .0566 

0.95 

128 .4754 .4379 .7935 .7437 .9042 .8641 .9411 .8947 .7671 .6590 

256 .4581 .4350 .7641 .7267 .8656 .8529 .9127 .8859 .6826 .6089 

512 .4418 .4271 .7199 .6933 .8391 .8188 .8816 .8656 .5725 .5158 

1024 .4240 .4130 .6610 .6461 .7726 .7616 .8553 .8450 .4585 .4225 

2048 .4268 .4162 .6670 .6589 .6931 .6845 .8279 .8216 .3372 .3134 

 

Based on all results including the results presented in Table 1 and 2 we can summarize as following 

R/S and bootstrap R/S estimators are less influenced by the large values of AR coefficient than the other estimators. 

In the case of ARFIMA(0,d,0) models, GPH estimator outperforms the others regarding to bias, whereas the bootstrap 

GPH estimator outperforms the others in respect to RMSE except the case of 0.3d  . In the case of 0.3d   the 

bootstrap R/S estimator has the smallest RMSE. 

The bias and RMSE of bootstrap estimators are smaller than the bias and RMSE of the corresponded classical estimators 
in most of the cases of ARFIMA(1,d,0) models with moderate and large values of d and of AR coefficient. 

Bootstrap R/S estimator has the best performance almost in all cases of LRD processes with 0.95  . In the extreme 

case of ARFIMA(0.95,0.45,0) model the R/S and bootstrap R/S estimators obviously outperform the other estimators. 

In conclusion, the simulation results show that applying the block bootstrap method with blocks composed of cycles yields 
better estimation of the LRD parameter than applying a single classical method. At least for the methods and the models 
conducted in this paper, the bootstrap estimators appeared smaller RMSE than the corresponded classical estimators. 
However, there is no estimator that simultaneously outperforms the others in all cases under consideration. 
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